首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known regarding the influences of nutrients released from plants on the metabolic activity of colonizing microbes. To gain a better understanding of these influences, we used bioluminescence- and oxygen consumption-based methods to compare bacterial metabolic activity expressed during colonization of two different seed types. Metabolic activity expressed by Enterobacter cloacae during colonization of pea seeds, which exude high levels of reduced carbon nutrients, was compared with that during colonization of cucumber seeds, which exude orders of magnitude less reduced carbon nutrients. Metabolic activity levels expressed by E. cloacae populations were much higher throughout a 72 h colonization period on pea seed compared with those observed on cucumber seed, directly correlating metabolic activity level with amounts of nutrients released by seeds. In vitro studies indicated E. cloacae cells expressed different levels of metabolic activity when incubated with different individual carbohydrates commonly found in cucumber and pea seed exudates. The addition of exogenous carbohydrate to cucumber seed increased metabolic activity expressed by colonizing E. cloacae; with the level of increase dependent on both quantity and type of carbohydrate supplement. Subtraction of carbohydrate available to E. cloacae on cucumber and pea seeds through mutation in pfkA decreased metabolic activity by this bacterium. Results presented here provide strong evidence that metabolic activity of spermosphere-colonizing bacteria is host dependent, and that levels of activity are based largely on both quantitative and qualitative composition of host exudate released during seed germination.  相似文献   

2.
Fertilizer costs are a major component of corn production. The use of biofertilizers may be one way of reducing production costs. In this study we present isolation and identification of three plant growth promoting bacteria that were identified as Enterobacter cloacae (CR1), Pseudomonas putida (CR7) and Stenotrophomonas maltophilia (CR3). All bacterial strains produced IAA in the presence of 100 mg l−1 of tryptophan and antifungal metabolites to several soilborne pathogens. S. maltophilia and E. cloacae had broad spectrum activity against most Fusarium species. The only strain that was positive for nitrogen fixation was E. cloacae and it, and P. putida, were also positive for phosphate solubilization. These bacteria and the corn isolate Sphingobacterium canadense CR11, and known plant growth promoting bacterium Burkholderia phytofirmans E24 were used to inoculate corn seed to examine growth promotion of two lines of corn, varieties 39D82 and 39M27 under greenhouse conditions. When grown in sterilized sand varieties 39M27 and 39D82 showed significant increases in total dry weights of root and shoot of 10-20% and 13-28% and 17-32% and 21-31% respectively. Plants of the two varieties grown in soil collected from a corn field had respective increases in dry weights of root and shoot of 10-30% and 12-35% and 11-19% and 10-18%. In sand, a bacterial mixture was highly effective whereas in soil individual bacteria namely P. putida CR7 and E. cloacae CR1 gave the best results with 39M27 and 39D82 respectively. These isolates and another corn isolate, Azospirillum zeae N7, were tested in a sandy soil with a 55 and 110 kg ha−1 of nitrogen fertility at the Delhi research Station of Agriculture and Agri-Food Canada over two years. Although out of seven bacterial treatments, no treatment provided a statistically significant yield increase over control plots but S. canadense CR11 and A. zeae N7 provided statistically significant yield increase as compared to other bacteria. The 110 kg rate of nitrogen provided significant yield increase compared to the 55 kg rate in both years.  相似文献   

3.
Echinocactus platyacanthus is a candy barrel cactus endemic to Mexico and an endangered species owing to its exploitation and the destruction of its habitat. The population dynamic of this species is analyzed using matrix models. Three consecutive censuses were carried out (1997, 1998, and 1999) for six populations of this species in the Tehuacán-Cuicatlán Biosphere Reserve. Fruit contain many seeds (mean = 171 ± S.E. 11.03 seeds/fruit); seedling establishment and survival are low (2 × 10−6), and fecundity increases as the diameter of the individuals increases (62 seeds in adult 1-4322 in adult 4). The rates of population growth (λ) range from 0.9285 to 1.0005. Elasticity values for demographic processes indicate that the stasis of the adults is the greatest contribution (S = 0.982), followed by growth (G = 0.017) and fecundity (F = 0.001) to λ. The populations are located in the lower left corner of the demographic triangle; however, there are variations for a given population from one year to the next. Life table response experiments indicate that although there are local variations, the most important differences in the values of λ between populations and between years are associated with changes in the stasis of the adults. The disturbance index is not directly related to population density or to the current value of λ. The protection of adult E. platyacanthus must be taken into account for the management of this species and its conservation in the study area.  相似文献   

