首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Despite numerous investigations of the maturation process of composts, a simple and straightforward parameter which can predict plant response upon compost application has yet to be defined. In light of results accumulated over a decade, we examined simple, chemical parameters of three composts from three types of source materials (municipal solid waste (MSW), separated cow manure (CSM), biosolids (BS)). These materials were composted using different procedures and facilities. The chemical parameters were correlated to the growth response of cucumbers or ryegrass sown in potting media amended with the composts sampled at different stages of the process. The dissolved organic carbon (DOC) concentration of all composts decreased rapidly within the first month, then, towards the end of the process, stabilized at concentration below 4 g kg−1. DOC correlated highly and significantly to the absorbance at 465 nm in all composts, and also to the C/N ratio. Nitrate evolution was similar in all composts, but the final concentrations differed among them. Plant biomass increased with composting time. For CSM and BS compost maximum biomass was reached when the DOC reached levels below 4 g kg−1. DOC concentration is suggested for use as a simple method of determining maturity, with 4 g kg−1 recommended as a threshold level indicating maturity. Absorbance at 465 nm can be used instead of DOC concentration after appropriate calibration.  相似文献   

2.
Restoration of sites degraded by industry to species-rich semi-natural vegetation communities is difficult; it usually involves the addition of soil ameliorants but excessive fertility may favour dominance by competitive species. In a field-experiment we tested the establishment of a biodiverse mesotrophic grassland community using different compost types (comprising of mixtures of waste materials), application rates and seeding (with species in the target community). Compost addition to the alkaline sandy substrate increased soil organic matter, nutrient content and water holding capacity (WHC), whilst decreasing pH. Over the first two growing seasons compost addition, (especially at a higher rate) increased total vegetation cover (from <20% to a maximum of 67%), although the cover of the target community remained below 20%. Seeding with target species greatly increased their establishment on compost-treated plots, demonstrating its value for restoration of mesotrophic grassland communities in such sites lacking a local seed source. Five soil properties accounted for 46% of the variation in target species density: negative correlations with soil pH and %N, and positive correlations with electrical conductivity (EC), %C, and WHC. For this mesotrophic grassland community, high EC and WHC and low pH were most important for forb species and high %C for grasses. Overall, %C was the soil property that best explained variation in the early restoration success of different compost types and application rates; pH and EC were also correlated with the rate of vegetation establishment and available-P was linked to plant community composition. While a longer time period is needed to judge the sustainability of the outcome, this demonstrates the potential to refine compost properties for restoration of biodiversity.  相似文献   

3.
Assessment of compost maturity is important for successful use of composts in agricultural and horticultural production. We assessed the “maturity” of four different sawdust-based composts. We composted sawdust with either cannery waste (CW), duck manure (DM), dairy (heifer) manure (HM) or potato culls (PC) for approximately one year. Windrows were turned weekly for the first 60 days of composting, covered for four winter months and then turned monthly for six more months. We measured compost microbial respiration (CO2 loss), total C and N, C:N ratio, water soluble NO3-N and NH4-N, dissolved organic carbon (DOC), pH and electrical conductivity at selected dates over 370 days. Compost effects on ryegrass biomass and N uptake were evaluated in a greenhouse study. We related compost variables to ryegrass growth and N uptake using regression analysis. All composts maintained high respiration rates during the first 60 days of composting. Ammonium-N concentrations declined within the first 60 days of composting, while NO3-N concentrations did not increase until 200+ days. After 250+ days, DM and PC composts produced significantly more ryegrass biomass than either CW or HM composts. Total C, microbial respiration and water-extractable NO3-N were good predictors of compost stability/maturity, or compost resistance to change, while dissolved organic carbon, C:N ratio and EC were not. The compost NO3-N/CO2-C ratio was calculated as a parameter reflecting the increase in net N mineralization and the decrease in respiration rate. At ratio values >8 mg NO3-N/mg CO2-C/day, ryegrass growth and N uptake were at their maximum for three of the four composts, suggesting the ratio has potential as a useful index of compost maturity.  相似文献   

