首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of inorganic N in soil following the application of plant residues depends on their composition. We assumed that all plant materials are composed of similar components, each decomposing at a specific rate, but differ in the proportions of the various components. The NCSOIL model that simulates C and N turnover in soil was used to link the rates of residue decomposition to their composition, defined as soluble, cellulose-like and lignin-like C and N, and thereby integrate short and long-term effects of residues on available N dynamics in soil. Five plant residues in a wide range of C:N ratios were incubated in soil for 24 weeks at 30 °C, during which C and N mineralization were measured. The materials with large C:N ratios (corn, rice hulls and wheat straw) were also incubated with NH4+-N to avoid N deficiency. The residues were analyzed for total and soluble C and N. The partitioning of insoluble C and N between cellulose- and lignin-like pools was optimized by best fit of simulated C and N mineralization to measured results. The decomposition rate constants of the soluble and lignin-like pools were assumed to be 1.0 and 10−5 d−1, respectively, and that of the cellulose-like pool, obtained by model optimization against mineralization of cellulose with NH4+-N in soil, was 0.051 d−1. The optimized, kinetically defined lignin-like pool of all residues was considerably larger than lignin contents normally found in plant residues by the Van Soest procedure. Gross N mineralization of tobacco and rape residues was similar, but N recovery from tobacco was larger, because a larger fraction of its C was in the lignin-like pool. N in rice hulls, corn and wheat residues was mostly recalcitrant, yet rice hulls did not cause N deficiency, because most of its C was recalcitrant too. The soluble components of the residues had strong short-term effects on available N in soil, but the cellulose-like pool was equally important for short and medium-term effects. Soluble and cellulose-like C were 29 and 42% of total C, respectively, in corn and 7 and 50% in wheat. Maximal net inorganic N losses, measured in both residue treatments after 2 weeks, were 42 mg g−1 C applied as corn and 31 mg g−1 C applied as wheat, or 84 and 110 mg g−1 decomposed C of corn and wheat, respectively. Rice hulls immobilized N slowly, but by the end of 24 weeks all three residues immobilized 26-27 mg N kg−1 C applied. The different dynamics of N immobilization demonstrated the need to determine the decomposability of C and N rather than their total contents in plant residues.  相似文献   

2.
The trophic preferences of soil invertebrates such as Collembola are often determined by the analysis of gut contents, or through visual observations of the location of individuals. As an alternative approach, two species of Collembola, Folsomia candida and Proisotoma minuta, were offered a choice of the soil fungus Cladosporium cladosporioides or the bacterial feeding nematode Panagrellus redivivus; each exhibited distinct fatty acid profiles and stable carbon isotopic compositions. Over 21 days, the fatty acids i15:0, i17:0, 18:1(n-7) and 18:2(n-6) all increased in abundance in both collembolan species consistent with direct routing from the nematode dietary choice which contained a high concentration of these components. Collembolan fatty acid δ13C values increased by between 5.7 and 21.6‰ over 21 days reflecting those of the nematode diet. Therefore, both fatty acid profiles and δ13C values were consistent with a strong feeding preference of F. candida and P. minuta for the nematodes over the offered fungi. In fact, neither collembolan species consumed any detectable amount of C. cladosporioides. Comparison of the δ13C values of the 16:0 and 18:0 fatty acids (which are biosynthesised by the Collembola as well as directly incorporated from the diet) and the 16:1(n-7) and 18:2(n-6) components (which are not biosynthesised by the Collembola) demonstrated that the input of distinct pools of C can lead to large shifts in δ13C values between diet and consumer. The fatty acids that were not biosynthesised by Collembola better reflected the δ13C values of the diet helping to differentiate between biosynthesised and directly incorporated compounds; an important prerequisite in the interpretation of compound-specific δ13C values in trophic behaviour tests. The combination of fatty acid distributions and δ13C values is a significant improvement on traditional methods of examining feeding preferences, since it determines directly the assimilated dietary carbon rather than relying on indirect observations, such as the proximity of individuals to a defined food source.  相似文献   

