首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of three soil Na indices to predict soil conduciveness or suppressiveness to disease caused by the soil fungus Fusarium oxysporum f. sp. cubense was evaluated in seven banana plantations from the Canary Islands (Spain). These indices were exchangeable sodium percentage (ESP), soluble Na (SS0) and sodium adsorption ratio (SAR0) in 1:2.5 soil-water extracts (SARw and total cationic concentration (TCCw)=0. Sodium selectivity coefficients (KG0,K0) and TCC0 were calculated from soil exchange and solution data. The effects of ESP, SAR0, SS0, TCC0, KG0 and K0 on soil available iron (Fe extracted from soil by DTPA) and aggregate stability in water (water-stable aggregates (WSA), 200-2000 μm) were also studied. Our results showed that SAR0 calculated using cationic concentrations in 1:2.5 extracts might be a good indication of a relationship between SS0 and soluble divalent cations in conducive and suppressive volcanic soils to Fusarium. Both TCC0 and dispersion-flocculation concentrations seem to be not linked to soil suppressiveness or conduciveness to Fusarium wilt. These results suggested that soil physical properties seem to be not controlled by Na behaviour in these type of soils and, therefore, sodicity and salinity should not be a problem from a physical point of view. Moreover, SS0 and SAR0 were always greater in suppressive areas than in conducive areas. SAR0 was significantly correlated with SS0 but correlations between ESP against SS0 and SAR0 were weak. For SAR0 values above 2.5 (mmolc l−1)1/2 and ESP values below 15%, the exchangeable Na did not seem to be related to the capacity of suppressive areas to release more Na to soil solution. Larger values of SS0 were observed in suppressive areas for these values of SAR0 and ESP. It implies a lower quantity of soluble Na salts in conducive samples. A high Na salt content in soil can produce an increase of soil pH, which exerts a negative influence on available Fe release to soil solution. A clear separation between conducive and suppressive samples from relations between SS0 and SAR0 against WSA and Fe-DTPA showed that SS0 and SAR0 can be satisfactory indices to study the influence of Na concentrations on the incidence of Fusarium wilt. The mass of WSA increase in conducive areas might be favoured by the smaller amounts of soil solution Na found in these samples. In conclusion, our data provide evidence that release of Na to soil solution could favour soil suppressiveness to Fusarium wilt limiting soil aggregation and the availability of Fe, at least in soils of volcanic nature that are not affected by salinity or sodicity processes.  相似文献   

2.
Phosphomonoesterase (PMEase) activity plays a key role in nutrient cycling and is a potential indicator of soil condition and ecosystem stress. We compared para-nitrophenyl phosphate (pNPP) and 4-methylumbelliferyl phosphate (MUP) as substrate analogues for PMEase in 7 natural ecosystem soils and 8 agricultural top soils with contrasting C contents (8.0-414 g kg−1 C) and pH (3.0-7.5). PMEase activities obtained with pNPP (0.05-5 μmol g−1 h−1) were significantly less than activities obtained with MUP (0.9-13 μmol g−1 h−1), especially in soils with a high organic matter content (>130 g kg−1). Only PMEase activities assayed with MUP correlated significantly with total C and total N (r=0.7, P<0.01 all), and pH (r=−0.71, P<0.01). PMEase activities obtained with the two substrate analogues were correlated when expressed on a C-content basis (r=0.8, P<0.001), but not when expressed on an oven-dry soil weight basis. This indicated that interference by organic matter is related to the quantity rather than to the quality of organic matter. Overall, assaying with MUP was more sensitive compared to assaying with pNPP, particularly in the case of high organic and acid soils.  相似文献   