4.
Bulking agents and bedding materials used on farms for composting manures affect the time required for composts to mature. The effects of these materials on guidelines for the use of composted manures in potting mixes are not fully known. Several chemical and biological compost characteristics were mentioned and a cucumber plant growth greenhouse bioassay was performed on samples removed from windrows during composting of: (i) dairy manure amended with wheat straw; (ii) dairy manure amended with sawdust (mostly Quercus spp.); and (iii) pig manure amended with sawdust and shredded wood (mostly Quercus spp.). Dry weights of cucumber seedlings grown in fertilized and unfertilized potting mixes amended with composts (30%, v/v) having stability values of <1 mg CO2-C g-1 dw d−1, did not differ significantly from those in a control peat mix. Only the most mature dairy manure-wheat straw compost samples consistently established sufficient N concentrations in cucumber shoots in unfertilized treatments. For the dairy manure-wheat straw compost, all possible subset regression analyses of compost characteristics versus cucumber plant dry weight revealed that any of several compost characteristics (electrical conductivity-EC, compost age, total N, organic C, C-to-N ratio, ash content, CO2 respirometry, Solvita CO2 index and the Solvita® Compost Maturity Index) predicted growth of cucumber in the unfertilized treatments, and thus maturity. In contrast, at least two characteristics of the dairy manure-sawdust compost were required to predict growth of cucumber in the unfertilized treatments. Effective combinations were EC with compost age and the Solvita® maturity index with total N. Even five compost characteristics did not satisfactorily predict growth of cucumber in the non-fertilized pig manure-wood compost. Nutrient analysis of cucumber shoots indicated N availability was the principal factor limiting growth in potting mixes amended with the dairy manure-sawdust compost, and even more so in the pig manure-wood compost even though the compost had been stabilized to a high degree (<1 mg CO2-C g−1 dw d−1). Maturity of the composted manures, which implies a positive initial plant growth response of plants grown without fertilization, could not be predicted by compost characteristics alone unless the bulking agent or bedding type used for the production of the composts was also considered.  相似文献   

5.
The effect of storage conditions on compost suppressiveness against fusarium wilt of melon, caused by Fusarium oxysporum f. sp. melonis (FOM) was studied in relation to the dynamics of compost microbial activity and biodegradability. For this purpose, mature suppressive compost, prepared from tomato plants and separated cow manure, was divided into four portions and stored for one year under cool/warm (12 or 28 °C) or dry/wet (15-35 or 55-65% moisture content) conditions, in four different combinations: cool-dry, warm-dry, cool-wet and warm-wet. All composts retained and even enhanced their suppressive capacity during storage, with no significant differences among them by the end of the storage period. However, significant differences were found in the dynamics of some of the measured chemical and microbial properties. The microbial activity of composts stored under wet conditions was higher than that of those stored under dry condition, which resulted in a substantial decrease in dissolved organic matter content (expressed as dissolved organic carbon; DOC) and increase in its recalcitrance to biological degradation, decrease in basal heat emission, slower response to added glucose or citric acid, and higher NO3 concentration, indicating increased nitrification under wet conditions. The DOC significantly correlated with several microbial properties as well as with compost suppressiveness of fusarium wilt of melon seedlings, and may be regarded as a most suitable general index for compost maturity. A best-subset multiple linear regression analysis revealed that the three best predictors, namely dissolved organic carbon (DOC), basal heat, and mesophilic bacterial counts, could explain as much as 83% of the total variance in compost suppressiveness. The generally agreed association between compost maturity and suppressiveness was verified in this case. It appears that compost microbial populations might compete and interfere with the saprophytic stage of FOM conidia, between germination and host invasion. In conclusion, it was demonstrated that compost suppressiveness against fusarium wilt of melon can be maintained for at least one year under a wide range of storage conditions, without any loss of suppressive capacity. This fact has positive logistical implications for the use of suppressive composts against FOM.  相似文献   

6.
Selected maturity indicators were monitored over a period of 335 days during the degradation of organic wastes subjected to four simple composting procedures, which varied in raw material (garden refuse with and without market refuse) and turning frequency (0×, 6×). All procedures produced mature composts. The inclusion of market refuse and frequent turning generally increased the cation exchange capacity of compost on an ash-free basis. Until day 118 of the composting process, compost samples which contained market refuse in their raw material mixture had the lowest redox potentials after anaerobic incubation. Cress grown on these composts also produced the lowest fresh mass. At a later stage of the composting process, the same composts displayed increased cellulolytic activity. Frequent turning of the compost heaps resulted in greater fluorescein diacetate hydrolysis, a greater occurrence of low-molecular-weight humic compounds and, occasionally, an inhibition of cellulolytic activity. The arginine ammonification assay gave information on the N-status of the composts, rather than on the compost maturity, and suggested that all the composts could be safely applied to soil with no risk of microbial immobilisation of soil N.  相似文献   