3.
稳定性同位素示踪技术,特别是碳、氮稳定性同位素已广泛地应用于农业化学、地球化学和环境化学。碳、氮同位素比值的质谱检测结果直接关系到示踪试验的可靠性。在目前缺乏富集碳、氮同位素的标准物质的条件下,通过实验室间的比对可以验证各实验室对碳、氮同位素比值检测能力、检测结果的准确性和可比性。我所在2013年组织和实施了一次由全国14个单位的检测实验室共17台仪器参加的农业、生态和环境样品中碳氮百分含量及其稳定性同位素比值的实验室间比对。我所制备了多种被检测的样品,有含碳氮的化学肥料、土壤和植物样品;在稳定性同位素富集度上,有自然丰度的和不同富集程度的同位素样品。除固体样品外,还有3种不同丰度的N2O和CO2气体样品。在进行检测结果的统计和评价时,采用Z比分衡量各实验室检测结果的可信度。本文汇总了2013年实验室间比对的结果。  相似文献   

4.
Combined compound-specific stable carbon isotopic methods and fatty acid abundance determinations have been used to examine feeding preferences and C allocation in organisms where direct observation of feeding is difficult. In order to examine the effect of differing diets on the δ13C values of fatty acids and sterols of Collembola, the diets of two collembolan species, Folsomia candida and Proisotoma minuta, were switched from a yeast diet to one of four isotopically distinct diets, and the δ13C values of the lipids monitored over the next 39 d. Cholesterol remained the only sterol detected in both collembolan species, despite the diets containing widely differing sterol compositions. The δ13C values of collembolan lipids recorded after long term feeding were often different to those of the same components in the diet, indicating that fractionation or partitioning occurs during digestion, assimilation and biosynthesis within the Collembola, thereby shifting consumer lipid δ13C values away from those of the corresponding dietary components. The rates of change of δ13C values differed among compounds, with half-lives ranging between 29 min and 14 d. Some of these differences appear to be related to the abundance of dietary components, such that fatty acids present in high abundance in the diet (e.g. 18:2(n−6)) were rapidly assimilated in high proportions into collembolan lipids, leading to a rapid change in δ13C values. Similarly, isotopic turnover in the 16:1(n−7) fatty acid, present in the newly presented diets in only low abundances, was significantly correlated to the rate of removal of this component from the consumer fatty acid pool. The rates of change of δ13C values in P. minuta lipids did not vary significantly with diet, whilst the rates of change of δ13C values of lipids in F. candida were affected by the diets the Collembola consumed. Results of an experiment providing F. candida and P. minuta with two diets of different quality demonstrated that F. candida responded to the high quality diet with increased growth and fecundity, whilst P. minuta responded with increased fecundity only. Thus, the abilities of the two species to respond to diets of varying quality, amongst other factors, is concluded to lead to differences in the rates of change of δ13C values reflecting differences in lipid turnover.  相似文献   

5.
ABSTRACT

Ways of understanding and quantifying the effectiveness of new irrigation methods are required in order to more precisely evaluate them, including the effect of root growth on water storage pit irrigation (WSPI). In this study, the effective root growth zone (ERGZ) of 5-year-old apple trees under WSPI and traditional surface irrigation (CK) treatment was estimated using stable isotope technology during two seasons 2015 and 2016. The stable isotopes of water in stems and different soil depths were analyzed using four analysis methods (namely direct inference, the Romero-Saltos model, the IsoSource model and the coupled model). Results showed that the ERGZ depth under surface irrigation ranged from 10 cm to 60 cm, with the main contribution at 0–40 cm during the growth stage. Under water storage pit irrigation, the ERGZ depth for the apple tree was deeper and ranged from 20 cm to 100 cm, with the main contribution of ERGZ deepened to 20–100 cm after the earlier of shoot rapid-growing stage. The use of a water storage pit irrigation system on apple demonstrated improved root growth in the middle-depth soils, as compared to traditional surface irrigation.  相似文献   