3.
In Cameroon, andosols are suspected to be suppressive to cocoyam (Xanthosoma sagittifolium) root rot disease (CRRD) caused by the Oomycete pathogen Pythium myriotylum. To determine factors involved in disease suppressiveness, andosols were studied in comparison to ferralsols known to be disease-conducive. Soil samples were collected from six sites of which three were in andosols around Mount Cameroon (Boteva, Njonji, and Ekona) and the three others in ferralsols (Bakoa, Lapkwang, and Nko’o canane). Greenhouse plant experiments were used to assess soil suppressiveness. Soils were artificially infested with two levels of P. myriotylum inoculum (100 and 300 mycelia strands g−1 soil) prior to planting cocoyam. Disease severity was significantly higher in ferralsols than in andosols. Andosols partly lost their suppressiveness as a result of autoclaving and could recover suppressiveness following recolonisation by their original microflora. Soil microbial groups implicated in the disease suppression were investigated by assessing the effect of fungicide, bactericide, and pasteurisation on andosol suppressiveness. Andosols suppressiveness was significantly reduced following pasteurisation and treatment with fungicide and bactericide. The possible influence of microbial biomass on andosol suppressiveness was investigated by comparing microbial populations of suppressive andosols to those in andosols that had lost suppressiveness. A comparative analysis of suppressive and conducive soil properties was performed to identify soil variables, which may contribute to soil suppressiveness. Soil chemical analysis results showed that organic matter content was higher in andosols than in ferralsols. In addition, the content of mineral nutrients such as Ca, K, Mg and N, was higher in andosols than in ferralsols. These soil variables negatively correlated with disease severity. By contrast, sand and clay, which were higher in ferralsols than in andosols, were positively related to disease severity. This study has confirmed the suppressive nature of andosols from Mount Cameroon to CRRD. The results suggest that high organic matter content is likely mediating P. myriotylum suppression in andosols by improving soil structure, increasing soil nutrient content and microbial biomass, and sustaining microbial activity.  相似文献   

4.
Fatty acids as major compounds of soil lipids may affect many soil properties, but the input and turnover rates in soil are largely unknown. The objective of this study was to identify and quantify fatty acids in soils as a result of input from primary sources such as plant residues, farmyard manure and soil organisms, and to evaluate the corresponding turnover- and stabilization processes. The concentrations of n-C10:0 to n-C34:0 fatty acids were determined in the Ap horizon of a Phaeozem with long-term cropping of rye and maize and the treatments ‘Unfertilized’ (‘U’) and fertilized with ‘Farmyard manure’ (‘FYM’). The most important primary sources of fatty acids such as rye and maize stubble and roots, soil micro- and mesofauna, and the applied FYM were also investigated. The quantification of fatty acids by gas chromatography/mass spectrometry (GC/MS) showed that long-term FYM application led to larger concentrations of n-alkyl fatty acids in the plots grown with rye (‘U’: 48.1 μg g−1, ‘FYM’: 57.7 μg g−1, **P≤0.01, n=3) and maize (‘U’: 17.0 μg g−1, ‘FYM’: 23.4 μg g−1, ***P≤0.001, n=3). The observed bimodal fatty acid distribution in soils from n-C10:0 to n-C21:0 and from n-C21:0 to n-C34:0 with a predominance at n-C16:0 and at n-C28:0 was apparently due to input from crop residues, soil organisms and FYM. The short-chain lengths may have originated from the investigated primary sources. The major contributors to the long-chain lengths, with a maximum at n-C28:0, were rye stubble and FYM. A change in mono-culture from rye to maize, 38 years prior to sampling, led to a decrease in fatty acid concentrations by factors of about 2.8 (‘U’) and 2.5 (‘FYM’). Therefore, rye-derived fatty acids and soil tillage had a larger impact on fatty acid pools than the input of primary organic matter. The changes in fatty acid distributions and pools under the consideration of the quantified input of primary organic matter led to the conclusion that the short-chained fatty acids were more rapidly decomposed than the long-chains.  相似文献   

5.
Many soils in sub-Saharan Africa, which are farmed by smallholders, are P deficient and highly P fixing. Furthermore, P inputs supplied as farmyard manure (FYM) or inorganic P fertilizer are normally too small to replace P offtakes by crops. Consequently most soils are in a negative P balance, which is reflected in small, and often declining, crop yields. The obvious solution of simply applying adequate P is seldom an option due to shortages of manure, which is usually low in nutrients in any case, and the high cost of inorganic P fertilizer relative to the likely cash value of the harvest. Our aim was to see if we could devise practical methods to increase soil P availability in this situation and to investigate the mechanisms involved. Two approaches were adopted. Firstly, to attempt to saturate the P-fixing sites in the soils by applying a large annual application of P (75 kg P ha−1), which should serve for several seasons. Secondly, to attempt to keep the fertilizer P in biological forms by supplying fertilizer P and cattle manure (FYM) in combination. Here, the aim was to promote the cycling of P through the soil microbial biomass and associated metabolite pools, with the expected result of decreasing P fixation and increased plant availability of this P. These treatments were investigated using two field sites on smallholder farms in Kenya: one, considered a ‘high P fixing’ soil at Malava (Kakamega District) and one considered a ‘low P fixing’ soil at Mau Summit (Nakuru District). The following treatments were applied in 1997 and 1998: nil; 75 kg P ha−1 as super phosphate (P); 25 kg P ha−1; FYM at 1.9 t ha−1 dry matter; FYM+25 kg P ha−1. All treatments also received 100 kg inorganic N ha−1. Maize was the test crop. There was no significant correlation in either year at either site between soil P, measured as NaHCO3-extractable P, resin P or NaOH-extractable P and maize yield. However, the different soil P fractions were closely correlated with each other. Yields at the high P rate (75 kg ha−1y−1) were often little better than the control. There was, however, a significant positive relationship (P<0.05) between soil microbial biomass P and crop yield, again at both sites and in both years. The treatment giving the best yield and the largest biomass P was always FYM+P. Our results indicate that the combined use of organic and inorganic fertilizers in these low input systems may promote increased biological cycling, enhanced availability and consequently improved plant uptake of soil and fertiliser P, to the advantage of the small scale farmer. The results also indicate that biomass P measurements may provide a better indicator of soil P availability in these soils than some more conventional chemical extractants. However, both findings require further evaluation.  相似文献   

