首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
In a declining oak forest, a thinning treatment was performed in August 2004, targeting trees belonging to two decline classes. The whole ectomycorrhizal (EM) community was dominated by the fungal symbionts Clavulina cinerea, Tomentella sublilacina and Russula spp. The potential activities of eight secreted enzymes, involved in mobilizing nutrients (N, P) from soil organic matter, were measured on these three EM types in winter and spring 2006 using multiwell microplate photometric and fluorogenic methods. The enzymatic activities recorded in winter were generally significantly higher than in spring. Most of the enzyme activities studied, and particularly phosphatase and β-glucosidase, changed according to both decline class and sylvicultural treatment. In spring, each anatomotype displayed different enzymatic profile according to the decline class. These results suggest that the potential enzymatic activity of ectomycorrhizae adapts to the changes resulting from the sylvicultural treatment and reacts to the anthropic disturbance by adjusting to the new resource structure.  相似文献   

2.
Extracellular lignocellulose-degrading enzymes are responsible for the transformation of organic matter in hardwood forest soils. The spatial variability on a 12 × 12 m plot and vertical distribution (0–8 cm) of the ligninolytic enzymes laccase and Mn-peroxidase, the polysaccharide-specific hydrolytic enzymes endoglucanase, endoxylanase, cellobiohydrolase, 1,4-β-glucosidase, 1,4-β-xylosidase and 1,4-β-N-acetylglucosaminidase and the phosphorus-mineralizing acid phosphatase were studied in a Quercus petraea forest soil profile. Activities of all tested enzymes exhibited high spatial variability in the L and H horizons. Acid phosphatase and 1,4-β-N-acetylglucosaminidase exhibited low variability in both horizons, while the variability of Mn-peroxidase activity in the L horizon, and endoxylanase and cellobiohydrolase activities in the H horizon were very high. The L horizon contained 4× more microbial biomass (based on PLFA) and 7× fungal biomass (based on ergosterol content) than the H horizon. The L horizon also contained relatively more fungi-specific and less actinomycete-specific PLFA. There were no significant correlations between enzyme activities and total microbial biomass. In the L horizon cellulose and hemicellulose-degrading enzymes correlated with each other and also with 1,4-β-N-acetylglucosaminidase and acid phosphatase activities. Laccase, Mn-peroxidase and acid phosphatase activities correlated in the H horizon. The soil profile showed a gradient of pH, organic carbon and humic compound content, microbial biomass and enzyme activities, all decreasing with soil depth. Ligninolytic enzymes showed preferential localization in the upper part of the H horizon. Differences in enzyme activities were accompanied by differences in the microbial community composition where the relative amount of fungal biomass decreased and actinomycete biomass increased with soil depth. The results also showed that the vertical gradients occur at a small scale: the upper and lower parts of the H horizon only 1 cm apart were significantly different with respect to seven out of nine activities, microbial biomass content and community composition.  相似文献   

3.
The relative roles of ectomycorrhizal (ECM) and saprotrophic communities in controlling the decomposition of soil organic matter remain unclear. We tested the hypothesis that ECM community structure and activity influences the breakdown of nutrient-rich biopolymers in soils, while saprotrophic communities primarily regulate the breakdown of carbon-rich biopolymers. To test this hypothesis, we used high-throughput techniques to measure ECM and saprotrophic community structure, soil resource availability, and extracellular enzyme activity in whole soils and on ECM root tips in a coastal pine forest. We found that ECM and saprotroph richness did not show spatial structure and did not co-vary with any soil resource. However, species richness of ECM fungi explained variation in the activity of enzymes targeting recalcitrant N sources (protease and peroxidase) in bulk soil. Activity of carbohydrate- and organic P- targeting enzymes (e.g. cellobiohydrolase, β-glucosidase, α-glucosidase, hemicellulases, N-acetyl-glucosaminidase, and acid phosphatase) was correlated with saprotroph community structure and soil resource abundance (total soil C, N, and moisture), both of which varied along the soil profile. These observations suggest independent roles of ECM fungi and saprotrophic fungi in the cycling of N-rich, C-rich, and P-rich molecules through soil organic matter. Enzymatic activity on ECM root tips taken from the same soil cores used for bulk enzyme analysis did not correlate with the activity of any enzyme measured in the bulk soil, suggesting that ECM contributions to larger-scale soil C and nutrient cycling may occur primarily via extramatrical hyphae outside the rhizosphere.  相似文献   

