共查询到20条相似文献,搜索用时 35 毫秒
1.
Bacterial densities, metabolic signatures and genetic structures were evaluated to measure the impact of soil enrichment of soluble organic carbon on the bacterial community structures. The exudates chosen were detected in natural maize exudates (glucose, fructose, saccharose, citric acid, lactic acid, succinic acid, alanine, serine and glutamic acid) and were used at a rate of 100 μg C g−1 day−1 for 14 days. Moreover two synthetic solutions with distinct carbon/nitrogen ratios (20.5 and 40.1), obtained by varying carboxylic and amino acids concentrations, were compared in order to evaluate the potential role of organic N availability. The in vitro experiment consisted of applying exudate solutions to bulk soil. In the case of the control, only distilled water was added. Both solutions significantly increased bacterial densities and modified the oxidation pattern of Biolog® GN2 plates with no effect of the C/N ratio on these two parameters. Genetic structure, measured by means of ribosomal intergenic spacer analysis (RISA), was also consistently modified by the organic amendments. N availability levels led to distinct genetic structures. In a second experiment, one of the previous exudate solutions (C/N 20.5) was applied to 15-day-old maize plants to determine the structural influence of exudates on the rhizosphere microbial community (in situ experiment). Bacterial densities were significantly increased, but to a lesser extent than had been found in the in vitro experiment. Metabolic potentials and RISA profiles were also significantly modified by the organic enrichment. 相似文献
2.
Rapid changes in the rhizosphere bacterial community structure during re-colonization of sterilized soil 总被引:1,自引:0,他引:1
Diversity has been shown to be pivotal in ecosystem stability and resilience. It is therefore important to increase our knowledge about the development of diversity. The aim of this study was to investigate the temporal dynamics of the bacterial community structure in the rhizosphere of wheat plants growing in a soil in which the initial conditions for bacterial re-colonization were modified by mixing different amounts of sterilized with native soil at ratios of 19:1, 9:1, 4:1 and 1:1. Additional treatments comprised sterilized soil or native soil. Plant dry weight at day 20 decreased with increasing percentage of native soil in the mix. The bacterial community structure in the rhizosphere was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) at days 3, 14 and 20 after planting. The bacterial community in the sterilized soil had a lower diversity and evenness than the native soil. Both diversity and evenness increased with time in the sterilized soil. Community structure in the different mixes changed over time and the changes were mix-specific. Principal component analyses of the DGGE banding patterns showed clear differences between the treatments particularly at day 3 and day 14 and revealed changes in community structure within a few days in a given treatment. The results of the present study show that bacterial communities rapidly re-colonize sterilized soil. During re-colonization, the community structure changes rapidly with a general trend towards higher diversity and evenness. The changes in community structure over time are also affected by the amount of sterile substrate to be re-colonized. 相似文献
3.
Ezékiel Baudoin Sylvie Nazaret Christophe Mougel Yvan Moënne-Loccoz 《Soil biology & biochemistry》2009,41(2):409-413
The phytostimulatory PGPR Azospirillum lipoferum CRT1 was inoculated to maize seeds and the impact on the genetic structure of the rhizobacterial community in the field was determined during maize growth by Automated Ribosomal Intergenic Spacer Analysis (ARISA) of rhizosphere DNA extracts. ARISA fingerprints could differ from one plant to the next as well as from one sampling to the next. Inoculation with strain CRT1 enhanced plant-to-plant variability of the ARISA fingerprints and caused a statistically significant shift in the composition of the indigenous rhizobacterial community at the first two samplings. This is the first study on the ecological impact of Azospirillum inoculation on resident bacteria done in the field and showing that this impact can last at least one month. 相似文献
4.
Annelies S. de Ridder-Duine George A. Kowalchuk Paulien J.A. Klein Gunnewiek Wiecher Smant Johannes A. van Veen Wietse de Boer 《Soil biology & biochemistry》2005,37(2):349-357
The relative importance of specific plant properties versus soil characteristics in shaping the bacterial community structure of the rhizosphere is a topic of considerable debate. Here, we report the results of a study on the bacterial composition of the rhizosphere of the wild plant Carex arenaria (sand sedge) growing at 10 natural sites in The Netherlands. The soil properties of the sandy soils at these sites were highly disparate, most notably in pH, chloride and organic matter content. Rhizosphere and bulk soil bacterial communities were examined by culture-independent means, namely, 16S rDNA-directed PCR-DGGE profiling. Large differences were observed between the bacterial communities of the different sites for both bulk and rhizosphere soil. Cluster analysis of bacterial profiles revealed that the rhizosphere community of each site was generally more closely related to the bulk soil community of that site rather than to rhizosphere communities of other sites. Hence, bacterial community structure within the rhizosphere of C. arenaria appeared to be determined to a large extent by the bulk soil community composition. This conclusion was supported by a reciprocal planting experiment, where C. arenaria shoots of different sites yielded highly similar rhizosphere communities when planted in the same soil. 相似文献
5.