4.
Environmentally friendly control measures are needed for the soil-borne pathogen, Pythium ultimum. This pathogen can cause severe losses to field- and greenhouse-grown cucumber and other cucurbits. Live cells and ethanol extracts of cultures of the bacterium Serratia marcescens N4-5 provided significant suppression of damping-off of cucumber caused by P. ultimum when applied as a seed treatment. Live cells of this bacterium also suppressed damping-off caused by P. ultimum on cantaloupe, muskmelon, and pumpkin. Culture filtrates from strain N4-5 contained chitinase and protease activities while ethanol extracts contained the antibiotic prodigiosin, the surfactant serrawettin W1, and possibly other unidentified surfactants. Production of prodigiosin and serrawettin W1 was temperature-dependent, both compounds being detected in extracts from N4-5 grown at 28 °C but not in extracts from N4-5 grown at 37 °C. Ethanol extracts from strain N4-5 grown at 28 °C inhibited germination of sporangia and mycelial growth by P. ultimum in in vitro experiments. There was no in vitro inhibition of P. ultimum associated with ethanol extracts of strain N4-5 grown at 37 °C. Prodigiosin, purified from two consecutive thin-layer chromatography runs using different solvent systems, inhibited germination of sporangia and mycelial growth of P. ultimum. Another unidentified compound(s) also inhibited germination of sporangia but did not inhibit mycelial growth. There was no in vitro inhibition associated with serrawettin W1. These results demonstrate that live cells and cell-free extracts of S. marcescens N4-5 are effective for suppression of damping-off of cucumber caused by P. ultimum possibly due in part to the production of the antibiotic prodigiosin.  相似文献   

5.
Metal hyperaccumulator plants like Alyssum murale have a remarkable ability to hyperaccumulate Ni from soils containing mostly insoluble Ni. We have shown some rhizobacteria increase the phytoavailability of Ni in soils, thus enhancing Ni accumulation by A. murale. Nine bacterial strains, originally isolated from the rhizosphere of A. murale grown in serpentine Ni-rich soil, were examined for their ability to solubilize Ni in different soils and for their effect on Ni uptake into Alyssum. Microbacterium oxydans AY509223; Rhizobium galegae AY509213; Microbacterium oxydans AY509219; Clavibacter xyli AY509236; Acidovorax avenae AY512827; Microbacterium arabinogalactanolyticum AY509225; M. oxydans AY509222; M. arabinogalactanolyticum AY509226 and M. oxydans AY509221 were added to low, moderate and high Ni-contaminated soils. M. oxydans AY509223 significantly increased Ni extraction by 10 mM Sr(NO3)2 from the high and medium soils and had no effect on Ni extraction from the low Ni soils. The other eight bacterial isolates significantly increased Ni extraction from all soils. There were no significant effects of bacterial inoculation on fresh and dry weight of A . murale shoots grown in the low and high Ni soils compared to an unamended control. M. oxydans AY509223 significantly increased Ni uptake of A. murale grown in the low, medium, and high soils by 36.1%, 39.3%, and 27.7%, respectively, compared with uninoculated seeds. M. oxydans AY509223 increased foliar Ni from the same soils from 82.9, 261.3 and 2829.3 mg kg−1 to 129.7, 430.7, and 3914.3 mg kg−1, respectively, compared with uninoculated controls. These results show that bacteria are important for Ni hyperaccumulation and could potentially be developed as an inoculum for enhancing uptake during commercial phytoremediation or phytomining of Ni.  相似文献   

6.
The effects of butyric acid were evaluated on fungal and nematode endo-parasites of strawberries under controlled laboratory conditions. Verticillium dahliae, Rhizoctonia fragariae, R. solani, Phytophthora fragariae, and a Pythium sp. were killed after a 2-d incubation in butryic acid-treated sand (0.88 and 8.8 mg g−1). No fungal growth occurred in the presence of vapors from 0.1 and 1 M butyric acid solutions. Gall formation on tomato roots by Meloidogyne hapla, and M. incognita was reduced by 73-100% relative to controls when egg masses were incubated in butyric acid solution (0.1, 1 M) or treated sand (0.88 and 8.8 mg g−1). Drenching strawberry plants infested with Pratylenchus penetrans with butyric acid (0.1 and 1 M) reduced nematode densities by 98-100%. These results suggest that butyric acid warrants further evaluation as an alternative to synthetic soil fumigants for control of nematodes and fungal pathogens in strawberry.  相似文献   