7.
An industrial-scale composting plant has been designed for producing organic fertilizers from olive mill waste using the windrow pile system. Materials to be composted, two phase olive mill waste (TPOMW) and sheep litter (SL), were characterized and made into three piles consisting of different proportions of each. Throughout the composting process, temperature (T), moisture (M), organic matter (OM), total organic carbon (Corg), total nitrogen (NT), germination index (GI), pH and electrical conductivity (EC) were monitored. The potential agronomic value of the final composts was ascertained by analyzing the bulk density, OM and Corg concentration, pH, EC, macro and micronutrient content (N, P, K, Ca, Mg, Fe, Cu, Mn, Zn, B), the concentration of humic and fulvic acids and inorganic nitrogen (NH4+,NO2?,NO3?). Each compost was applied to an area of one hectare within a six year-old olive plantation. Four months after application, the soils showed an increased OM concentration and cationic exchange capacity (CEC).  相似文献   

8.
Isotope fractionation during composting may produce organic materials with a more homogenous δ13C and δ15N signature allowing study of their fate in soil. To verify this, C, N, δ13C and δ15N content were monitored during nine months covered (thermophilic; >40 °C) composting of corn silage (CSC). The C concentration reduced from 10.34 to 1.73 g C (g ash)−1, or 83.3%, during composting. Nitrogen losses comprised 28.4% of initial N content. Compost δ13C values became slightly depleted and increasingly uniform (from −12.8±0.6‰ to −14.1±0.0‰) with composting. Compost δ15N values (0.3±1.3 to 8.2±0.4‰) increased with a similar reduced isotope variability.The fate of C and N of diverse composts in soil was subsequently examined. C, N, δ13C, δ15N content of whole soil (0-5 cm), light (<1.7 g cm−3) and heavy (>1.7 g cm−3) fraction, and (250-2000 μm; 53-250 μm and <53 μm) size separates, were characterized. Measurements took place one and two years following surface application of CSC, dairy manure compost (DMC), sewage sludge compost (SSLC), and liquid dairy manure (DM) to a temperate (C3) grassland soil. The δ13C values and total C applied (Mg C ha−1) were DM (−27.3‰; 2.9); DMC (−26.6‰; 10.0); SSLC (−25.9‰; 10.9) and CSC (−14.0‰; 4.6 and 9.2). The δ13C of un-amended soil exhibited low spatial (−28.0‰±0.2; n=96) and temporal (±0.1‰) variability. All C4 (CSC) and C3 (DMC; SSLC) composts, except C3 manure (DM), significantly modified bulk soil δ13C and δ15N. Estimates of retention of compost C in soil by carbon balance were less sensitive than those calculated by C isotope techniques. One and two years after application, 95 and 89% (CSC), 75 and 63% (SSLC) and 88 and 42% (DMC) of applied compost C remained in the soil, with the majority (80-90%) found in particulate (>53 μm) and light fractions. However, C4 compost (CSC) was readily detectable (12% of compost C remaining) in mineral (<53 μm) fractions. The δ15N-enriched N of compost supported interpretation of δ13C data. We can conclude that composts are highly recalcitrant with prolonged C storage in non-mineral soil fractions. The sensitivity of the natural abundance tracer technique to characterize their fate in soil improves during composting, as a more homogeneous C isotope signature develops, in addition to the relatively large amounts of stable C applied in composts.  相似文献   