Catriona A. Macdonald Xueyun Yang Ian M. Clark Penny R. Hirsch 《Soil biology & biochemistry》2010,42(9):1408-1417
In a study to assess the sustainable use of sewage sludge application to land, the long-term effect of Zn and Cu contaminated sludge additions on the structure of the bacterial communities (using T-RFLP analysis) and their tolerance to additional metal exposure through pollution-induced community tolerance (PICT) assays was assessed. This used two soils that received metal-rich sludge cake (SC), liquid sludge (LS) or metal salts (MS) additions more than 10 years previously. Soil type had the predominant influence on bacterial community structure and PICT. The source of the metal contamination also had a large influence on community structure and PICT, greater than the effects due to metal concentrations. Nevertheless, in both Zn and Cu contaminated soils, PICT was observed and decreased in the order MS > LS > SC. Within a metal source and site, there was evidence of increased PICT with increasing Zn or Cu contamination, however few differences were significant as a result of high variability between sample replicates. These results highlight the importance of considering soil physico-chemical properties and the source of metal contamination as well as total metal concentrations when considering the long-term effects of metals on soil microbial communities. Further, the matrix that a metal is associated with prior to addition may play an important factor in determining levels of toxicity. This could have consequences for the interpretation and use of data from metal spiking experiments when considering metal limits for sludge application to land. 相似文献
6.
Low molecular weight carbon (C) substrates are major drivers of bacterial activity and diversity in the soil environment. However, it is not well understood how specific low molecular weight C compounds, which are frequently found in root exudates and litter leachates, influence bacterial community structure or if there are specific groups of soil bacteria that preferentially respond to these C inputs. To address these knowledge gaps, we added three simple C substrates representative of common root exudate compounds (glucose, glycine, and citric acid) to microcosms containing three distinct soils from a grassland, hardwood forest, and coniferous forest. CO2 production was assessed over a 24 h incubation period and, at the end of the incubation, DNA was extracted from the samples for assessment of bacterial community structure via bar-coded pyrosequencing of the 16S rRNA gene. All three C substrates significantly increased CO2 production in all soils; however, there was no relationship between the magnitude of the increase in CO2 production and the shift in bacterial community composition. All three substrates had significant effects on overall community structure with the changes primarily driven by relative increases in β-Proteobacteria, γ-Proteobacteria, and Actinobacteria. Citric acid additions had a particularly strong influence on bacterial communities, producing a 2-5-fold increase in the relative abundance of the β-Proteobacteria subphylum. These results suggest that although community-level responses to substrate additions vary depending on the substrate and soil in question, there are specific bacterial taxa that preferentially respond to the substrate additions across soil types. 相似文献
7.