7.
Nematode faunal response to the long-term (20-year) application of nitrogen fertilizer and organic manure was monitored in a Hapli-Udic Cambosol of Northeast China, where no fertilizer (C), nitrogen fertilizer (N), organic manure (M) and nitrogen fertilizer plus organic manure (N + M) treatments were compared. The obtained results showed that total nematode abundance responded positively to the M and N + M treatments. The numbers of Acrobeloides increased in the M and N + M treatments at maize jointing and booting stages, and those of Aphelenchoides were higher in the N + M treatment than in the N treatment at maize ripening stage. Early in the growing season, the numbers of bacterivores of cp-1 (cp, colonizer-persister) and cp-2 guilds were higher in the M and N + M treatments than in the N treatment, while those of bacterivores and fungivores of cp-4 guilds were higher in the C treatment than in the N, M and N + M treatments. Except at maize seedling stage, the numbers of fungivores of cp-2 and herbivores of cp-3 guilds were higher in the N + M treatment than in the C treatment. Ratios of the weighted abundance of representatives of specific functional guilds were used as indicators of food web structure, enrichment and decomposition channels. Values of the enrichment index (EI) at maize seedling and jointing stages were higher in the M and N + M treatments than in the C and N treatments, while an opposite trend was observed in the channel index (CI). Higher EI and lower CI suggest an enriched soil food web dominated with bacterial decomposition channels in the M and N + M treatments.  相似文献   

8.
The large-scale production of biochar for carbon sequestration provides an opportunity for using these materials as inoculum carriers to deliver plant growth-promoting rhizobacteria (PGPR) into agricultural soils. Here, we evaluated the suitability of a biochar produced from pinewood pyrolyzed at 300 °C as a carrier for a well-studied PGPR strain, Enterobacter cloacae UW5. This strain was genetically modified to produce a green fluorescent protein marker that enabled tracking of the inoculum. Results from selective plate count assays and quantitative PCR (qPCR) confirmed that cell survival was slightly improved by addition of bacteria to soil using biochar as a carrier for the inoculant, as compared to soil directly inoculated. Total 16S rRNA genes were quantified using qPCR and DNA templates from the same soil treatments to distinguish the impact of biochar on total bacterial abundance from its influence on inoculum survival. Here total bacterial abundance was not influenced by biochar. All treatments resulted in bacterial colonization of roots at population densities of approximately 105 CFU g−1 root mass. Cucumber plants grown in the biochar amended soils had significantly greater biomass and root development than those planted in un-amended soil, regardless of the presence of inoculum. The ability of bacteria to colonize the plant roots and produce a plant growth hormone was not affected by biochar. However, UW5 inoculum did not promote root development in cucumber in any of the soils tested here. Overall, these experiments suggest that the 300 °C pine biochar is effective for evenly distributing inoculum into soil and promotes cucumber development in sandy loams.  相似文献   

9.
Bulking agents and bedding materials used on farms for composting manures affect the time required for composts to mature. The effects of these materials on guidelines for the use of composted manures in potting mixes are not fully known. Several chemical and biological compost characteristics were mentioned and a cucumber plant growth greenhouse bioassay was performed on samples removed from windrows during composting of: (i) dairy manure amended with wheat straw; (ii) dairy manure amended with sawdust (mostly Quercus spp.); and (iii) pig manure amended with sawdust and shredded wood (mostly Quercus spp.). Dry weights of cucumber seedlings grown in fertilized and unfertilized potting mixes amended with composts (30%, v/v) having stability values of <1 mg CO2-C g-1 dw d−1, did not differ significantly from those in a control peat mix. Only the most mature dairy manure-wheat straw compost samples consistently established sufficient N concentrations in cucumber shoots in unfertilized treatments. For the dairy manure-wheat straw compost, all possible subset regression analyses of compost characteristics versus cucumber plant dry weight revealed that any of several compost characteristics (electrical conductivity-EC, compost age, total N, organic C, C-to-N ratio, ash content, CO2 respirometry, Solvita CO2 index and the Solvita® Compost Maturity Index) predicted growth of cucumber in the unfertilized treatments, and thus maturity. In contrast, at least two characteristics of the dairy manure-sawdust compost were required to predict growth of cucumber in the unfertilized treatments. Effective combinations were EC with compost age and the Solvita® maturity index with total N. Even five compost characteristics did not satisfactorily predict growth of cucumber in the non-fertilized pig manure-wood compost. Nutrient analysis of cucumber shoots indicated N availability was the principal factor limiting growth in potting mixes amended with the dairy manure-sawdust compost, and even more so in the pig manure-wood compost even though the compost had been stabilized to a high degree (<1 mg CO2-C g−1 dw d−1). Maturity of the composted manures, which implies a positive initial plant growth response of plants grown without fertilization, could not be predicted by compost characteristics alone unless the bulking agent or bedding type used for the production of the composts was also considered.  相似文献   