9.
Vine branches, rice husks and flax residues were composted. The dynamics of biomass carbon, C/N ratios and nitrification were studied. The highest quality level and the most stabilized composts with the highest values of total N (1.3–1.6%) and the smallest C/N ratios (8.0–9.0) were found with the vine branch composts. Compost application significantly increased the yield of tomatoes (24.0–61.1%) and the quality of fruits compared to soil treated with mineral fertilizers and manure. Inoculation of the vine branch compost with a Cephalosporium sp. had a positive effect on the yield and the quality of both ryegrass and tomatoes. The stabilization of the microbial biomass C level in the composts coincided with the beginning of intensive nitrification. Inoculation lowered the conductivity values and nitrate contents in all composts. It appeared that when nitrate N concentrations in the composts were more than 5% of the total N, NO3 accumulation in the fruits could result. However, the results can be applied to similar substrates and conditions of composting.  相似文献   

10.
A study was conducted to collect, classify and analyze a large number of compost samples to establish a database for determining the relative quality of different types of composts and their potential use based on their hydrological and physicochemical characteristics. Special attention was devoted to the use of compost for flower growing, which extended the analysis to include substrates, such as peats and organic substrates for pot coltures. Some 64 samples of various composts were collected directly from production plants in northern Italy. Depending on the starting raw materials, compost samples were grouped in six categories: sludge compost; animal manure compost; slaughterhouse waste compost; source separated MSW compost; raw MSW compost and yard waste compost. At the same time, 52 samples chosen from among peats and organic substrates, for professional growers and amateur gardeners, were obtained or bought from greenhouses, garden centres and shops. Hydrological and physicochemical properties of the 116 samples (composts, peats and substrates) were determined including: easily available water (EAW), water buffering capacity, (WBC), air capacity, total porosity, bulk density, real density, pH, specific electrical conductivity, cation exchange capacity, organic carbon and ash  相似文献   

11.
ABSTRACT

Plant residue material produced compost is an organic fertilizer source and it is commonly used for soil amendments. Also in order to reduce the amount of chemical fertilizers need mycorrhizal inoculation can be used as an agricultural strategy. Thus, the aim of the research is to examine the effect of several residue materials produced compost and mycorrhizae fungi with two growth media on leek plant growth, nutrient uptake, and mycorrhizae spores’ production.

Eight different row organic materials and animal manures were used as compost production during 8 months. Leek (Allium porrum L.) plants were inoculated with Funneliformis mosseae and Claroideoglomus etunicatum with a level of 1000-spore per pot. The leek plant was analyzed for determination of nutrient concentration, root colonization, spore production, and shoot/root dry weight.

The composts were made from domestic waste, animal manure (bovine animal), animal manure (ovine animal), and different plant materials were determined to be the most suitable compost material for plant growth and mycorrhizal spore production compared to the rest of compost material. Mycorrhizal inoculation significantly increased leek plant growth and nutrient uptake especially phosphorus (P), potassium (K), copper (Cu) and zinc (Zn). Plants grown in 5:3:2 (volume/volume) growth media was responded better to the mycorrhizal inoculation than grown in 1:1:1 (v/v) growth media. Funneliformis mosseae inoculated plants have higher plant growth and nutrient uptake than that of Claroideoglomus etunicatum inoculation.  相似文献   

12.
High yield agricultural systems, such as high tunnel (HT) vegetable production, require a large supply of soil nutrients, especially nitrogen (N). Compost is a common amendment used by HT growers both to supply nutrients and to improve physical and biological soil properties. We examined commercially-available composts and their effects on soil N, plant N uptake, and tomato yield in HT cultivation. In addition, a laboratory study examined N and carbon (C) mineralization from the composts, and the usefulness of compost properties as predictors of compost N mineralization was assessed under field and laboratory conditions. The field study used a randomized complete block design with four replications to compare four compost treatments (all added at the rate of 300 kg total N ha?1) with unamended soil and an inorganic N treatment (110 kg N ha?1). Tomatoes were grown in Monmouth, Maine during the summers of 2013 and 2014. Compost NO3?-N and NH4+-N application rates were significantly correlated with soil NO3?-N and NH4+-N concentrations throughout the growing season. Marketable yield was positively correlated with compost total inorganic N and NO3?-N in both years, and with NH4+-N in 2014. There were no significant differences among composts in percentage of organic N mineralized and no correlations were observed with any measured compost property. In the laboratory study, all compost-amended soils had relatively high rates of CO2 release for the initial few days and then the rates declined. The compost-amended soils mineralized 4%–6% of the compost organic N. This study suggested compost inorganic N content controls N availability to plants in the first year after compost application.  相似文献   