Antonio Gelsomino Luigi Badalucco Carmine Crecchio Salvatore M. Meli 《Soil biology & biochemistry》2006,38(8):2069-2080
Monitoring the environmental impact of anthropogenic disturbance on soil ecosystem is of great importance for optimizing strategies for soil use, conservation and remediation. The aim of this study was to assess whether and to what extent a long-term, human-induced disturbance could have affected main chemical and biological properties in an agricultural soil. The study site was a hazel (Corylus avellana L.) orchard located in the area surrounding the volcanic apparatus of Somma-Vesuvius (Southern Italy). For the last two decades, the site has been repeatedly subjected to floodings by wastewaters containing not only alluvial sediments but also potentially hazardous compounds from illegally disposed wastes. Soil disturbance was assessed by a multitechnique approach, which combined chemical, biochemical and physiological (Biolog®) methods together with community fingerprinting by denaturing gradient gel electrophoresis (DGGE) and amplified ribosomal DNA restriction analysis (ARDRA). A hazel site never subjected to flooding provided the control soil. Soil sampling was repeated three times over a 1-year period. The effect of flooding by wastewaters, sampling time and their interaction were statistically evaluated. Under wastewater flooding, soil pH and most organic matter-related pools, i.e. total organic C, total N, and active soil C-resources such as basal (SBR) and substrate-induced respiration (SIR) and microbial biomass C (MBC) were all increased; whereas sampling time mostly affected two active-N pools, namely K2SO4-extractable N (Extr-N) and potentially mineralizable N that varied unconcurrently in tested soils. Also the electrical conductivity varied across samplings. Parameters related to microbial maintenance energy (ATP and qCO2) were higher in the flooded soil, even though they were not statistically affected by wastewater flooding or by sampling time. The Biolog® method evidenced that under recurrent flooding, soil microbial populations became functionally more uniform when compared to the control soil. Molecular fingerprinting of PCR-amplified 16S rDNA targets revealed that, along with seasonal shifts, a marked change in the genetic structure of total bacterial community occurred in the flooded soil. Furthermore, compositional shifts in the actinomycete community were less marked and mostly influenced by seasonal effects. Yet, a decreased genetic diversity in the ammonia-oxidizing bacteria community was evidenced in the flooded soil by ARDRA. Thus both the genetic and the functional structure of native soil bacterial populations were changed under repeated flooding by wastewaters. Repeated sampling over a 1-year period allowed us to reveal soil disturbance effects beyond seasonal variations. 相似文献
8.
Arbuscular mycorrhizal (AM) fungi have been shown to induce the biocontrol of soilborne diseases, to change the composition of root exudates and to modify the bacterial community structure of the rhizosphere, leading to the formation of the mycorrhizosphere. Tomato plants were grown in a compartmentalized soil system and were either submitted to direct mycorrhizal colonization or to enrichment of the soil with exudates collected from mycorrhizal tomato plants, with the corresponding negative controls. Three weeks after planting, the plants were inoculated or not with the soilborne pathogen Phytophthora nicotianae growing through a membrane from an adjacent infected compartment. At harvest, a PCR-Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments amplified from the total DNA extracted from each plant rhizosphere was performed. Root colonization with the AM fungi Glomus intraradices or Glomus mosseae induced significant changes in the bacterial community structure of tomato rhizosphere, compared to non-mycorrhizal plants, while enrichment with root exudates collected from mycorrhizal or non-mycorrhizal plants had no effect. Our results support that the effect of AM fungi on rhizosphere bacteria would not be mediated by compounds present in root exudates of mycorrhizal plants but rather by physical or chemical factors associated with the mycelium, volatiles and/or root surface bound substrates. Moreover, infection of mycorrhizal or non-mycorrhizal plants with P. nicotianae did not significantly affect the bacterial community structure suggesting that rhizosphere bacteria would be less sensitive to the pathogen invasion than to mycorrhizal colonization. Of 96 unique sequences detected in the tomato rhizosphere, eight were specific to mycorrhizal fungi, including two Pseudomonas, a Bacillus simplex, an Herbaspirilium and an Acidobacterium. One Verrucomicrobium was common to rhizospheres of mycorrhizal plants and of plants watered with mycorrhizal root exudates. 相似文献
9.
Mickael Cregut 《Soil biology & biochemistry》2009,41(4):704-710
In this study we investigated the arylsulfatase-producing bacterial community (ARS-BC) in the rhizosphere soils of field-grown rape in comparison with that of barley. For this, the rhizosphere soils from both plant species were sampled four times during plant growth. Soil arylsulfatase (ARS) activity and the density and the structure of the cultivable ARS-BC on M9-Xsulf medium were then determined. ARS activity in rape rhizosphere was greater than in barley rhizosphere and evolved along the phenology in the two rhizosphere soils. In parallel, the average density of ARS-BC in the rape rhizosphere was higher than that in the barley rhizosphere. Moreover, ARS activity is correlated with ARS-BC density both in rape and barley rhizosphere soils. The structure of the ARS-BC in the rape rhizosphere was different from that in the barley rhizosphere. In the rape rhizosphere, the ARS-BC was substantially more structured than in the barley rhizosphere. Among the ARS-BC, Actinobacteria and Pseudomonads were significantly present in the both rhizosphere soils. Actinobacteria predominated in the barley rhizosphere while Pseudomonads were mostly represented under rape. It is possible that the differences in ARS activity observed between rape and barley can be attributed to a different ARS-BC size and/or a different ARS-BC structure under these two plant covers. This impact of rape may be connected to a selective effect of rhizodeposits released by rape roots to the functional bacterial community. Our findings suggest that plant species, via their rhizodeposits, may affect the functional bacterial community and thus influence the dynamic of S in soil. 相似文献
10.