10.
This study was aimed at detecting mycelial compatibility groups and variations in oxalic acid production in Sclerotinia sclerotiorum. For this purpose, 121 isolates of this plant pathogen recovered from lettuce, soybean and sunflower field crops, and grouped in 46 MCGs were tested for their ability to release oxalic acid and other organic acids to the medium. Oxalic acid production on liquid media was measured spectrophotometrically and release of organic acids was estimated by isolate abilities to discolour solid media amended with bromophenol blue. There were significant differences among MCGs in both oxalic acid and organic acids releasing, ranging the mean production of oxalic acid between 18 and 110 μg oxalic acid mg−1 dry wt. When isolates were grouped by their hosts, those obtained from soybean presented the highest release of oxalic acid (71 μg oxalic acid mg−1 dry wt), while those from sunflower showed the highest release of other acids to the medium. Solid medium discoloration was not correlated with oxalic acid concentration in liquid medium (Spearman R=−0.085; P=0.126).  相似文献   

11.
Soil soluble organic nitrogen (SON) can play an important role in soil nitrogen (N) cycling in forest ecosystems. This study examined the effect of land-use change from a native forest (NF) to a first rotation (1R) and subsequent second rotation (2R) hoop pine (Araucaria cunninghamii) plantation on soil SON pools. The impact of residue management on SON pools was also investigated in the 2R forest, where SON was measured in tree rows (2R-T) and windrows (2R-W). Various extraction techniques were used to measure SON pool size in the 0-10, 10-20 and 20-30 cm layers of soil. The results showed that land-use change had a significant impact on soil SON pools. In the 0-10 cm layer, 3.2-8.7, 14-23, 20-28, 60-160 and 127-340 mg SON kg−1 were extracted by water, 0.5 M K2SO4, 2 M KCl, hot water and hot 2 M KCl, respectively. The size of the SON pools and the potential production of SON (PPSON) were generally highest in the NF soil and lowest in the 2R-T soil, and in all forest types decreased with soil depth. The larger SON pools in the NF soil coincided with lower soil, litter and root C:N ratios, suggesting that the difference in the size of SON pools between the NF and 1R soil may be related to differences in the quality of organic matter input under the different forest ecosystems. Differences in the size of SON pools between the 1R soil and the 2R soils and between the 2R-T soil and the 2R-W soil may be related to the quantity of organic matter input and time since disturbance. Significant relationships were found between the SON extracted by 0.5 M K2SO4 (SONps) and 2 M KCl (SONKCl), and also among the SON extracted by hot 2 M KCl (SONhKCl), hot water (SONhw) and water (SONw), suggesting that the organic N released by these groups of extracts may be at least partly from similar pools.  相似文献   

12.
Plant-associated strain IC14 of the Gram-negative bacterium Serratia plymuthica isolated from soil around melon roots was shown to suppress a wide range of phytopathogenic fungi in vitro. Foliar application of strain IC14 protected cucumber against Botrytis cinerea gray mold and Sclerotinia sclerotiorum white mold diseases of leaves under greenhouse conditions, reducing disease incidence by 76 and 84%, respectively. The strain possessed chitinolytic and proteolytic activities, produced the antibiotic pyrrolnitrin [3-chloro-4-(2′-nitro-3′-chlorophenyl)pyrrole] and siderophores, and secreted the plant growth hormone indole-3-acetic acid. An endochitinase with an apparent molecular mass of 58 kDa, was estimated to be the main secreted chitinolytic enzyme. Two mutants, one with increased chitinolytic activity and the second deficient in chitinolytic activity, were obtained by miniTn5-insertion mutagenesis. Neither mutant differed appreciably from the parental strain in the production of other antifungal compounds or in suppression of B. cinerea and S. sclerotiorum on plates or in the greenhouse, suggesting that chitinolytic activity is less essential for biocontrol of these pathogens by strain IC14. The obtained results present novel information concerning the potential of the soil-borne S. plymuthica strains as biocontrol agents of foliar diseases caused by plant pathogenic fungi.  相似文献   