13.
To test the hypothesis that N isotope composition can be used as evidence of excessive compost application, we measured variation in patterns of N concentrations and corresponding δ15N values of plants and soil after compost application. To do so, a pot experiment with Chinese cabbage (Brassica campestris L. cv. Maeryok) was conducted for 42 days. Compost was applied at rates of 0 (SC0), 500 (SC1), 1000 (SC2), and 1500 mg N kg−1 soil (SC3). Plant-N uptake linearly increased with compost application (r2 = 0.956, P < 0.05) with an uptake efficiency of 76 g N kg−1 of compost-N at 42 days after application, while dry-mass accumulation did not show such linear increases. Net N mineralized from compost-N increased linearly (r2 = 0.998, P < 0.01) with a slope of 122 g N kg−1 of compost-N. Plant-δ15N increased curvilinearly with increasing compost application, but this increase was insignificant between SC2 and SC3 treatments. The δ15N of soil inorganic-N (particularly NO3-N) increased with compost application. We found that plant-δ15N reflected the N isotope signal of soil NO3-N at each measurement during plant growth, and that δ15N of inner leaves and soil NO3-N was similar when initial NO3 in the compost was abundant. Therefore, we concluded that δ15N of whole plant (more obviously in newer plant parts) and soil NO3-N could reveal whether compost application was excessive, suggesting a possible use of δ15N in plants and soil as evidence of excess compost application.  相似文献   

14.
Soil enzymatic response to addition of municipal solid-waste compost   总被引:1,自引:0,他引:1  
Modifications of soil microbiological activity by the addition of municipal solid-waste compost were studied in laboratory incubations. Three composts were compared, one lumbricompost and two classical composts with different maturation times. Organic C mineralization and nine enzyme activities (dehydrogenase, peroxidase, cellulase, -glucosidase, -galactosidase, N-acetyl--glucosaminidase, protease, amidase, and urease) were determined in the composts and the amended soil. Initial enzyme activities varied in the soil according to the sampling date (winter or summer) and were greater in the composts than in the soil, except for urease. Generally, the youngest compost exhibited greater activity than the oldest one. In the amended soil, the composts did not increase enzyme activity in an additive way. Dehydrogenase, the only strictly endocellular enzyme, was the only one for which the activity in the amended soil increased significantly in proportion to the addition of compost. During the incubations, C mineralization and dehydrogenase activity were significantly correlated, indicating that dehydrogenase was a reliable indicator of global microbial activity. Peroxidase activity in the soil remained constant, but increased in the composts and amended soil. Addition of the oldest compost had no effect on the activity of the C cycle enzymes, but the youngest compost increased creased soil activity at the higher application rate. Enzymes of the N cycle were stimulated by all compost amendments, but the increase was only transient for amidase and urease. Lumbricomposting had no marked effect on compost enzyme activity, either before or during the incubation.  相似文献   

15.
Abstract

A pot experiment was conducted to assess the effect of different kinds of composts on the growth and nitrogen (N) composition of Chinese mustard in acid red soil. There were six treatments including a lime‐chemical fertilizer treatment and a control plot of conventional chemical fertilizer. The plants were harvested 37 days after transplanting and the growth and N composition of these plants were measured. The soil was also sampled, and selected chemical properties were determined after harvesting the plants. The results show that different composts affected the growth and soil chemical properties significantly. The pH, nitrate nitrogen (NO3‐N), ammonium N (NH4‐N), electrical conductivity (EC), and 1 N ammonium acetate exchangeable potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), manganese (Mn), and iron (Fe) were all significantly affected by the compost treatment. The growth of plants in the control treatment was significantly lower than that of the compost‐treated and lime‐treated plants, suggesting that the acid Oxisol is unfavorable for the growth of Chinese mustard. Some composts could increase the growth of Chinese mustard. The lime‐treated plants had higher concentrations of chlorophyll a and chlorophyll b than those of the compost‐treated plants. There were no significant differences between treatments in the concentrations of chlorophyll a and chlorophyll b, however, there was a close correlation between the total chlorophyll concentrations and the shoot yield of the plants. The NO3‐N, soluble reduced N, and insoluble N concentrations in leaf blades and petioles of Chinese mustard varied significantly according to the compost applied. The hog dung compost B could adequately supply nutrients especially N for plant growth and caused little NO3‐N accumulation in plant tissues.  相似文献   