4.
Plant effects on ecosystem processes are mediated through plant-microbial interactions belowground and soil enzyme assays are commonly used to directly relate microbial activity to ecosystem processes. Live plants influence microbial biomass and activity via differences in rhizosphere processes and detrital inputs. I utilized six grass species of varying litter chemistry in a factorial greenhouse experiment to evaluate the relative effect of live plants and detrital inputs on substrate-induced respiration (SIR, a measure of active microbial biomass), basal respiration, dissolved organic carbon (DOC), and the activities of β-glucosidase, β-glucosaminidase, and acid phosphatase. To minimize confounding variables, I used organic-free potting media, held soil moisture constant, and fertilized weekly. SIR and enzyme activities were 2-15 times greater in litter-addition than plant-addition treatments. Combining live plants with litter did not stimulate microbial biomass or activity above that in litter-only treatments, and β-glucosidase activity was significantly lower. Species-specific differences in litter N (%) and plant biomass were related to differences in β-glucosaminidase and acid phosphatase activity, respectively, but had no apparent effect on β-glucosidase, SIR, or basal respiration. DOC was negatively related to litter C:N, and positively related to plant biomass. Species identity and living plants were not as important as litter additions in stimulating microbial activity, suggesting that plant effects on soil enzymatic activity were driven primarily by detrital inputs, although the strength of litter effects may be moderated by the effect of growing plants.  相似文献   

5.
Indigenous grasses have been effectively used to rehabilitate degraded African drylands. Despite their success, studies examining their effects on soil bioindicators such as microbial biomass carbon(C) and enzyme activities are scarce. This study elucidates the effects of drought stress and phenological stages of a typical indigenous African grass, Enteropogon macrostachyus, on microbial biomass and enzyme activities(β-glucosidase, cellobiohydrolase, and chitinase) in the rhizosphere soil. Enteropogon macrostachyus was grown under controlled conditions. Drought stress(partial watering) was simulated during the last 10 d of plant growth, and data were compared with those from optimum moisture conditions. The rhizosphere soil was sampled after 40 d(seedling stage), 70 d(elongation stage), and 80 d(simulated drought stress). A high root:shoot ratio at seedling stage compared with elongation and reproduction stages demonstrated that E. macrostachyus invested more on root biomass in early development, to maximise the uptake of nutrients and water. Microbial biomass and enzyme activities increased with root biomass during plant growth. Ten-day drought at reproduction stage increased the microbial biomass and enzyme activities, accompanying a decrease in binding affinity and catalytic efficiency. In conclusion, drought stress controls soil organic matter decomposition and nutrient mobilization, as well as the competition between plant and microorganisms for nutrient uptake.  相似文献   

6.
The purpose of this research was to compare soil chemistry, microbially mediated carbon (C) and nitrogen (N) transformations and microbial biomass in forest floors under European beech (Fagus sylvatica L.), sessile oak (Quercus petraea (Mattuschka) Lieblein), Norway spruce (Picea abies (L.) Karst) and Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) at four study sites. We measured soil chemical characteristics, net N mineralization, potential and relative nitrification, basal respiration, microbial and metabolic quotient and microbial biomass C and N under monoculture stands at all sites (one mixed stand). Tree species affected soil chemistry, microbial activities and biomass, but these effects varied between sites. Our results indicated that the effect of tree species on net N mineralization was likely to be mediated through their effect on soil microbial biomass, reflecting their influence on organic matter content and carbon availability. Differences in potential nitrification and relative nitrification might be related to the presence of ground vegetation through its influence on soil NH4 and labile C availability. Our findings highlight the need to study the effects of tree species on microbial activities at several sites to elucidate complex N cycle interactions between tree species, ground vegetation, soil characteristics and microbial processes.  相似文献   

7.
The activities of nutrient-mobilising enzymes secreted by ectomycorrhizas of sessile oak (Quercus petraea) have been measured in 24 plots in a forested area in central France where many rural Gallo-Roman settlements (first to fifth centuries AD) have been discovered. Data have been related with tree growth and soil chemical properties. Although soil near the past settlements is still enriched in N and P, this does not always correspond to the higher productivity of oak trees. However, when this is the case, the ectomycorrhizal community displays higher chitinase, protease and phosphatase activities (involved in N and P mobilisation from soil organic matter). A few specialised ectomycorrhizal fungal species are responsible for this adaptation to the long-lasting modification of soil conditions.  相似文献   