13.
The aggregation process in sandy soils depends on biological activity. We reported here results obtained from one sample time of: (a) adhesion of sand particles by root hairs and fungal hyphae, examined on root sections of four plant species (amaranth, Amaranthus hypochondriacus L.; Bermuda grass, Cynodon dactylon L.; maize, Zea mays L. and sunflower, Helianthus annuus L.) grown at field for 3 months; (b) root-adhering soil (RAS), root biomass (RB), and dry and water stable-aggregate fractions obtained from root:soil monoliths; and (c) arbuscular mycorrhizal colonization. Microscope observations on fine roots (<1 mm) showed that root hairs and hyphae contributed simultaneously, but not in the same proportion, to enmeshment of sand particles (20-150 μm). Hyphae contribution was considerably fewer than that of root-hairs. Maize and Bermuda grass had a higher root-hair density but a lower amount of external hyphae than those of amaranth and sunflower. Root-hairs of Bermuda grass and maize held approximately three times more sand particles than those of amaranth and sunflower (20 and 7 mm−1 of root section, respectively). These results were consistent with the higher RAS:RB ratio of Bermuda grass and maize (302 and 257, respectively), than that of amaranth and sunflower (89 and 159). Intensity of mycorrhizal colonization in the whole root system was higher in maize, Bermuda grass and sunflower (range of 22.7-25%) as compared to that of amaranth (6.8%). A. hypochondriacus, considered as a non-mycorrhizal plant species, showed typical structures (vesicles, hyphae and arbuscules) in the root system. Results emphasized the preponderant role of root hairs (of grasses and dicotyledon species) in the process of soil adhesion by roots under sandy conditions (pumice and feldspath particles) and semi-arid climate.  相似文献   

14.
Five bacteria (Pseudomonas fluorescens, P. fluorescens subgroup G strain 2, P. marginalis, P. putida subgroup B strain 1 and P. syringae strain 1) and three fungi (Penicillium brevicompactum, P. solitum strain 1 and Trichoderma atroviride) were evaluated to determine their promoting effect on the growth of mature healthy tomato plants grown under hydroponic conditions. P. putida and T. atroviride were shown to improve fruit yields in rockwool and in organic medium. The production or degradation of indole acetic acid (IAA) by the two microorganisms was investigated as possible mechanisms for plant growth stimulation. Both P. putida and T. atroviride were shown to produce IAA. The production of IAA by the two microorganisms was stimulated in vitro by the addition of l-tryptophan, tryptamine and tryptophol (200 μg ml−1) in the culture medium. P. putida and T. atroviride also increased the fresh weight of both the shoot and the roots of tomato seedlings grown in the presence of increasing concentrations of l-tryptophan (up to 0.75 mM). Both microorganisms showed partial degradation of IAA in vitro when grown in a minimal medium with or without sucrose. In addition, the capacity of these microorganisms to reduce the deleterious effect of exogenous IAA was investigated using tomato seedlings. The results showed that the roots of tomato seedlings grown in the presence of increasing concentrations of IAA (0-10 μg ml−1) were significantly longer when seeds were previously treated with P. putida or T. atroviride. The reduction in the detrimental effect of IAA on root elongation could be associated with a reduced ethylene production resulting from a decrease of its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) by microbial degradation of IAA in the rhizosphere and/or by ACC deaminase activity present in both microorganisms.  相似文献   

15.
Only few studies have focused on quantifying and/or modeling changes in gully-head shape. The present paper proposed a non-linear technique based on fractal method for describing gully-head changes quantitatively, and carried out a case study in the Yuanmou Basin in the Longchuan River Valley, Yunnan Province, southwest China. Seventy-seven gullies under 5 different land-uses were investigated in 1998 and again in 2002. For the study period, the gully-head retreat rate in different land-uses showed a decreasing order BL (bare land) > FL (farmland for only crops) > OC (mixture of orchards and crops) > FG (combination of forest and grass) > FSG (combination of forest, shrubs and grass). Correspondingly, the three proposed fractal characteristics (the fractal curvature Pτ, ΔPτ = change in the fractal curvature Pτ, ΔD = change in the fractal dimension D) of the gully-heads followed the same order BL > FL > OC > FG > FSG, also. These findings suggested that the three parameters (Pτ, ΔPτ, ΔD) proposed can sensitively reflect the gully-head changes associated with land-use, and may be used as feasible parameters for understanding and predicting gully development under land-use change and global change.  相似文献   