The microbial activity and bacterial community structure were investigated in two types of peat soil in a temperate marsh. The first, a drained grassland fen soil, has a neutral pH with partially degraded peat in the upper oxic soil horizons (16% soil organic carbon). The second, a bog soil, was sampled in a swampy forest and has a very high soil organic carbon content (45%), a low pH (4.5), and has occasional anoxic conditions in the upper soil horizons due to the high water table level. The microbial activity in the two soils was measured as the basal and substrate-induced respiration (SIR). Unexpectedly, the SIR (μl CO2 g−1 dry soil) was higher in the bog than in the fen soil, but lower when CO2 production was expressed per volume of soil. This may be explained by the notable difference in the bulk densities of the two soils. The bacterial communities were assessed by terminal restriction fragment length polymorphism (T-RFLP) profiling of 16S rRNA genes and indicated differences between the two soils. The differences were determined by the soil characteristics rather than the season in which the soil was sampled. The 16S rRNA gene libraries, constructed from the two soils, revealed high proportions of sequences assigned to the Acidobacteria phylum. Each library contained a distinct set of phylogenetic subgroups of this important group of bacteria. 相似文献
11.
Rodrigo Costa Raquel S. Peixoto Gabriele Berg Kornelia Smalla 《Soil biology & biochemistry》2006,38(8):2434-2447
Pseudomonas spp. are one of the most important bacteria inhabiting the rhizosphere of diverse crop plants and have been frequently reported as biological control agents (BCAs). In this work, the diversity and antagonistic potential of Pseudomonas spp. in the rhizosphere of maize cultivars Nitroflint and Nitrodent grown at an organic farm in Brazil was studied by means of culture-dependent and -independent methods, respectively. Sampling of rhizosphere soil took place at three different stages of plant development: 20, 40 and 106 days after sowing. A PCR-DGGE strategy was used to generate specific Pseudomonas spp. fingerprints of 16S rRNA genes amplified from total community rhizosphere DNA. Shifts in the relative abundance of dominant populations (i.e. PCR-DGGE ribotypes) along plant development were detected. A few PCR-DGGE ribotypes were shown to display cultivar-dependent relative abundance. No significant differences in diversity measures of DGGE fingerprints were observed for different maize cultivars and sampling times. The characterisation and assessment of the antagonistic potential of a group of 142 fluorescent Pseudomonas isolated from the rhizosphere of both maize cultivars were carried out. Isolates were phenotypically and genotypically characterised and screened for in vitro antagonism towards three phytopathogenic fungi and the phytopathogenic bacterium Ralstonia solanacearum. Anti-fungal activity was displayed by 13 fluorescent isolates while 40 isolates were antagonistic towards R. solanacearum. High genotypic and phenotypic diversity was estimated for antagonistic fluorescent Pseudomonas spp. PCR-DGGE ribotypes displayed by antagonists matched dominant ribotypes of Pseudomonas DGGE fingerprints, suggesting that antagonists may belong to major Pseudomonas populations in the maize rhizosphere. Antagonists differing in their genotypic and phenotypic characteristics shared the same DGGE electrophoretic mobility, indicating that an enormous genotypic and functional diversity might be hidden behind one single DGGE band. Cloning and sequencing was performed for a DGGE double-band which had no corresponding PCR-DGGE ribotypes among the antagonists. Sequences derived from this band were affiliated to Pseudomonas stutzeri and P. alcaligenes 16S rRNA gene sequences. As used in this study, the combination of culture-dependent and -independent methods has proven to be a powerful tool to relate functional and structural diversity of Pseudomonas spp. in the rhizosphere. 相似文献
12.