6.
Physiological groups of soil microorganisms, total C and N and available nutrients were investigated in four heated (350 °C, 1 h) soils (one Ortic Podsol over sandstone and three Humic Cambisol over granite, schist or limestone) inoculated (1.5 μg chlorophyll a g−1 soil or 3.0 μg chlorophyll a g−1 soil) with four cyanobacterial strains of the genus Oscillatoria, Nostoc or Scytonema and a mixture of them.Cyanobacterial inoculation promoted the formation of microbiotic crusts which contained a relatively high number of NH4+-producers (7.4×109 g−1 crust), starch-mineralizing microbes (1.7×108 g−1 crust), cellulose-mineralizing microbes (1.4×106 g−1 crust) and NO2 and NO3 producers (6.9×104 and 7.3×103 g−1 crust, respectively). These crusts showed a wide range of C and N contents with an average of 293 g C kg−1 crust and 50 g N kg−1 crust, respectively. In general, Ca was the most abundant available nutrient (804 mg kg−1 crust), followed by Mg (269 mg kg−1 crust), K (173 mg kg−1 crust), Na (164 mg kg−1 crust) and P (129 mg kg−1 crust). There were close positive correlations among all the biotic and abiotic components of the crusts.Biofertilization with cyanobacteria induced great microbial proliferation as well as high increases in organic matter and nutrients in the surface of the heated soils. In general, cellulolytics were increased by four logarithmic units, amylolytics and ammonifiers by three logarithmic units and nitrifiers by more than two logarithmic units. C and N contents rose an average of 275 g C kg−1 soil and 50 g N kg−1 soil while the C:N ratio decreased up to 7 units. Among the available nutrients the highest increase was for Ca (315 mg kg−1 soil) followed by Mg (189 mg kg−1 soil), K (111 mg kg−1 soil), Na (109 mg kg−1 soil) and P (89 mg kg−1 soil). Fluctuations of the microbial groups as well as those of organic matter and nutrients were positively correlated.The efficacy of inoculation depended on both the type of soil and the class of inoculum. The best treatment was the mixture of the four strains and, whatever the inoculum used, the soil over lime showed the most developed crust followed by the soils over schist, granite and sandstone. In the medium term there were not significant differences between the two inocula amounts tested.These results showed that inoculation of burned soils with alien N2-fixing cyanobacteria may be a biotechnological means of promoting microbiotic crust formation, enhancing C and N cycling microorganisms and increasing organic matter and nutrient contents in heated soils.  相似文献   