16.
The depletion of oxygen and the use of high energy cost electron acceptors for mineralisation processes are considered as one of the main reasons limiting degradation rates in aquatic organic-rich ecosystems. In this research the effect of two different biostimulation oxygen-releasing protocols were investigated using extracellular β-glucosidase activity rates. Organic-rich sediment and water was collected from the harbour of Genoa (Italy, North-Western Mediterranean) and oxygenation was generated either by positioning air tubes into the overlying water, or by placing oxygen release compounds (ORC) directly into the sediment, in laboratory microcosms. The increase in enzymatic activity was significant in the water compartment of the oxygenated microcosms (ANOVA, p<0.05) and greater for the ORC treatment. In particular, in the water, air tubes caused an increase in the β-glucosidase activity during the first 24 h (from 18.1 nmol l−1 h−1 (T=0, before the treatment) to 50.9 nmol l−1 h−1 (T=24 h)), while ORC induced a β-glucosidase activity increase over the whole period (from 12.4 nmol l−1 h−1 (T=0) to 63.7 nmol l−1 h−1 (T=60 d)) together with a reduction in carbohydrate (from 1.91 mg l−1 (T=0) to 0.76 mg l−1 (T=60 d)) and a sedimentary pH increase (from 8.04 (T=0) to 8.22 (T=60 d)). The response to ORC treatment in the overlying water was also evident in the potential carbohydrate turnover rate, decreasing from 0.86 h (T=0) to 0.06 h (T=60 d) and cell specific enzymatic activity, increasing from 3.8 (T=0) to 22.8 nmol l−1 h−1 cell−1 (T=60 d). A less marked change was observed in the sediment.This research shows that the supply of oxygen directly into the sediment rather than water aeration is a better way of naturally enhancing enzymatic degradation rates in organic-rich marine ecosystems. The marked effect observed in the water following the sediment treatment suggests the occurring of a close association of decomposition processes within water and sediment compartments.  相似文献   

17.
Powerboats are potentially a significant source of disturbance to coastal cetaceans. Information is scarce, however, on the nature of interactions between powerboats and dolphins, particularly when both surface and acoustic behaviour are combined. The surface behaviour and acoustic response of travelling dolphins to approaches by a powerboat were assessed by a series of experimental trials between November 2001 and November 2003 in Jervis Bay, New South Wales, Australia. Dolphin behaviour was monitored continuously from an independent research boat before, during and after a powerboat approached (n = 12). Treatments were interspersed with control observations (n = 12). Changes in surface behaviour indicated differences between the treatment and control periods (z = 2.24, p = 0.025), with dolphins tending to alter their surface behaviour when exposed to the powerboat approach. Analysis also revealed a change in the direction of travel by dolphin groups when approached (z = 3.22, p = 0.001). Changes in surface behaviour occurred at vessel approach distances outside the minimum approach distance of 30 m for recreational and commercial vessels, as proposed by the New South Wales National Parks and Wildlife Service. In contrast, there were no changes in dolphin whistle rates (F3,12 = 0.74, p = 0.54) or the duration of echolocation click bouts (F3,12 = 0.76, p = 0.59) when approached. These findings indicate that powerboats do affect the surface behaviour and direction of travelling inshore bottlenose dolphins in Jervis Bay; however it appears that this impact is not reflected in their acoustic behaviour.  相似文献   