8.
Tropospheric ozone (O3) is considered harmful to agriculture production and soil community. Wheat cultivars HD 2987 (O3 sensitive) and Kharchiya 65 (O3 tolerant) were grown under ambient and elevated (ambient + 30 ppb) levels of O3 (EO) using open top chambers, and microbial biomass and enzymatic activities were investigated in soil rhizosphere. Elevated O3 declined soil enzymatic activities related to carbon cycling viz. β-glucosidase, cellobiohydrolase, cellulase and amylase more in sensitive cultivar compared to tolerant. Enzymatic activities linked to nitrogen cycling like N-acetyl-glucosaminidase and urease decreased while protease and glycine aminopeptidase increased. Microbial biomass carbon and nitrogen declined more in sensitive cultivar by 11.1 and 21.2%, respectively. Root biomass reduced in wheat cultivars with an increase of their phenolics contents by 34.3 and 10.2% in HD 2987 and Kharchiya 65, respectively at 60 days after germination. Non-significant changes were observed in soil organic carbon and total nitrogen in both the cultivars. Redundancy analysis suggested that soil enzymatic activities were predominantly affected by O3 induced changes in microbial biomass carbon and root biomass. Study also showed that rhizosphere of sensitive cultivar HD 2987 was affected more under EO as compared to tolerant Kharchiya 65.  相似文献   

9.
The chemical structure of soil organic matter fractions and its relationship to biological processes remains uncertain. We used pyrolysis-gas chromatography/mass spectrometry to analyze the molecular structure of light and heavy fraction C from soils in the San Juan Mountains, Colorado. The soil samples, each replicated three times, were from two elevations (alpine and low forest) within two geochemically distinct basins (igneous and sedimentary). We also analyzed whether variation in the activity of nine enzymes that mediate soil organic matter turnover and nutrient cycling could explain differences in C structure. We found that, across basins and elevation, light fraction and heavy fraction C had distinct chemistries. The light fraction was characterized by an abundance of plant lignin biomarkers, including phenol, 2-methoxy-4-vinyl-(vinylguaiacol) and phenol, 2-methoxy-(guaiacol); in contrast heavy fraction had very little unaltered lignin but an abundance of polysaccharides, such as furfural, and proteins such as pyrrole. In alpine sites, light fraction was less abundant (4.27 versus 31.79 g kg−1) and had a lower C/N ratio (17.25 versus 32.01) than in forests. The alpine sites also had higher activities of phosphatase, β-d-1,4-cellobiosidase, β-1,4-glucosidase, l-leucine aminopeptidase, and β-1,4-xylosidase. Protein abundance in the heavy fraction was correlated with peptidase, β-1,4-glucosidase, and phosphatase activities; in the light fraction, protein abundance was correlated with peptidase, xylosidase, and β-d-1,4-cellobiosidase activities. β-1,4-N-acetyl-glucosaminidase was negatively correlated with polysaccharides in the light and heavy fractions and positively correlated with lignin in the light fraction. However, there were not always significant correlations between enzymes and substrates. We suggest that this is likely because soil organic matter chemistry reflects long-term decomposition processes while enzyme dynamics fluctuate with current conditions or due to the presence of a pool of sorbed enzymes in the heavy fraction. While alpine and forest ecosystem C distribution and enzyme activities varied, substantial depletion of lignin derivatives in the heavy fraction across sites suggest that these compounds do not persist in stable soil C pools.  相似文献   

10.
In recent decades, perennial rhizomatous grasses have been introduced in the Po Valley (Northern Italy), not only to produce bioenergy, but also to face the loss of soil organic carbon due to intensive crop management. Given the dual purpose of perennial energy crops, this work was intended to evaluate changes induced by the introduction of these crops on soil microbial community structure and on soil functionality. We compared a 9 year-old land conversion to two perennial energy crops, giant Miscanthus (Miscanthus sinensis × giganteus) and giant reed (Arundo donax L.), with two 40-year old annual arable systems, continuous wheat and maize/wheat rotation. The structure of the bacterial community was studied by the fingerprinting method of denaturing gradient gel electrophoresis (PCR-DGGE) amplifying 16S rRNA fragments, while the functional aspects of soil were investigated through the determination of three soil enzyme activities involved in soil carbon, nitrogen, and phosphorous cycles (β-glucosidase, urease, and alkaline phosphatase, respectively). Introduction of perennial energy crops positively stimulated the three soil enzymes, especially in the shallow soil layer (0–0.15 m), where accumulation of carbon and nitrogen was stronger. Enzyme activities were also positively correlated with organic carbon, apart from β-glucosidase. A significant but weaker correlation was also observed between enzyme activities and total nitrogen. The DGGE profiles revealed the relationship between crop types and soil microbial communities. Community richness was higher in perennial than in annual crops, but no effect of soil depth was observed. In opposition, Shannon index of diversity was not influenced by crop type, but only by soil depth with a 32% increase in the shallow layer. We conclude that the introduction of perennial energy crops in a South European soil increases both soil biochemical activity and microbial diversity, related to the ability of these crops to stabilize organic matter in soil. It is thereby evidenced that perennial rhizomatous grasses for energy uses could represent a sustainable choice for the recovery of soils depleted by intensive agricultural management.  相似文献   