7.
Enzyme activities and microbial biomass in coastal soils of India   总被引:1,自引:0,他引:1  
Soil salinity is a serious problem for agriculture in coastal regions, wherein salinity is temporal in nature. We studied the effect of salinity, in summer, monsoon and winter seasons, on microbial biomass carbon (MBC) and enzyme activities (EAs) of the salt-affected soils of the coastal region of the Bay of Bengal, Sundarbans, India. The average pH of soils collected from different sites, during different seasons varied from 4.8 to 7.8. The average organic C (OC) and total N (TN) content of the soils ranged between 5.2-14.1 and 0.6-1.4 g kg−1, respectively. The electrical conductivity of the saturation extract (ECe) of soils, averaged over season, varied from 2.2 to 16.3 dSm−1. The ECe of the soils increased five fold during the summer season (13.8 dSm−1) than the monsoon season (2.7 dSm−1). The major cation and anion detected were Na+ and Cl, respectively. Seasonality exerted considerable effects on MBC and soil EAs, with the lowest values recorded during the summer season. The activities of β-glucosidase, urease, acid phosphatase and alkaline phosphatase were similar during the winter and monsoon season. The dehydrogenase activity of soils was higher in monsoon than in winter. Average MBC, dehydrogenase, β-glucosidase, urease, acid phosphatase and alkaline phosphatase activities of the saline soils ranged from 125 to 346 mg kg−1 oven dry soil, 6-9.9 mg triphenyl formazan (TPF) kg−1 oven dry soil h−1, 18-53 mg p-nitro phenol (PNP) kg−1 oven dry soil h−1, 38-86 mg urea hydrolyzed kg−1 oven dry soil h−1, 213-584 mg PNP kg−1 oven dry soil h−1 and 176-362 mg PNP g−1 oven dry soil h−1, respectively. The same for the non-saline soils were 274-446 mg kg−1 oven dry soil, 8.8-14.4 mg TPF kg−1 oven dry soil h−1, 41-80 mg PNP kg−1 oven dry soil h−1, 89-134 mg urea hydrolyzed kg−1 oven dry soil h−1, 219-287 mg PNP kg−1 oven dry soil h−1 and 407-417 mg PNP kg−1 oven dry soil h−1, respectively. About 48%, 82%, 48%, 63%, 40% and 48% variation in MBC, dehydrogenase activity, β-glucosidase activity, urease activity, acid phosphatase activity and alkaline phosphatase activity, respectively, could be explained by the variation in ECe of saline soils. Suppression of EAs of the coastal soils during summer due to salinity rise is of immense agronomic significance and needs suitable interventions for sustainable crop production.  相似文献   

8.
We evaluated the spatial structures of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) fluxes in an Acacia mangium plantation stand in Sumatra, Indonesia, in drier (August) and wetter (March) seasons. A 60 × 100-m plot was established in an A. mangium plantation that included different topographical elements of the upper plateau, lower plateau, upper slope and foot slope. The plot was divided into 10 × 10-m grids and gas fluxes and soil properties were measured at 77 grid points at 10-m intervals within the plot. Spatial structures of the gas fluxes and soil properties were identified using geostatistical analyses. Averaged N2O and CO2 fluxes in the wetter season (1.85 mg N m−2 d−1 and 4.29 g C m−2 d−1, respectively) were significantly higher than those in the drier season (0.55 mg N m−2 d−1 and 2.73 g C m−2 d−1, respectively) and averaged CH4 uptake rates in the drier season (−0.62 mg C m−2 d−1) were higher than those in the wetter season (−0.24 mg C m−2 d−1). These values of N2O fluxes in A. mangium soils were higher than those reported for natural forest soils in Sumatra, while CO2 and CH4 fluxes were in the range of fluxes reported for natural forest soils. Seasonal differences in these gas fluxes appears to be controlled by soil water content and substrate availability due to differing precipitation and mineralization of litter between seasons. N2O fluxes had strong spatial dependence with a range of about 18 m in both the drier and wetter seasons. Topography was associated with the N2O fluxes in the wetter season with higher and lower fluxes on the foot slope and on the upper plateau, respectively, via controlling the anaerobic-aerobic conditions in the soils. In the drier season, however, we could not find obvious topographic influences on the spatial patterns of N2O fluxes and they may have depended on litter amount distribution. CO2 fluxes had no spatial dependence in both seasons, but the topographic influence was significant in the drier season with lowest fluxes on the foot slope, while there was no significant difference between topographic positions in the wetter season. The distributions of litter amount and soil organic matter were possibly associated with CO2 fluxes through their effects on microbial activities and fine root distribution in this A. mangium plantation.  相似文献   