6.
Rice (Oryza sativa) was grown in sunlit, semi-closed growth chambers (4×3×2 m, L×W×H) at 650 μl l−1 CO2 (elevated CO2) to determine: (1) rice root-derived carbon (C) input into the soil under elevated CO2 in one growing season, and (2) the effect of the newly input C on decomposition of the more recalcitrant native soil organic C. The initial δ13C value of the experimental soil was −25.8‰, which was 6‰ less depleted in 13C than the plants grown under elevated CO2. Significant changes in δ13C of the soil organic C were detected after one growing season. The amount of new soil C input was estimated to be 0.9 t ha−1 (or 2.1%) at 30 kg N ha−1 and 1.8 t ha−1 (4.1%) at 90 kg N ha−1. Changes in soil δ13C suggested that the surface 5 cm of soil received more C input from plants than soils below. Laboratory incubation (25 °C) of soils from different horizons indicated that increased availability of the labile plant-derived C in the soil reduced decomposition of the native soil organic C. Provided the retardant effect of the new C on old soil organic C holds in the field in the longer-term, paddy soils will likely sequester more C from the atmosphere if more plant C enters the soil under elevated atmospheric CO2.  相似文献   

7.
施氮量对夏玉米碳氮代谢和氮利用效率的影响   总被引:25,自引:7,他引:25  
本试验研究了施氮量(0、90、180、270 kg/hm2)对夏播玉米CF008、金海5号和郑单958碳氮积累、运转及氮肥利用的影响。结果表明,3个品种的茎叶碳氮积累量、成熟期地上部总氮量均为在施氮量180 kg/hm2或270 kg/hm2下较高,但是最终碳氮运转率、氮素吸收效率、氮素利用效率和氮肥利用率均在施氮量90 kg/hm2下较高。本试验中,碳运转率与产量呈正相关,氮运转率与氮肥利用率呈正相关,表明较高的碳氮运转率可以促进产量和氮肥利用率的提高。本研究在施氮量90 kg/hm2下,CF008和金海5号茎鞘的C/N值在吐丝期和成熟期分别为22.11~22.91、35.66~54.23,叶片的C/N值分别为4.32~5.11、9.06~10.57;在施氮量90~180 kg/hm2下,3个品种夏玉米产量达到了10688~11461 kg/hm2;CF008和金海5号的氮肥利用率达到了31.55%~49.33%,而郑单958的氮肥利用率仅为15.11%~19.20%。  相似文献   

8.
Newly synthesized amino acids are the principle compounds created after inorganic nitrogen (N) is rapidly immobilized into microbial tissues. However, little is known about the mineralization kinetics of these newly synthesized amino acids compared to the amino acids originally present in the soil, and how substrate availability controls their mineralization. With 15N isotope tracing, the newly synthesized (15N-labeled) amino acids can be differentiated from the amino acids originally present (unlabeled) in soil, making it possible to evaluate the mineralization of the newly synthesized amino acids in tandem with the original amino acids. As amino acids can serve as both N and carbon (C) sources for microorganisms, the mineralization dynamics of amino acids may be manipulated by the availability of extraneous C and N. In this study, an aerobic 30-week intermittent leaching experiment was conducted, using glucose as C source and (14NH4)2SO4 as N source, following separate additions to soil. The newly synthesized amino acids were determined by an isotope-based high performance liquid chromatography/mass spectrometry (HPLC/MS). The newly synthesized soil amino acids mineralized faster than the original ones, which indicated more rapid cycling of N in the newly synthesized soil amino acids pool. Glucose addition significantly decreased the mineralization of both the newly synthesized and the original amino acids. However, when inorganic N was abundant, the newly synthesized amino acids decomposed rapidly, and preferentially as a C source and energy, while N addition inhibited the mineralization of the original amino acids in the soil. We conclude that the presence of readily degradable C (e.g. glucose) and inorganic N controls the mineralization of newly synthesized and original amino acid pools in soil differently, which is a crucial mechanism in adjusting the N supply and sequestration processes in soil ecosystems.  相似文献   