Comparison of the adsorption of maize root mucilage and polygalacturonic acid on montmorillonite homoionic to divalent lead and cadmium 总被引:1,自引:0,他引:1
Summary Root mucilage material (RM) was isolated from maize plants grown in the field, and its affinity to montmorillonite (M) homoionic to Pb2+ and Cd2+ was compared with that of a commercial polygalacturonic acid (PGA). Adsorption isotherms of the commercial and natural materials on the two clay systems were compared in unbuffered systems at pH 3 and pH 6. Adsorption of PGA occurred only at pH 3, and was higher on M-Pb than on M-Cd. In contrast, the adsorption of RM was higher on M-Cd than on M-Pb. Total amounts of RM adsorbed at pH 3 were about 3 times lower on M-Cd and 20 times lower on M-Pb than the respective amounts of PGA adsorbed at the same pH. Polygalacturonic acid had a high content of relatively well dissociated (pKa = 3.5) carboxylic groups, and adsorbed on the clay surface at pH values lower than its pKa. At pH 6, the dissociation of the acid groups favoured its solubility, and the metal cations were then probably displaced by ion exchange. The lower affinity of RM to the clay materials was related to its average molecular weight, which was lower than that of PGA, and to its water solubility, which was higher than that of PGA. The low pH dependence of the adsorption of RM was related to its lower carboxylic acidity and higher content in hydroxyl and amino groups. 相似文献
13.
Changes in soil bacterial communities after toluene and/or toluene degrading bacteria were added were monitored by growth on various media, and by the culture-independent method of Reverse Sample Genome Probing (RSGP). A total of 397 isolates that were cultured from toluene-amended and non-amended soil were identified using fatty acid methyl ester (FAME) analysis. In 75% of the soil samples, gram-positive bacteria dominated, primarily Bacillus sp. and Cellulomonas sp. In contrast, RSGP revealed Proteobacteria (α, β, and γ subgroups) to be the dominant species, with Bacillus sp. dominant in only one soil sample.In toluene-treated soil, FAME and RSGP analyses indicated that by day 5 the major bacterial populations were gram-negative bacteria, in particular, Pseudomonas sp., Acinetobacter sp., and Alcaligenes sp. When toluene and Pseudomonas putida D8 were coincidentally introduced, the proportion of Pseudomonas sp. in the bacterial population recovered using non-selective medium increased from 16 to 62% and then rapidly decreased to about 9%. When we used selective medium to monitor the population of P. putida D8, a rapid initial increase followed by a gradual decline was also observed. In samples analyzed by RSGP, D8 was one of the major species of the bacterial community at day 2, but its signal intensity dropped to 9.5% by day 5.The influence of D8 addition on the bacterial profile was monitored in growth-based examinations. Bacillus sp. and Pseudomonas sp. were initially dominant. By day 5, Bacillus sp. decreased while the Proteobacteria, (including Acinetobacter sp., Agrobacterium sp., Alcaligenes sp., Burkholderia sp., Erwinia sp., and Pseudomonas sp.) increased. At the same time, D8 decreased to a level indistinguishable from background. Conversely, RSGP analysis revealed the population dominance of P. putida (including D8) and Rhizobium fredii at day 2. Populations shifted toward Agrobacterium tumefaciens, Bacillus subtilis, R. fredii, and D8 by day 5.P. putida D8 levels could be monitored using RSGP when cultivation failed. However, cultivation of Bacillus sp. was always successful, while the organism was only occasionally detected by RSGP. While cultivation and RSGP methods comparably detected the same major bacterial populations, the overall bacterial diversity was greater with RSGP than with growth-based testing. 相似文献
14.
Quantification of root biomass through the conventional root excavation and washing method is inefficient. A pot experiment was conducted to estimate root-derived carbon (C) in soil. Spring wheat (Triticum aestivum L. cv. ‘Quantum’) was grown in plastic containers (6 L) filled with sterilized sandy soil in a greenhouse. Plants were enriched with 13CO2 in a glass chamber twice at growth stages GS-37 and GS-59 for 70 min at each time. In one treatment, roots were separated from soil at crop maturity, washed and dried for the determination of biomass. Isotope ratios were then separately analyzed for roots and soil. In a second treatment, roots were thoroughly mixed with the whole soil and representative samples were analyzed for 13C abundance at crop maturity. Control plants were untreated with 13C, in which roots were separated from soil. The root biomass was calculated based on the root-derived C, which was measured through 13C abundance in the soil and root mixed samples. A substantial amount of root-derived C (24%) was unaccounted while separating the roots from soil. Similarly, about 36% of the root biomass was underestimated if conventional root excavation and washing method is used. It has been shown that root biomass can be estimated more accurately from the root-derived C using 13C tracer method than the estimates made by the conventional excavation and washing method. We propose this as an alternative method for the estimation of root-derived C in soil, based on which root biomass can be estimated. 相似文献
15.