16.
We studied the effects of applying different composts (urban organic waste, green waste, manure and sewage sludge), mineral fertilizer and compost plus mineral fertilizer on chemical, biological and soil microbiological parameters over a 12‐year period. The organic C and total N levels in soils were increased by all compost and compost + N treatments. Microbial biomass C was significantly (P ≤ 0.05) increased for some compost treatments. In addition, basal respiration and the metabolic quotient (qCO2) were significantly higher in all soils that had received sewage sludge compost. The Shannon diversity index (H), based on community level physiological profiling, showed a higher consumption of carbon sources in soils treated with compost and compost + N compared with the control. The utilization of different guilds of carbon sources varied amongst the treatments (compost, compost + N or mineral fertilizer). Cluster analysis of polymerase chain reaction‐denaturing gradient gel electrophoresis patterns showed two major clusters, the first containing the mineral fertilization and compost treatments, and the second, the composts + N treatments. No differences in bacterial community structure could be determined between the different types of compost. However, the results suggest that long‐term compost treatments do have effects on the soil biota. The results indicate that the effects on the qCO2 may be due to shifts in community composition. In this study, it was not possible to distinguish with certainty between the effects of different composts except for compost derived from sewage sludge.  相似文献   

17.
Generation of different biowastes is increasing day by day, and ultimate load on agricultural lands has increased. Concerns over increased phosphorus (P) application with nitrogen (N)–based compost application shifted the trend to P‐based applications. But focus on only one or two nutritional elements will not serve the goals of sustainable agriculture. Full insight into nutrient availability from different composts is necessary. The need to understand the nutrient release and uptake from different composts has increased because of the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, current greenhouse studies were designed to evaluate the bioavailability and leachability of some micronutrients [calcium (Ca), magnesium (Mg), and zinc (Zn)] from different biocomposts under chloride (Cl?) and sulfate (SO4 ?2) saline environment. In the first pot experiment, soil was amended with livestock compost (AC), poultry compost (PC), and composted sludge (SC) at the rate of 200 kg P ha?1 equivalent bases. Pots were irrigated with artificial saline water of sodium chloride (NaCl) or sodium sulfate (Na2SO4; 60 mmolc L?1), and leachates were collected for Ca and Mg analysis. As composts were applied on total P bases, which left varying amounts of nutrients in each treatment, it was observed that nutrient uptake and release differed greatly regardless of the total amount applied with each compost type. Amount of Ca applied with PC (3.9 g pot?1) was greater, but Ca concentration in leachate was greater under AC‐amended treatments. Magnesium concentration also varied greatly under compost types. Among the saline irrigation, Ca and Mg concentration in leachate increased under both saline irrigations compared to nonsaline treatment, and SO4 ?2 had relatively greater ionic strength to replace cations than Cl?. Calcium, Mg, and Zn uptake by maize stem and leaves were greater from SC‐amended pots followed by PC, SC, and control. Irrespective of the salt types, Ca and Mg uptake reduced under both saline irrigations, whereas Zn uptake increased as compared to nonsaline treatment. Among the salt types, it was observed that plant growth and nutrient uptake was more influenced by Cl? than SO4 ?2 saline irrigation. In the second experiment, soil was saturated with NaCl and NaSO4 (75 mmolc L?1) and amended with AC. The trend of nutrient uptake under both salt types was similar to first experiment, and the results of AC amendments have been discussed. It can be inferred from the results that regardless of the total amount applied, nutrient uptake greatly varies under different composts and their availability depends upon the source rather than total amount applied. Analogously, sulfate‐dominated irrigation water can increase the leaching of Ca and Mg from root zone more than chloride.  相似文献   