9.
Naturally occurring stable isotopes of carbon and nitrogen are powerful tools to investigate food webs, where the ratio of 15N/14N is used to assign trophic levels and of 13C/12C to determine the food source. A shift in δ15N value of 3‰ is generally suggested as mean difference between two trophic levels, whereas the carbon isotope composition of a consumer is assumed to reflect the signal of its diet. This study investigates the effects of food quality, starvation and life stage on the stable isotope fractionation in fungal feeding Collembola. The fractionation of nitrogen was strongly affected by food quality, i.e. the C/N ratio of the fungal diet. Collembola showed enrichment in the heavier isotope with increasing N concentration of the food source. Δ15N varied between 2.4‰, which assigns a shift in one trophic level, and 6.3‰, suggesting a shift in two trophic levels. Starvation up to 4 weeks resulted in an increase in the total δ15N value from 2.8‰ to 4.0‰. Different life stages significantly affected the isotope discrimination by Collembola with juveniles showing a stronger enrichment (Δ15N=4.9‰) compared to adults (Δ15N=3.5‰). Δ13C varied between −2.1‰ and −3.3‰ depending on the food quality, mainly due to compensational feeding on low quality diet. During starvation δ13C value decreased by 1.1‰, whereas the life stage of Collembola had no significant effect on isotopic ratios. The results indicate that the food resource and the physiological status of the consumer have important impact on stable isotope discrimination. They may cause differences in fractionation rate comparable to trophic level shifts, a fact to consider when analysing food web structure.  相似文献   

10.
The effects of carbon (C) and nitrogen (N) sources on N utilization and biosynthesis of amino acids were examined in the germinating spores of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith after exposure to various N substrates,CO2,glucose,and/or root exudates.The N uptake and de novo biosynthesis of amino acids were analyzed using stable isotopic labeling with mass spectrometric detection.High-performance liquid chromatography-based analysis was used to measure amino acid levels.In the absence of exogenous N sources and in the presence of 25 mL L-1 CO2,the germinating AM fungal spores utilized internal N storage as well as C skeletons derived from the degradation of storage lipids to biosynthesize the free amino acids,in which serine and glycine were produced predominantly.The concentrations of internal amino acids increased gradually as the germination time increased from 0 to 1 or 2 weeks.However,asparagine and glutamine declined to the low levels;both degraded to provide the biosynthesis of other amino acids with C and N donors.The availability of exogenous inorganic N (ammonium and nitrate) and organic N (urea,arginine,and glutamine) to the AM fungal spores using only CO2 for germination generated more than 5 times more internal free amino acids than those in the absence of exogenous N.A supply of exogenous nitrate to the AM fungal spores with only CO2 gave rise to more than 10 times more asparagine than that without exogenous N.In contrast,the extra supply of exogenous glucose to the AM fungal spores generated a significant enhancement in the uptake of exogenous N sources,with more than 3 times more free amino acids being produced than those supplied with only exogenous CO2.Meanwhile,arginine was the most abundant free amino acid produced and it was incorporated into the proteins of AM fungal spores to serve as an N storage compound.  相似文献   

11.
As limited information is available about the relationship between microbial processes and community structure in tropical soils, we used 15N-DNA stable isotope probing (15N-DNA-SIP) to identify bacteria actively involved in decomposition of plant residues of different biochemical quality. 15N-labeled (90 atom%) and unlabeled (control) maize (C-to-N ratio: 32; cellulose content: 24.9%) and soybean (15; 15.5%) leaf residues were incubated in a tropical Vertisol for 15 days. Soil DNA was isolated, subjected to 15N-DNA-SIP and buoyant density-resolved DNA fractions were analyzed by 16S rRNA gene-based denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of selected DGGE bands. Residue addition induced new bands and changed relative intensity of already existing bands in 15N-enriched SIP fractions. Phylogenetic analysis of selected, cloned DGGE bands from ‘heaviest’ 15N-enriched fractions (57.8 atom% (maize), 87.1 atom% (soybean)) revealed that soils treated with maize residues were dominated by Pseudonocardia sp., while Arthrobacter sp. and Streptomyces sp. were found in the soybean residue treated soils. Sequences related to Bacillus sp. and Saccharopolyspora sp. were found in both organic residue treatments. Our study gave clear evidence that 15N-DNA-SIP combined with 16S rRNA gene-based community fingerprinting of density-resolved fractions and an unlabeled control was suited for detecting active bacteria involved in decomposition of complex maize and soybean residues. In conclusion, we could show that residue quality, inducing contrasting N assimilation by decomposing bacteria, was a substantial determinant of certain decomposing community members assayed in this study.  相似文献   