9.
Phosphorus losses by surface runoff from agricultural lands have been of public concern due to increasing P contamination to surface waters. Five representative commercial citrus groves (C1-C5) located in South Florida were studied to evaluate the relationships between P fractions in soils, surface runoff P, and soil phosphatase activity. A modified Hedley P sequential fractionation procedure was employed to fractionate soil P. Soil P consisted of mainly organically- and Ca/Mg-bound P fractions. The organically-bound P (biological P, sum of organic P in the water, NaHCO3 and NaOH extracts) was dominant in the acidic sandy soils from the C2 and C3 sites (18% and 24% of total soil P), whereas the Ca/Mg-bound P (HCl-extractable P) accounted for 45-60% of soil total P in the neutral and alkaline soils (C1, C4 and C5 soils). Plant-available P (sum of water and NaHCO3 extractable P fractions) ranged from 27 to 61 mg P kg−1 and decreased in the order of C3>C4>C1>C2>C5. The mean total P concentrations (TP) in surface runoff water samples ranged from 0.51 to 2.64 mg L−1. Total P, total dissolved P (TDP), and PO43−-P in surface runoff were significantly correlated with soil biological P and plant-available P forms (p<0.01), suggesting that surface runoff P was directly derived from soil available P pools, including H2O- and NaHCO3- extractable inorganic P, water-soluble organic P, and NaHCO3- and NaOH-extractable organic P fractions, which are readily mineralized by soil microorganisms and/or enzyme mediated processes. Soil neutral (55-190 mg phenol kg−1 3 h−1) and natural (measured at soil pH) phosphatase activities (77-295 mg phenol kg−1 3 h−1) were related to TP, TDP, and PO43−-P in surface runoff, and plant-available P and biological P forms in soils. These results indicate that there is a potential relationship between soil P availability and phosphatase activities, relating to P loss by surface runoff. Therefore, the neutral and natural phosphatase activities, especially the natural phosphatase activity, may serve as an index of surface runoff P loss potential and soil P availability.  相似文献   

10.
We set up a protocol for the assay of the arylesterase activity, using p-nitrophenyl acetate (p-NPA) as substrate, dimethylsulfoxide as solvent, modified universal buffer at pH 7.5, and determination of the reaction product (p-nitrophenol) after separation of non-hydrolysed p-NPA after reaction, and tested it using eight soils with a wide range of characteristics. Various incubation temperatures and times, pH values and substrate concentrations were also used to find the optimal conditions for the enzyme activity and to determine characteristics and kinetic parameters of soil arylesterase. Arylesterase activity was significantly correlated with total organic C, total N, and soil ATP content. Soil arylesterase activity showed a pH optimum at 7.5, optimal temperature between 55 and 65 °C and linear increase with incubation time. The Km values ranged from 4.3 to 8.5 mM, the Vmax values from 326 to 803 μmol p-NP g−1 h−1, with higher Km values observed in soils with higher organic matter content. We conclude that the proposed assay protocol is suitable to determine the arylesterase activity in a wide range of soils.  相似文献   

11.
Soil organic carbon (SOC), microbial biomass carbon (MBC), their ratio (MBC/SOC) which is also known as microbial quotient, soil respiration, dehydrogenase and phosphatase activities were evaluated in a long-term (31 years) field experiment involving fertility treatments (manure and inorganic fertilizers) and a maize (Zea mays L.)-wheat (Triticum aestivum L.)-cowpea (Vigna unguiculata L.) rotation at the Indian Agricultural Research Institute near New Delhi, India. Applying farmyard manure (FYM) plus NPK fertilizer significantly increased SOC (4.5-7.5 g kg−1), microbial biomass (124-291 mg kg−1) and microbial quotient from 2.88 to 3.87. Soil respiration, dehydrogenase and phosphatase activities were also increased by FYM applications. The MBC response to FYM+100% NPK compared to 100% NPK (193 vs. 291 mg kg−1) was much greater than that for soil respiration (6.24 vs. 6.93 μl O2 g−1 h−1) indicating a considerable portion of MBC in FYM plots was inactive. Dehydrogenase activity increased slightly as NPK rates were increased from 50% to 100%, but excessive fertilization (150% NPK) decreased it. Acid phosphatase activity (31.1 vs. 51.8 μg PNP g−1 h−1) was much lower than alkali phosphatase activity (289 vs. 366 μg PNP g−1 h−1) in all treatments. Phosphatase activity was influenced more by season or crop (e.g. tilling wheat residue) than fertilizer treatment, although both MBC and phosphatase activity were increased with optimum or balanced fertilization. SOC, MBC, soil respiration and acid phosphatase activity in control (no NPK, no manure) treatment was lower than uncultivated reference soil, and soil respiration was limiting at N alone or NP alone treatments.  相似文献   