11.
It has long been recognized that plant invasions may alter carbon(C) and nitrogen(N) cycles, but the direction and magnitude of such alterations have been rarely quantified. In this study, we quantified the effects caused by the invasion of a noxious exotic plant,Kalanchoe daigremontiana(Crassulaceae), on C and N mineralization and enzymatic and microbial activities in the soil of a semiarid locality in Venezuela. We compared soil parameters associated with these processes(C and N mineralization time and the cumulative values, fluorescein diacetate hydrolytic activity, and activities of dehydrogenase, β-glucosidase, glucosaminidase, and urease) between invaded and adjacent non-invaded sites. In addition, correlations among these parameters and the soil physical-chemical properties were also examined to determine if a positive feedback exists between nutrient availability and K. daigremontiana invasion. Overall,our results showed that C mineralization and transformation of organic compounds to NH_4~+ were favored at sites colonized by K.daigremontiana. With this species, we found the highest cumulative amounts of NH_4~+-N and C and the lowest mineralization time.These results could be explained by higher activities of urease and glucosaminidase in soils under the influence of K. daigremontiana.In addition, higher amounts of organic matter and moisture content in invaded soils might favor C and N mineralization. In conclusion,invasion of Neotropical semiarid zones by K. daigremontiana may influence the chemical and biological properties of the soils covered by this species, increasing nutrient bioavailability, which, in time, can facilitate the invasion process.  相似文献   

12.
Host trees can modify their soil abiotic conditions through their leaf fall quality which in turn may influence the ectomycorrhizal (ECM) fungal community composition. We investigated this indirect interaction using a causal modelling approach. We identified ECM fungi on the roots of two coexisting oak species growing in two forests in southern Spain - Quercus suber (evergreen) and Quercus canariensis (winter deciduous)-using a PCR-based molecular method. We also analysed the leaf fall, litter and soil sampled beneath the tree canopies to determine the concentrations of key nutrients. The total mycorrhizal pool was comprised of 69 operational taxonomic units (OTUs). Tomentella and Russula were the most species-rich, frequent and abundant genera. ECM fungi with epigeous and resupinate fruiting bodies were found in 60% and 34% of the identified mycorrhizas, respectively. The calcium content of litter, which was significantly higher beneath the winter-deciduous oak species due to differences in leaf fall quality, was the most important variable for explaining ECM species distribution. The evaluation of alternative causal models by the d-sep method revealed that only those considering indirect leaf fall-mediated host effects statistically matched the observed covariation patterns between host, environment (litter, topsoil, subsoil) and fungal community variables.  相似文献   

13.
This study evaluated effects of oats (Avena sativa L.) and grazing vetch (Vicia dasycarpa L.), bicultures, in rotation with summer maize (Zea mays), on soil organic matter fractions and activities of selected enzymes. The trial was initiated in April 2009. The treatments were 100% oat, 100% vetch, 90% oat + 10% vetch, 70% oat + 30% vetch, 50% oat + 50% vetch, and weedy fallow, in a randomized complete block design (RCBD) with three replications. Soil samples were collected in October 2011, from the 0–5 and 5–20 cm depths, and analyzed for total carbon (C), particulate organic matter (POM), water-soluble carbon (WSC), microbial biomass carbon (MBC) and activities of selected enzymes. Total C was higher in bicultures, particularly the 70% oat + 30% vetch, and 100% vetch than in 100% oats and the control. The greatest MBC, WSC, dehydrogenase, aryl-sulphatase and phosphomonoesterase activities were in the 70% oat + 30% vetch biculture, and declined where the proportion of oats or vetch was higher. Increasing proportions of vetch resulted in increases in urease and β-glucosidase activity and decrease in POM. The findings suggested that, in addition to increased maize yields, bicultures of oats and vetch also have synergistic effects on soil carbon pools and enzyme activities, with potential benefits of improved soil physical condition and nutrient cycling compared with the individual crops, under warm temperate conditions.  相似文献   