12.
The response of wheat to elevated carbon dioxide concentration (e[CO2]) is likely to be dependent on nitrogen supply. To investigate the underlying mechanism of growth response to e[CO2], two wheat cultivars were grown under different carbon dioxide concentration [CO2] in a chamber experimental facility. The changes in leaf photosynthesis, C and N concentration, and biomass were investigated under different [CO2] and N supply. The result showed an increase in photosynthesis under e[CO2] at all N level except the one with the lowest N supply. Furthermore, a significant decrease in gs and Tr for both the cultivars was also observed under e[CO2] at all N levels. A considerable increase in WUEi was observed for both the cultivars under e[CO2] at all N levels except for the lowest concentration one. Therefore, the study shows that a stimulation of plant growth under e[CO2] to be marginal at higher N supply.  相似文献   

13.
Forest soils have large contents of carbon (C) and total nitrogen (TN), which have significant spatial variability laterally across landscapes and vertically with depth due to decomposition, erosion and leaching. Therefore, the ratio of C to TN contents (C:N), a crucial indicator of soil quality and health, is also different depending on soil horizon. These attributes can cost-effectively and rapidly be estimated using visible–near infrared–shortwave infrared (VNIR–SWIR) spectroscopy. Nevertheless, the effect of different soil layers, particularly over large scales of highly heterogeneous forest soils, on the performance of the technique has rarely been attempted. This study evaluated the potential of VNIR–SWIR spectroscopy in quantification and variability analysis of C:N in soils from different organic and mineral layers of forested sites of the Czech Republic. At each site, we collected samples from the litter (L), fragmented (F) and humus (H) organic layers, and from the A1 (depth of 2–10 cm) and A2 (depth of 10–40 cm) mineral layers providing a total of 2505 samples. Support vector machine regression (SVMR) was used to train the prediction models of the selected attributes at each individual soil layer and the merged layer (profile). We further produced the spatial distribution maps of C:N as the target attribute at each soil layer. Results showed that the prediction accuracy based on the profile spectral data was adequate for all attributes. Moreover, F was the most accurately predicted layer, regardless of the soil attribute. C:N models and maps in the organic layers performed well although in mineral layers, models were poor and maps were reliable only in areas with low and moderate C:N. On the other hand, the study indicated that reflectance spectra could efficiently predict and map organic layers of the forested sites. Although, in mineral layers, high values of C:N (≥ 50) were not detectable in the map created based on the reflectance spectra. In general, the study suggests that VNIR–SWIR spectroscopy has the feasibility of modelling and mapping C:N in soil organic horizons based on national spectral data in the forests of the Czech Republic.  相似文献   

14.
不同改土物料对烤烟养分吸收及碳、氮代谢的影响   总被引:5,自引:0,他引:5  
利用一定数量石灰、白云石粉、粉煤灰、废菌棒和化肥构成7种不同的改土物料组合,以常规化肥为对照,通过盆栽试验探讨不同改土物料组合对烤烟养分吸收及碳、氮代谢作用的影响。结果表明,土壤施用不同改土物料组合可以促进烟株对氮、磷、钾、钙、锰和锌等矿质养分吸收,提高烟叶光合色素和氨基酸含量,增强烟株光合作用,促进烟株碳、氮代谢,其中均以石灰+菌棒+常规化肥组合效果最好,其烟叶氮、磷、钾、钙、锰和锌含量分别比对照提高138.5%、80.0%、33.9%4、2.3%9、8.7%和85.1%。烟叶叶绿素a、叶绿素b、叶绿素总量和类胡萝卜素含量分别比对照增加45.1%、69.2%、100.0%和336.7%;烟株净光合速率比对照高近6倍,烟叶氨基酸总量及谷氨酸、天冬氨酸和亮氨酸含量分别比对照提高31.54、.1、3.4和3.1.g/kg。表明石灰+废菌棒+常规化肥组合可作为福建烟区土壤较理想的改土物料。  相似文献   