18.
This study was conducted to examine whether the applications of N-inputs (compost and fertilizer) having different N isotopic compositions (δ15N) produce isotopically different inorganic-N and to investigate the effect of soil moisture regimes on the temporal variations in the δ15N of inorganic-N in soils. To do so, the temporal variations in the concentrations and the δ15N of NH4+ and NO3 in soils treated with two levels (0 and 150 mg N kg−1) of ammonium sulfate (δ15N=−2.3‰) and compost (+13.9‰) during a 10-week incubation were compared by changing soil moisture regime after 6 weeks either from saturated to unsaturated conditions or vice versa. Another incubation study using 15N-labeled ammonium sulfate (3.05 15N atom%) was conducted to estimate the rates of nitrification and denitrification with a numerical model FLUAZ. The δ15N values of NH4+ and NO3 were greatly affected by the availability of substrate for each of the nitrification and denitrification processes and the soil moisture status that affects the relative predominance between the two processes. Under saturated conditions for 6 weeks, the δ15N of NH4+ in soils treated with fertilizer progressively increased from +2.9‰ at 0.5 week to +18.9‰ at 6 weeks due to nitrification. During the same period, NO3 concentrations were consistently low and the corresponding δ15N increased from +16.3 to +39.2‰ through denitrification. Under subsequent water-unsaturated conditions, the NO3 concentrations increased through nitrification, which resulted in the decrease in the δ15N of NO3. In soils, which were unsaturated for the first 6-weeks incubation, the δ15N of NH4+ increased sharply at 0.5 week due to fast nitrification. On the other hand, the δ15N of NO3 showed the lowest value at 0.5 week due to incomplete nitrification, but after a subsequence increase, they remained stable while nitrification and denitrification were negligible between 1 and 6 weeks. Changing to saturated conditions after the initial 6-weeks incubation, however, increased the δ15N of NO3 progressively with a concurrent decrease in NO3 concentration through denitrification. The differences in δ15N of NO3 between compost and fertilizer treatments were consistent throughout the incubation period. The δ15N of NO3 increased with the addition of compost (range: +13.0 to +35.4‰), but decreased with the addition of fertilizer (−10.8 to +11.4‰), thus resulting in intermediate values in soils receiving both fertilizer and compost (−3.5 to +20.3‰). Therefore, such differences in δ15N of NO3 observed in this study suggest a possibility that the δ15N of upland-grown plants receiving compost would be higher than those treated with fertilizer because NO3 is the most abundant N for plant uptake in upland soils.  相似文献   

19.
Two commonly-used composts from dairy cow manure that are used to improve poor structure and fertility of desert soils have inhibitory effects on wheat seed germination, probably as a result of their high levels of humic acids. Inoculation of wheat seeds with two species of the plant growth-promoting bacteria Azospirillum brasilense Cd and A. lipoferum JA4 (separately) prior to sowing in these amended soils improved germination, similar to the natural level of germination of seeds in desert soil without compost amendment. Both compost amendments increased height of wheat seedlings in the range of 20–25%, increased shoot dry weight by 15–19%, but severely decreased (51–54% less) root dry weight. Inoculation of wheat seeds with A. brasilense Cd, but not with A. lipoferum JA4, significantly increased plant growth parameters (height, shoot and root dry weight) over control plants grown in soil-compost mixtures. This bacterial species could survive for a period of 20 days in compost humic acid solution, could increase its population when the humic acids served as the sole carbon source, and may change the composition of humic acids in which it grows. We suggest that inoculation with A. brasilense may alleviate noxious effects on germinating seeds caused by compost application by possibly transforming the composition of humic acids in the compost.  相似文献   

20.
A greenhouse experiment was conducted in loamy sand soil to compare the effects of agro-industrial waste composts on yield and nutrient uptake by wheat. The raw materials of agro-industrial wastes and chemical fertilizers were used as controls. The yields were significantly higher with agro-industrial waste composts compared with their raw materials. Compost-fertilized grain yields were increased by 118% with poultry waste compost and by 97% with chemical fertilizes compared with unfertilized control. Agro-industrial waste composts applied with NK (recommended dose) fertilizers, except distillery effluent compost, produced a wheat grain yield comparable with that obtained with NPK (recommended dose) fertilizers, indicating a net saving of 100% of P fertilizer. Application of agro-industrial waste composts significantly increased NPK uptake by wheat and improved the post-harvest NPK status of soil compared with addition of their raw materials. Up to 60 days of composting, severe suppression of tomato seed germination was observed, which improved thereafter in all the composts. Our results suggest that the germination index >70% may be accepted as an indicator for disappearance of phytotoxic substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号