12.
Small changes in C cycling in boreal forests can change the sign of their C balance, so it is important to gain an understanding of the factors controlling small exports like water-soluble organic carbon (WSOC) fluxes from the soils in these systems. To examine this, we estimated WSOC fluxes based on measured concentrations along four replicate gradients in upland black spruce (Picea mariana [Mill.] BSP) productivity and soil temperature in interior Alaska and compared them to concurrent rates of soil CO2 efflux. Concentrations of WSOC in organic and mineral horizons ranged from 4.9 to 22.7 g C m−2 and from 1.4 to 8.4 g C m−2, respectively. Annual WSOC fluxes (4.5-12.0 g C m−2 y−1) increased with annual soil CO2 effluxes (365-739 g C m−2 y−1) across all sites (R2=0.55, p=0.02), with higher fluxes occurring in warmer, more productive stands. Although annual WSOC flux was relatively small compared to total soil CO2 efflux across all sites (<3%), its relative contribution was highest in warmer, more productive stands which harbored less soil organic carbon. The proportions of relatively bioavailable organic fractions (hydrophilic organic matter and low molecular weight acids) were highest in WSOC in colder, low-productivity stands whereas the more degraded products of microbial activity (fulvic acids) were highest in warmer, more productive stands. These data suggest that WSOC mineralization may be a mechanism for increased soil C loss if the climate warms and therefore should be accounted for in order to accurately determine the sensitivity of boreal soil organic C balance to climate change.  相似文献   

13.
We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28 d laboratory incubation. Soil water potentials were initially adjusted to −100 kPa and monitored as soils dried. We estimated N mineralization by measuring changes in amounts of nitrate (NO3-N) and ammonium (NH4+-N) over time and with change in soil water potential. Microbial activity was assessed by amounts of CO2 respired. Phospholipid fatty acid (PLFA) analyses were used to characterize shifts in microbial community composition during soil drying. Net N mineralized under hummocks was twice that of open spaces between hummocks and mineralization rates followed first-order kinetics. An initial N mineralization flush following re-wetting accounted for more than 90% of the total amount of N mineralized during the incubation. Initial microbial biomass under hummocks was twice that of open areas between hummocks, but after 28 d microbial biomass was<2 μ g−1 ninhydrin N regardless of position. Respiration of CO2 from soils under hummocks was more than double that of soils from between hummocks. N mineralization, microbial biomass and microbial activity were negligible once soils had dried to −1000 kPa. Microbial community composition was also significantly different between 0 and 28 d of the incubation but was not influenced by burning treatment or position. Regression analysis showed that soil water potential, microbial biomass N, NO3-N, % C and δ15N all explained significant proportions of the variance in microbial community composition when modelled individually. However, sequential multiple regression analysis determined only microbial biomass was significant in explaining variance of microbial community compositions. Nitrogen mineralization rates and microbial biomass did not differ between burned and unburned sites suggesting that any effects of fire are mostly short-lived. We conclude that the highly labile nature of much of soil organic N in these semi-arid grasslands provides a ready substrate for N mineralization. However, process rates are likely to be primarily limited by the amount of substrate available as well as water availability and less so by substrate quality or microbial community composition.  相似文献   

14.
Soil microbial biomass P is usually determined through fumigation-extraction (FE), in which partially extractable P from lysed biomass is converted to biomass P using a conversion factor (Kp). Estimation of Kp has been usually based on cultured microorganisms, which may not adequately represent the soil microbial community in either nutrient-poor or in altered carbon and nutrient conditions following fertilisation. We report an alternative approach in which changes in microbial P storage are determined as the residual in a mass balance of extractable P before and after incubation. This approach was applied in three low-fertility sandy soils of southwestern Australia, to determine microbial P immobilisation during 5-day incubations in response to the amendment by 2.323 mg C g−1, 100 μg N g−1 and 20 μg P g−1. The net P immobilisation during the amended incubations determined to be 18.1, 14.1 and 16.3 μg P g−1 in the three soils, accounting for 70.6-90.5% of P added through amendment. Such estimates do not rely on fumigation and Kp values, but for comparison with the FE method we estimated ‘nominal’ Kp values to be 0.20-0.31 for the soils under the amended conditions. Our results showed that microbial P immobilisation was a dominant process regulating P concentration in soil water following the CNP amendment. The mass-balance approach provides information not only about changes in the microbial P compartment, but also about other major P-pools and their fluxes in regulating soil-water P concentrations under substrate- and nutrient-amended conditions.  相似文献   