15.
Dissolved organic matter (DOM) is important for the cycling and transport of carbon (C) and nitrogen (N) in soil. In temperate forest soils, dissolved organic N (DON) partly escapes mineralization and is mobile, promoting loss of N via leaching. Little information is available comparing DOC and DON dynamics under tropical conditions. Here, mineralization is more rapid, and the demand of the vegetation for nutrients is larger, thus, leaching of DON could be small. We studied concentrations of DOC and DON during the rainy seasons 1998–2001 in precipitation, canopy throughfall, pore water in the mineral soil at 5, 15, 30, and 80 cm depth, and stream water under different land‐use systems representative of the highlands of northern Thailand. In addition, we determined the distribution of organic C (OC) and N (ON) between two operationally defined fractions of DOM. Samples were collected in small water catchments including a cultivated cabbage field, a pine plantation, a secondary forest, and a primary forest. The mean concentrations of DOC and DON in bulk precipitation were 1.7 ± 0.2 and 0.2 ± 0.1 mg L–1, respectively, dominated by the hydrophilic fraction. The throughfall of the three forest sites became enriched up to three times in DOC in the hydrophobic fraction, but not in DON. Maximum concentrations of DOC and DON (7.9–13.9 mg C L–1 and 0.9–1.2 mg N L–1, respectively) were found in samples from lysimeters at 5 cm soil depth. Hydrophobic OC and hydrophilic ON compounds were released from the O layer and the upper mineral soil. Concentrations of OC and ON in mineral‐soil solutions under the cabbage cultivation were elevated when compared with those under the forests. Similar to most temperate soils, the concentrations in the soil solution decreased with soil depth. The reduction of OC with depth was mainly due to the decrease of hydrophobic compounds. The changes in OC indicated the release of hydrophobic compounds poor in N in the forest canopy and the organic layers. These substances were removed from solution during passage through the mineral soil. In contrast, organic N related more to labile microbial‐derived hydrophilic compounds. At least at the cabbage‐cultivation site, mineralization seemed to contribute largely to the decrease of DOC and DON with depth, possibly because of increased microbial activity stimulated by the inorganic‐N fertilization. Similar concentrations and compositions of OC and ON in subsoils and streams draining the forested catchments suggest soil control on stream DOM. The contribution of DON to total dissolved N in those streams ranged between 50% and 73%, underscoring the importance of DOM for the leaching of nutrients from forested areas. In summary, OC and ON showed differences in their dynamics in forest as well as in agricultural ecosystems. This was mainly due to the differing distribution of OC and ON between the more immobile hydrophobic and the more easily degradable hydrophilic fraction.  相似文献   

16.
Returning rice straw and leguminous green manure alone or in combination to soil is effective in improving soil fertility in South China.Despite the popularity of this practice,our understanding of the underlying processes for straw and manure combined application is relatively poor.In this study,rice straw(carbon(C)/nitrogen(N) ratio of 63),green manure(hairy vetch,C/N ratio of 14),and their mixtures(C/N ratio of 25 and 35) were added into a paddy soil,and their effects on soil N availability a...  相似文献   

17.
营养液栽培条件下,以番茄(品种,合作906)为材料,研究CO2施肥与4种不同养分供应强度的交互作用对番茄幼苗生长及其叶片中的碳、氮浓度与碳、氮比动态变化的影响。结果表明,在不同营养液养分浓度下,CO2施肥能增加番茄幼苗生物量的积累,提高生长速度;增加番茄幼苗叶片中氮、碳积累量与吸收速率;而且对CO2作用效果的响应随营养液养分浓度的提高而增加。在所有处理中碳、氮积累量与吸收速率随生育期的延长呈上升趋势。说明在番茄育苗后期要增加施肥量,而且在CO2施肥的情况下施肥量增加的量要大。CO2施肥对生长在不同营养液中番茄叶片中的碳、氮比在不同生长阶段的影响是不同的,但在同一CO2浓度条件下,番茄幼苗各个取样阶段均表现为碳、氮比随营养液浓度的降低而增加。对番茄幼苗碳、氮积累量、总干生物量与生长时间的关系研究表明,氮积累量、总干生物量与生长时间均符合二次曲线变化。  相似文献   