18.
The concepts of “genoform” and “phenoform” distinguish the genetically-defined soil series and the variation of soil properties resulted from different land uses and management practices. With the repeated field measurements over time, we attempted to understand the difference of soil hydraulic properties among different land uses for a given soil series, and their temporal dynamics. Four soil series (Glenelg, Hagerstown, Joanna, and Morrison) in Pennsylvania with contrasting textures, structures, and parent materials were investigated. Within each soil series, four common land uses (woodland, cropland, pasture, and urban) were examined. At each site of soil series–land use combination, field-saturated and near-saturated hydraulic conductivities, K(ψ), were measured at the soil surface using standard tension infiltrometers at water supply potentials (ψ) of − 0.12, − .06, − 0.03, − 0.02, − 0.01, and 0 m. Surface infiltration measurements were repeated at each site in May and October from 2004 to 2006. The analysis of variance indicated that the measurement time (May or October) had the greatest impact on all measured hydraulic conductivities (p < 0.001), followed by the land use (< 0.05 for Kψ = 0 and Kψ = − 0.06) and soil series (p < 0.06 for Kψ = − 0.01 to Kψ = − 0.03). The interactions between the time and land use and between the soil series and land use were statistically significant for Kψ = 0 and Kψ = − 0.01. When separated by the measurement time, land use showed greater impacts in October than in May, while soil series had greater impacts in May than in October. Among the four land uses, woodland showed less obvious temporal change compared to the other three land uses because of less human-induced impacts and more consistent ground cover. Other three land uses generally showed a higher hydraulic conductivity in May than in October due to the drier initial soil moisture condition and related management practices in the spring that gave rise to more significant macropore flow. The results suggested that the initial soil moisture is an important variable that drives the temporal variation of the surface soil hydraulic properties.  相似文献   

19.
The uptake of Cd and Zn by the earthworm Eisenia fetida was determined at varying Ca concentrations and with pre-exposure to different metabolic inhibitors in simulated soil solutions over a 48-h period. The presence of Ca in the solution had complex actions on Cd uptake. At a low Cd concentration of 0.1 μM, Ca (0.1-1 mM) slightly but significantly stimulated Cd uptake, whereas it inhibited Cd uptake at a higher Cd level (10 μM). Pre-exposure to a Ca-channel blocker (Lanthanum) inhibited Cd uptake over a relatively wide range of Cd concentrations, but not Zn uptake, suggesting that the uptake of Zn was not exerted at a Ca channel. N-ethylmaleimide, which specifically binds to sulfhydryl groups, inhibited Zn uptake at both 0.1 and 10 μM, implying that the transport of Zn is carrier-mediated by proteins or other SH-containing compounds. The present study provides evidence that the mechanisms of Cd and Zn uptake in earthworms are pharmacologically different, although both metals have similar geochemical and environmental properties. After 24 h pre-exposure to a sublethal concentration (1.0 μM) of Cd, Zn toxicity for E. fetida was significantly reduced with 48-h LC50 values (with 95% confidence interval) increasing from 145 (105-201) to 316 (212-470) μM Zn. Pre-exposure to Zn (1.0 μM) did not, however, affect Cd toxicity. Pre-exposure to Cd significantly changed the subcellular Zn distribution, with a decreasing fraction of Zn associated with Fraction B (associated with granules and cell membranes), which is believed to be most indicative of toxic pressure and an increased fraction associated with Fraction G (associated with cytosol). This most likely explains the observed Zn tolerance of E. fetida after low level Cd pre-exposure. These results help to understand the uptake mechanism and interactions of Zn and Cd in earthworms.  相似文献   

20.
Habitat models are widely used in ecology, however there are relatively few studies of rare species, primarily because of a paucity of survey records and lack of robust means of assessing accuracy of modelled spatial predictions. We investigated the potential of compiled ecological data in developing habitat models for Macadamia integrifolia, a vulnerable mid-stratum tree endemic to lowland subtropical rainforests of southeast Queensland, Australia. We compared performance of two binomial models—Classification and Regression Trees (CART) and Generalised Additive Models (GAM)—with Maximum Entropy (MAXENT) models developed from (i) presence records and available absence data and (ii) developed using presence records and background data. The GAM model was the best performer across the range of evaluation measures employed, however all models were assessed as potentially useful for informing in situ conservation of M. integrifolia, A significant loss in the amount of M. integrifolia habitat has occurred (< 0.05), with only 37% of former habitat (pre-clearing) remaining in 2003. Remnant patches are significantly smaller, have larger edge-to-area ratios and are more isolated from each other compared to pre-clearing configurations (< 0.05). Whilst the network of suitable habitat patches is still largely intact, there are numerous smaller patches that are more isolated in the contemporary landscape compared with their connectedness before clearing. These results suggest that in situ conservation of M. integrifolia may be best achieved through a landscape approach that considers the relative contribution of small remnant habitat fragments to the species as a whole, as facilitating connectivity among the entire network of habitat patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号