15.
Our aim was to establish the long-term effects of repeated applications after 20 y of organic amendments (farmyard manure at 10 t ha−1 y−1, and urban sewage sludge at two different rates, 10 t ha−1 y−1 and 100 t ha−1 every 2 y) on the quality of a sandy and poorly buffered soil (Fluvisol, pH 6). Chemical characteristics and biodegradability of the labile organic matter, which is mainly derived from microbial biomass and biodegradation products of organic residues, were chosen as indicators for soil quality. The organic C content had reached a maximal value (30.6 g C kg−1 in the 100 t sludge-treated soil), i.e. about 2.5 times that in the control. Six years after the last application, the organic C content and the microbial biomass content remained higher in sludge-treated soils than in the control. In contrast, the proportion of labile organic matter was significantly lower in sludge-treated soils than in manure-treated and control soils. The labile organic matter of sludge extracts appeared less humified than that of manure-treated and control soils.  相似文献   

16.
Ogasawara Islands are important ecosystems sustaining many indigenous spices. To clarify the indigenous soil environments of Ogasawara Islands, we studied the chemistry of the soils. Many surface soils were low in bio-available P (0 to 0.55 g P2O5 kg−1, average: 0.04 g P2O5 kg−1 as Bray II P, n = 22), but several soils were found to contain extremely large amounts of bio-available P (1.36 to 6.98 g P2O5 kg−1, average: 2.93 g P2O5 kg−1, n = 5). From soil profile analyses, the authors concluded that the extremely large amount of bio-available P could not be explained by the effects of parent materials with high P contents nor the effect of fertilizations by human activity, but the effects of natural seabird activities in the past could be the cause. The soil profiles with large amounts of bio-available P indicate deep migration of soil materials from A horizons, which could be a result of intensive mixing of upper horizons by seabird activities. The intensive mixing was supported by the low mechanical impedance of the horizons for the P-accumulating soils (8.17 ± 2.54 kg cm−2, n = 8) than those for the non-P-accumulating soils (17.46 ± 3.52 kg cm−2, n = 36). It is likely that in the past seabirds, such as shearwaters, made burrows in the soils for nesting and propagating and inadvertently transported a large amount of P from the sea to the soils, resulting in the extremely large amounts of bio-available P in the present soils.  相似文献   

17.
In soil incubation experiments we examined if there are differences in the kinetic parameters of atmospheric methane (CH4) oxidation in soils of upland forests and forested peatlands. All soils showed net uptake of atmospheric CH4. One of the upland forests included also managed (clear-cut with or without previous liming or N-fertilization) study plots. The CH4 oxidation in the forested peat soil had a higher Km (510 μl l−1) and Vmax (6.2 nmol CH4 cm−3 h−1) than the upland forest soils (Km from 5 to 18 μl l−1 and Vmax from 0.15 to 1.7 nmol CH4 cm−3 h−1). The forest managements did not affect the Km-values. At atmospheric CH4 concentration, the upland forest soils had a higher CH4 oxidation activity than the forested peat soil; at high CH4 concentrations the reverse was true. Most of the soils oxidised CH4 in the studied pH range from 3 to 7.5. The pH optimum for CH4 oxidation varied from 4 to 7.5. Some of the soils had a pH optimum for CH4 oxidation that was above their natural pH. The CH4 oxidation in the upland forest soils and in the peat soil did not differ in their sensitivities to (NH4)2SO4 or K2SO4 (used as a non-ammonium salt control). Inhibition of CH4 oxidation by (NH4)2SO4 resulted mainly from a general salt effect (osmotic stress) though NH4+ did have some additional inhibitory properties. Both salts were better inhibitors of CH4 oxidation than respiration. The differences in the CH4 oxidation kinetics in the forested peat soil and in the upland forest soils reveal that there are differences in the physiologies of the CH4 oxidisers in these soils.  相似文献   

18.
The aim of this greenhouse experiment was the assessment of the influence of H2SeO3 at soil concentrations of 0.05, 0.15 and 0.45 mmol kg−1, on the activity of selected oxidoreductive enzymes in wheat (Triticum aestivum). The wheat plants were grown in 2 dm3 pots filled with dust-silt black soil of pH 7.7. Applied H2SeO3 caused activation of plant nitrate reductase at all concentrations, but activation of plant polyphenol oxidase at only two lower concentrations. The highest concentration caused inhibition of polyphenol oxidase and peroxidase. Plant catalase activity decreased under the influence of 0.15 and 0.45 mmol kg−1 concentration. After the final analysis Se was quantified in plants and soil. The amounts in plants were: control (unamended soil) 1.95 mg kg−1; I dose (0.05 mmol kg−1) 18.27 mg kg−1; II dose (0.15 mmol kg−1) 33.20 mg kg−1 and III dose (0.45 mmol kg−1) 38.37 mg kg−1, in soil: 0.265 mg kg−1; 3.61 mg kg−1; 10.53 mg kg−1; 30.53 mg kg−1; respectively. Simultaneously, a laboratory experiment was performed, where the activity of soil catalase and peroxidase were tested after 1, 3, 7, 14, 28, 56, and 112 days after Se treatment. Peroxidase activity in soil decreased with increasing Se content, over the whole experiment. The lowest dose of Se caused activation a significant 10% increase in catalase activity, but the influence of others doses was unclear.  相似文献   