18.
[目的]氮素利用率低严重制约我国果树产业的可持续发展.通过研究不同供锌水平对苹果砧木平邑甜茶幼苗生长、光合作用、13C同化与分配和15N吸收、利用与分配的影响,探究锌对苹果氮素吸收利用的影响机制,为苹果生产中氮肥利用率的提高提供理论参考.[方法]以苹果砧木平邑甜茶幼苗为试材进行砂培试验,试验周期为30天.设置ZnO、Z...  相似文献   

19.
Large‐scale grassland rehabilitation has been carried out on the severely degraded lands of the Tibetan plateau. The grasslands created provide a useful model for evaluating the recovery of ecosystem properties. The purposes of this research were: (1) to examine the relative influence of various rehabilitation practices on carbon and nitrogen in plants and soils in early secondary succession; and (2) to evaluate the degree to which severely degraded grassland altered plant and soil properties relative to the non‐disturbed native community. The results showed: (1) The aboveground tissue C and N content in the control were 105·97 g m−2 and 3·356 g m−2, respectively. The aboveground tissue C content in the mixed seed treatment, the single seed treatment, the natural recovery treatment and the severely degraded treatment was 137 per cent, 98 per cent, 49 per cent and 38 per cent, respectively, of that in the control. The corresponding aboveground tissue N content was 109 per cent, 84 per cent, 60 per cent and 47 per cent, respectively, of that in the control. (2) Root C and N content in 0–20 cm depths of the control had an average 1606 g m−2 and 30·36 g m−2, respectively. Root C and N content in the rehabilitation treatments were in the range of 26–36 per cent and 35–53 per cent, while those in the severely degraded treatment were only 17 per cent and 26 per cent of that in the control. (3) In the control the average soil C and N content at 0–20 cm was 11 307 g m−2 and 846 g m−2, respectively. Soil C content in the uppermost 20 cm in the seeded treatments, the natural recovery treatment and the severely degraded treatment was 67 per cent, 73 per cent and 57 per cent, respectively, while soil N content in the uppermost 20 cm was 72 per cent, 82 per cent and 79 per cent, respectively, of that in the control. The severely degraded land was a major C source. Restoring the severely degraded lands to perennial vegetation was an alternative approach to sequestering C in former degraded systems. N was a limiting factor in seeding grassland. It is necessary for sustainable utilization of seeding grassland to supply extra N fertilizer to the soil or to add legume species into the seed mix. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
华北农田纳入冬绿肥能够提升土壤质量和抑制土壤风蚀。本文主要以一年一茬春玉米为例,将毛苕子(Vicia villosa Roth)与二月兰(诸葛菜,Oryehophragmus violaeeus)作为冬绿肥,研究春玉米冬绿肥轮作模式下的碳氮蓄积量及土壤养分和微生物的变化。2 年试验结果表明,冬绿肥区碳蓄积量是冬闲区的2.4~3.6倍;氮蓄积量约为冬闲区的4.0~4.7倍;二月兰区碳蓄积量比毛苕子区高32.7%~39.2%,毛苕子区氮蓄积量比二月兰区高约5.7%,差异显著(碳蓄积量是指在该轮作系统下植物体的碳素累积量;氮蓄积量是指在该轮作系统下植物体的氮素累积量)。春玉米种植制度短期纳入冬绿肥作物对玉米产量及对土壤pH,速效氮、速效磷含量、土壤总碳量无显著影响。冬绿肥区有机碳含量比冬闲区提高4.5%~5.7%,且二月兰区毛苕子区,差异显著;冬绿肥显著提高了土壤微生物数量,以细菌数量变化最为明显。冬绿肥区细菌数量是冬闲区的2.0~3.7倍,毛苕子区二月兰区。说明农田短期纳入冬绿肥,可以提高土壤有机碳含量,促进土壤微生物的活动,有利于保持土壤肥力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号