Microbial communities mediate every step of the soil nitrogen cycle, yet the structure and associated nitrogen cycle functions of soil microbial communities remain poorly studied in tropical forests. Moreover, tropical forest soils are often many meters deep, but most studies of microbial nitrogen cycling have focused exclusively on surface soils. The objective of our study was to evaluate changes in bacterial community structure and nitrogen functional genes with depth in soils developed on two contrasting geological parent materials and two forest types that occur at different elevations at the Luquillo Critical Zone Observatory in northeast Puerto Rico. We excavated three soil pits to 140 cm at four different sites representing the four soil × forest combinations (n = 12), and collected samples at ten-centimeter increments from the surface to 140 cm. We used bacterial 16S rRNA gene-DGGE (denaturant gradient gel electrophoresis) to fingerprint microbial community structures, and quantitative PCR to measure the abundance of five functional genes involved in various soil nitrogen transformations: nifH (nitrogen fixation), chiA (organic nitrogen decomposition), amoA (ammonia oxidation), nirS (nitrite reduction) and nosZ (nitrous oxide reduction). Multivariate analyses of DGGE fingerprinting patterns revealed differences in bacterial community structure across the four soil × forest types that were strongly correlated with soil pH (r = 0.69, P < 0.01) and nutrient stoichiometry (r2 ≥ 0.36, P < 0.05). Across all soil and forest types, nitrogen functional genes declined significantly with soil depth (P < 0.001). Denitrification genes (nirS and nosZ) accounted for the largest proportion of measured nitrogen functional genes. Measured nitrogen functional genes were positively correlated with soil carbon, nitrogen and phosphorus concentrations (P < 0.001) and all genes except amoA were significantly more abundant in the Inceptisol soil type compared with the Oxisol soil type (P < 0.03). Greater abundances and a stronger vertical zonation of nitrogen functional genes in Inceptisols suggest more dynamic nitrogen transformation processes in this soil type. As the first study to examine bacterial nitrogen functional gene abundances below the surface 20 cm in tropical forest soils, our work provides insight into how pedogenically-driven vertical gradients control the nitrogen-cycling capacity of soil microbial communities. While previous studies have shown evidence for redox-driven hotspots in tropical nitrogen cycling on a watershed scale, our study corroborates this finding on a molecular scale. 相似文献
16.
Sasha N. Jenkins Clare V. Lanyon Ian S. Waite Sarah Kemmitt Richard P. Evershed 《Soil biology & biochemistry》2010,42(9):1624-1631
The addition of small or trace amounts of carbon to soils can result in the release of 2-5 times more C as CO2 than was added in the original solution. The identity of the microorganisms responsible for these so-called trigger effects remains largely unknown. This paper reports on the response of individual bacterial taxa to the addition of a range of 14C-glucose concentrations (150, 50 and 15 and 0 μg C g−1 soil) similar to the low levels of labile C found in soil. Taxon-specific responses were identified using a modification of the stable isotope probing (SIP) protocol and the recovery of [14C] labelled ribosomal RNA using equilibrium density gradient centrifugation. This provided good resolution of the ‘heavy’ fractions ([14C] labelled RNA) from the ‘light’ fractions ([12C] unlabelled RNA). The extent of the separation was verified using autoradiography. The addition of [14C] glucose at all concentrations was characterised by changes in the relative intensity of particular bands. Canonical correspondence analysis (CCA) showed that the rRNA response in both the ‘heavy’ and ‘light’ fractions differed according to the concentration of glucose added but was most pronounced in soils amended with 150 μg C g−1 soil. In the ‘heavy RNA’ fractions there was a clear separation between soils amended with 150 μg C g−1 soil and those receiving 50 and 15 μg C g−1 soil indicating that at low C inputs the microbial community response is quite distinct from that seen at higher concentrations. To investigate these differences further, bands that changed in relative intensity following amendment were excised from the DGGE gels, reamplified and sequenced. Sequence analysis identified 8 taxa that responded to glucose amendment (Bacillus, Pseudomonas, Burkholderia, Bradyrhizobium, Actinobacteria, Nitrosomonas, Acidobacteria and an uncultured β-proteobacteria). These results show that radioisotope probing (RNA-RIP) can be used successfully to study the fate of labile C substrates, such as glucose, in soil. 相似文献
17.