14.
The year-round dynamics of laccase and acid phosphatase activities of ectomycorrhizas (EM) were monitored in an oak forest, with a microplate photometric method using individual EM root tips. Among the most frequent and abundant EM morphotypes, those of Lactarius quietus and Cortinarius anomalus showed a peak of laccase activity in spring, while those of Xerocomus chrysenteron displayed highest laccase activities in summer and autumn. In comparison, less seasonal differences were observed in EM acid phosphatase activity. This suggests that the different EM types within the EM community perform complementary functions depending on season.  相似文献   

15.
The objective of this work was to evaluate the C and N stocks and organic‐C fractions in soil under mixed forest stands of Scots pine (Pinus sylvestris L.) and Sessile oak (Quercus petraea [Matt.] Liebl.) of different ages in NE Germany. Treatments consisted of pure pine (age 102 y), and pine (age 90–102 y) mixed with 10‐, 35‐, 106‐, and 124‐y‐old oak trees. After sampling O layers, soils in the mineral layer were taken at two different depths (0–10 and 10–20 cm). Oak admixture did not affect total organic‐C (TOC) and N stocks considering the different layers separately. However, when the sum of TOC stocks in the organic and mineral layers was considered, TOC stocks decreased with increasing in oak age (r2 = 0.58, p < 0.10). The microbial C (CMB) was not directly correlated with increase of oak age, however, it was positively related with presence of oak species. There was an increase in the percentage of the CMB‐to‐TOC ratio with increase of oak‐tree ages. On average, light‐fraction C (CLF) comprised 68% of the soil TOC in upper layer corresponding to the highest C pool in the upper layer. CLF and heavy‐fraction C (CHF) were not directly affected by the admixture of oak trees in both layers. The CHF accounted on average for 30% and 59% of the TOC at 0–10 and 10–20 cm depths, respectively. Despite low clay contents in the studied soils, the differences in the DCB‐extractable Fe and Al affected the concentrations of the CHF and TOC in the 10–20 cm layers (p < 0.05). Admixture of oak in pine stands contributed to reduce topsoil C stocks, probably due to higher soil organic matter turnover promoted by higher quality of oak litter.  相似文献   

16.
Since 1958, experimental plots in an orchard of dwarf apple trees have been kept free from direct vegetative cover either by mowing or by the application of atrazine at an annual rate of 4 kg/ha. Comparative studies show that the atrazine treatments induced significant changes in the microbial population. Although the total numbers of bacteria and fungi were not altered, the anaerobic bacteria, sporeformers and cellulolytic microorganisms were permanently reduced, and the nitrifying, amylolytic and denitrifying microbial groups were temporarily reduced by atrazine. However, the herbicide enhanced numbers of ammonifying and proteolytic organisms temporarily and increased the number of Azotobacter permanently. As a result of the long-term elimination of the direct vegetative cover and the concomitant loss of organic matter in the atrazine-treated soil, the phosphatase, saccharase, β-glucosidase and urease activities of this soil were reduced by 50 per cent or more.  相似文献   

17.
Invasive earthworms can have significant impacts on C dynamics through their feeding, burrowing, and casting activities, including the protection of C in microaggregates and alteration of soil respiration. European earthworm invasion is known to affect soil micro- and mesofauna, but little is known about impacts of invasive earthworms on other soil macrofauna. Asian earthworms (Amynthas spp.) are increasingly being reported in the southern Appalachian Mountains in southeastern North America. This region is home to a diverse assemblage of native millipedes, many of which share niches with earthworm species. This situation indicates potential for earthworm-millipede competition in areas subject to Amynthas invasion.In a laboratory microcosm experiment, we used two 13C enriched food sources (red oak, Quercus rubra, and eastern hemlock, Tsuga canadensis) to assess food preferences of millipedes (Pseudopolydesmus erasus), to determine the effects of millipedes and earthworms (Amynthas corticis) on soil structure, and to ascertain the nature and extent of the interactions between earthworms and millipedes. Millipedes consumed both litter species and preferred red oak litter over eastern hemlock litter. Mortality and growth of millipedes were not affected by earthworm presence during the course of the experiment, but millipedes assimilated much less litter-derived C when earthworms were present.Fauna and litter treatments had significant effects on soil respiration. Millipedes alone reduced CO2 efflux from microcosms relative to no fauna controls, whereas earthworms alone and together with millipedes increased respiration, relative to the no fauna treatment. CO2 derived from fresh litter was repressed by the presence of macrofauna. The presence of red oak litter increased CO2 efflux considerably, compared to hemlock litter treatments.Millipedes, earthworms, and both together reduced particulate organic matter. Additionally, earthworms created significant shifts in soil aggregates from the 2000-250 and 250-53 μm fractions to the >2000 μm size class. Earthworm-induced soil aggregation was lessened in the 0-2 cm layer in the presence of millipedes. Earthworms translocated litter-derived C to soil throughout the microcosm.Our results suggest that invasion of ecosystems by A. corticis in the southern Appalachian Mountains is unlikely to be limited by litter species and these earthworms are likely to compete directly for food resources with native millipedes. Widespread invasion could cause a net loss of C due to increased respiration rates, but this may be offset by C protected in water-stable soil aggregates.  相似文献   