19.
Denitrification assays in soils spiked with zinc salt have shown inhibition of the N2O reduction resulting in increased soil N2O fluxes with increasing soil Zn concentration. It is unclear if the same is true for environmentally contaminated soils. Net production of N2O and N2 was monitored during anaerobic incubations (25 °C, He atmosphere) of soils freshly spiked with ZnCl2 and of corresponding soils that were gradually enriched with metals (mainly Zn) in the field by previous sludge amendments or by corrosion of galvanized structures. Total denitrification activity (i.e. the sum of N2O+N2 production rate) was not inhibited by freshly added Zn salts up to 1600 mg Zn kg−1, whereas N2O reduction decreased by 50% (EC50) at total Zn concentrations of 231 mg Zn kg−1 (ZEV soil) and 368 mg Zn kg−1 (TM soil). In contrast, N2O reduction was not reduced by soil Zn in any of the field contaminated soils, even at total soil Zn or soil solution Zn concentrations exceeding more than 5 times corresponding EC50's of the freshly spiked soil. The absence of adverse effects in the field contaminated soils was unrelated to soil NO3 or organic matter concentration. Ageing (2-8 weeks) and soil leaching after spiking reduced the toxicity of Zn on N2O reduction, either expressed as total Zn or soil solution Zn, suggesting adaptation reactions. However, no full recovery after spiking was identified at the largest incubation period in one soil. In addition, the denitrification assay performed with sewage sludge showed elevated N2O release in Zn contaminated sludges (>6000 mg Zn kg−1 dry matter) whereas this was not observed in low Zn sludge (<1000 mg Zn kg−1 dry matter) suggesting limits to adaptation reactions in the sludge particles. It is concluded that the use of soils spiked with Zn salts overestimates effects on N2O reduction. Field data on N2O fluxes in sludge amended soils are required to identify if metals indeed promote N2O emissions in sludge amended soils.  相似文献   

20.
The Antarctic dry valleys are characterized by extremely low temperatures, dry conditions and lack of conspicuous terrestrial autotrophs, but the soils contain organic C, emit CO2 and support communities of heterotrophic soil organisms. We have examined the role of modern lacustrine detritus as a driver of soil respiration in the Garwood Valley, Antarctica, by characterizing the composition and mineralization of both lacustrine detritus and soil organic matter, and relating these properties to soil respiration and the abiotic controls on soil respiration. Laboratory mineralization of organic C in soils from different, geomorphically defined, landscape elements at 10 °C was comparable with decomposition of lacustrine detritus (mean residence times between 115 and 345 d for the detritus and 410 and 1670 d for soil organic matter). The chemical composition of the detritus (C-to-N ratio=9:1-12:1 and low alkyl-C-to-O-alkyl-C ratio in solid-state 13C nuclear magnetic resonance spectroscopy) indicated that it was a labile, high quality resource for micro-organisms. Initial (0-6 d at 10 °C) respiratory responses to glucose, glycine and NH4Cl addition were positive in all the soils tested, indicating both C and N limitations on soil respiration. However, over the longer term (up to 48 d at 10 °C) differential responses occurred. Glucose addition led to net C mineralization in most of the soils. In the lake shore soils, which contained accumulated lacustrine organic matter, glucose led to substantial priming of the decomposition of the indigenous organic matter, indicating a C or energetic limitation to mineralization in that soil. By contrast, over 48 d, glycine addition led to no net C mineralization in all soils except stream edge and lake shore soils, indicating either substantial assimilation of the added C (and N), or no detectable utilization of the glycine. The Q10 values for basal respiration over the −0.5-20 °C temperature range were between 1.4 and 3.3 for the different soils, increasing to between 3.4 and 6.9 for glucose-induced respiration, and showed a temperature dependence with Q10 increasing with declining temperature. Taken together, our results strongly support contemporaneous lacustrine detritus, blown from the lake shore, as an important driver of soil respiration in the Antarctic dry valley soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号