18.
Ramon Jaime-Garcia 《Soil biology & biochemistry》2010,42(10):1842-93
Aspergillus flavus, the most important cause of aflatoxin contamination, has two major morphotypes commonly termed ‘S’ and ‘L’ strains. Strain S isolates, on average, produce more aflatoxins than the strain L isolates. The S strain has been implicated as the primary causal agent of several contamination events in both North America and Africa. Strain S incidence and A. flavus propagules were quantified periodically in 11 agricultural fields in South Texas from spring 2001 through spring 2003. Both A. flavus populations and S strain incidence varied significantly among seasons, with warm seasons having higher average quantities of A. flavus (718 CFU g−1) and higher incidences of the S strain (32.3%) than cold seasons (403 CFU g−1 and 16.9% incidence). Previous crop influenced both the quantity of A. flavus and S strains incidence. Corn favors higher soil populations of A. flavus (1628 CFU g−1) compared to cotton (374 CFU g−1) and sorghum (237 CFU g−1). In the agroecosystem of South Texas, both cotton (23.7%) and sorghum (23.5%) favored greater S strain incidence compared to corn (14.0%). Soil surface temperature greatly influenced fungal communities with propagule density decreasing when daily average soil temperature was either below 18 °C or above 30 °C, and the proportion of A. flavus belonging to the S strain increasing as soil temperature increased. The results suggest it may be possible to manipulate crop rotations in order to reduce aflatoxin severity, and that periods of increased soil temperature drive selection of the highly toxigenic S strain of A. flavus in warm climates. 相似文献
19.
The genesis and architecture of the structures built by ants and earthworms differ markedly, suggesting that—in addition to having different physical and chemical properties—the resident microbial community should also have unique properties. We characterized the inorganic N, biomass C, C mineralization rate, and functional diversity of the microbial communities of earthworm casts, earthworm burrow soil, ant mounds, and bulk soil from an agricultural field. Mound soil was most enriched in inorganic N and had the lowest pH, moisture content, and C mineralization rate. Functional diversity was evaluated by determining the ability of microorganisms to grow on 31 substrates using Biolog®EcoPlates in combination with a most probable number (MPN) approach. Casts had MPNs that were one to two orders of magnitude higher than burrow, mound and bulk soil for most substrates. Casts also had the highest MPNs for particular substrate guilds relative to bulk soil, followed by mound and burrow soil. Indices of substrate diversity and evenness were highest for casts, followed by burrow, mound, and bulk soil. Differences in the type of habitat provided by the structures built by ants and earthworms result in the differential distribution of nutrients, microbial activity, and metabolic diversity of soils within an agricultural field that affect soil fertility and quality. 相似文献
20.
盐地碱蓬作为生物改良盐碱地的理想材料,其根际土壤微生物对土壤改良发挥着重要作用。为了深入探索环渤海滨海盐碱地碱蓬根际土壤细菌群落结构组成及其功能,采用Illumina Misep高通量测序平台对环渤海地区滨海盐碱地盐地碱蓬根际土壤和裸地土壤进行测序。从16个样本中获得有效序列734 792条, 4 285个OTUs,归属于41门、100纲、282目、400科、892属、1 577种。盐地碱蓬根际土壤细菌群落由变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、绿弯曲门(Chloroflexi)、拟杆菌门(Bacteroidetes)、芽单胞菌门(Gemmatimonadetes)、酸杆菌门(Acidobacteria)、厚壁菌门(Firmicutes)、蓝藻细菌门(Cyanobacteria)、髌骨细菌门(Patescibacteria、浮霉菌门(Planctomycetes)组成。Alpha多样性计算结果表明,盐地碱蓬根际土壤细菌群落结构多样性高并与裸地土壤间差异显著;LEfSe(LDAEffectSize)分析发现,盐地碱蓬与裸地差异指示种明显不同。PCoA与相关性Heatmap表明,盐地碱蓬、速效氮、速效钾、速效磷、电导率是影响土壤细菌目类水平群落组成的主要因子。PICRUSt(Phylogenetic InvestigationofCommunitiesbyReconstructionofUnobserved States)分析表明微生物群落在新陈代谢等40个功能方面盐地碱蓬根际土壤比裸地土壤高。本研究表明盐地碱蓬覆盖能够降低土壤盐分,增加土壤养分,对土壤细菌群落多样性及其功能有积极作用。 相似文献