18.
The species of an ectomycorrhizal (ECM) community were investigated in a temperate oak forest by morphotyping and ITS rDNA sequencing. Thirty-six ECM morphotypes were found at the site. The niche effect (as organic soil, mineral soil or dead woody debris artificially introduced in the soil) on the ECM community structure and on the potential catabolic activities of the most abundant morphotypes was studied. The morphotypes in each niche were subjected to enzymatic tests developed for hydrolytic and oxidative enzymes involved in the decomposition of organic compounds. The ECM community structure varied widely depending on the soil horizon or habitat patch. The species richness was higher in the A1 horizon than in the other niches. Different ECM species had different activity patterns for the eight enzymatic tests while co-occurring in the same niche. Catabolic activities also changed within species between niches. Dead woody debris were extensively colonized by two saprotrophic fungi (Megacollybia platyphylla and Armillaria sp.) and, in this particular niche, ECM morphotypes predominantly belonged to the genera Lactarius and Tomentella. These morphotypes showed high chitinase activities. This study suggested also that some ECM fungi could obtain nutrients via the chitin degradation of dead or live saprobes.  相似文献   

19.
The fungal symbionts forming ectomycorrhizas, as well as their associated bacteria, benefit forest trees in a number of ways although the most important is enhancing soil nutrient mobilization and uptake. This is reciprocated by the allocation of carbohydrates by the tree to the fungus through the root interface, making the relationship a mutualistic association. Many field observations suggest that ectomycorrhizal fungi contribute to a number of key ecosystem functions such as carbon cycling, nutrient mobilization from soil organic matter, nutrient mobilization from soil minerals, and linking trees through common mycorrhizal networks. Until now, it has been very difficult to study trees and their fungal associates in forest ecosystems and most of the work on ECM functioning has been done in laboratory or nursery conditions. In this review with discuss the possibility of working at another scale, in forest settings. Numerous new techniques are emerging that makes possible the in situ study of the functional diversity of ectomycorrhizal communities. This approach should help to integrate developing research on the functional ecology of ectomycorrhizas and their associated bacteria with the potential implications of such research for managing the effects of climate change on forests.  相似文献   

20.
The relationships between soil microbial properties and fine root decomposition processes under elevated CO2 are poorly understood. To address this question, we determined soil microbial biomass carbon (SMB-C) and nitrogen (SMB-N), enzymes related to soil carbon (C) and nitrogen (N) cycling, the abundance of cultivable N-fixing bacteria and cellulolytic fungi, fine root organic matter, lignin and holocellulose decomposition, and N mineralization from 2006 to 2007 in a Mongolian oak (Quercus mongolica Fischer ex Ledebour) ecosystem in northeastern China. The experiment consisted of three treatments: elevated CO2 chambers, ambient CO2 chambers, and chamberless plots. Fine roots had significantly greater organic matter decomposition rates under elevated CO2. This corresponded with significantly greater SMB-C. Changes in the activities of protease and phenol oxidase under elevated CO2 could not explain the changes in fine root N release and lignin decomposition rates, respectively, while holocellulose decomposition rate had the same response to experimental treatments as did cellulase activity. Changes in cultivable N-fixing bacterial and cellulolytic fungal abundances in response to experimental treatments were identical to those of N mineralization and lignin decomposition rates, respectively, suggesting that the two indices were closely related to fine root N mineralization and lignin decomposition. Our results showed that the increased fine root organic matter, lignin and holocellulose decomposition, and N mineralization rates under elevated CO2 could be explained by shifts in SMB-C and the abundance of cellulolytic fungi and N-fixing bacteria. Enzyme activities are not reliable for the assessment of fine root decomposition and more attention should be given to the measurement of specific bacterial and fungal communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号