首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
Lead tolerance in individuals of the earthworm species Aporrectodea rosea collected from a clay pigeon shooting site was investigated. Lead concentrations in the shooting site soil and the un-shot control site were 6410±2250 and 296±98 mgPb kg−1 dry weight, respectively. Of these concentrations 1050±240 and 12±9 mgPb kg−1 dry weight were suggested to be available, using ammonium acetate (1 M), respectively. With respect to earthworm body burdens of lead the shooting site earthworms had a body burden of 6.1±1.2 mgPb g−1 dry weight while the uncontaminated site earthworms had almost a 1000-times lower body burden of 7.1±9.0 μgPb g−1 dry weight. Lead tolerance was assessed in uncontaminated soil that had been augmented with lead, using lead nitrate solutions, to obtain lead concentrations in soil of 0.5, 5 and 50 mgPb kg−1 dry weight. Earthworms were exposed for 28 days during which time a semi-qualitative assessment was made of their condition. Results showed no decrease in condition in the shooting site earthworms with increasing exposure time or concentration. In contrast, earthworms collected from an uncontaminated site showed a significant (p<0.05) decrease in condition when exposed to lead concentrations above, and including, a concentration of 5 mg kg−1 dry weight soil. These results suggested lead tolerance in the shooting site earthworms.  相似文献   

2.
The effects of tillage on the interaction between soil structure and microbial biomass vary spatially and temporally for different soil types and cropping systems. We assessed the relationship between soil structure induced by tillage and soil microbial activity at the level of soil aggregates. To this aim, organic C (OC), microbial biomass C (MBC) and soil respiration were measured in water-stable aggregates (WSA) of different sizes from a subtropical rice soil under two tillage systems: conventional tillage (CT) and a combination of ridge with no-tillage (RNT). Soil (0–20 cm) was fractionated into six different aggregate sizes (> 4.76, 4.76–2.0, 2.0–1.0, 1.0–0.25, 0.25–0.053, and < 0.053 mm in diameter). Soil OC, MBC, respiration rate, and metabolic quotient were heterogeneously distributed among soil aggregates while the patterns of aggregate-size distribution were similar among properties, regardless of tillage system. The content of OC within WSA followed the sequence: medium-aggregates (1.0–0.25 mm and 1.0–2.0 mm) > macro-aggregates (4.76–2.0 mm) > micro-aggregates (0.25–0.053 mm) > large aggregates (> 4.76 mm) > silt + clay fractions (< 0.053 mm). The highest levels of MBC were associated with the 1.0–2.0 mm aggregate size class. Significant differences in respiration rates were also observed among different sizes of WSA, and the highest respiration rate was associated with 1.0–2.0 mm aggregates. The Cmic/Corg was greatest for the large-macroaggregates regardless of tillage regimes. This ratio decreased with aggregate size to 1.0–0.25 mm. Soil metabolic quotient (qCO2) ranged from 3.6 to 17.7 mg CO2 g− 1 MBC h− 1. The distribution pattern of soil microbial biomass and activity was governed by aggregate size, whereas the tillage effect was not significant at the aggregate scale. Tillage regimes that contribute to greater aggregation, such as RNT, also improved soil microbial activity. Soil OC, MBC and respiration rate were at their highest levels for 1.0–2.0 mm aggregates, suggesting a higher biological activity at this aggregate size for the present ecosystem.  相似文献   

3.
Soil organic carbon (SOC), microbial biomass carbon (MBC), their ratio (MBC/SOC) which is also known as microbial quotient, soil respiration, dehydrogenase and phosphatase activities were evaluated in a long-term (31 years) field experiment involving fertility treatments (manure and inorganic fertilizers) and a maize (Zea mays L.)-wheat (Triticum aestivum L.)-cowpea (Vigna unguiculata L.) rotation at the Indian Agricultural Research Institute near New Delhi, India. Applying farmyard manure (FYM) plus NPK fertilizer significantly increased SOC (4.5-7.5 g kg−1), microbial biomass (124-291 mg kg−1) and microbial quotient from 2.88 to 3.87. Soil respiration, dehydrogenase and phosphatase activities were also increased by FYM applications. The MBC response to FYM+100% NPK compared to 100% NPK (193 vs. 291 mg kg−1) was much greater than that for soil respiration (6.24 vs. 6.93 μl O2 g−1 h−1) indicating a considerable portion of MBC in FYM plots was inactive. Dehydrogenase activity increased slightly as NPK rates were increased from 50% to 100%, but excessive fertilization (150% NPK) decreased it. Acid phosphatase activity (31.1 vs. 51.8 μg PNP g−1 h−1) was much lower than alkali phosphatase activity (289 vs. 366 μg PNP g−1 h−1) in all treatments. Phosphatase activity was influenced more by season or crop (e.g. tilling wheat residue) than fertilizer treatment, although both MBC and phosphatase activity were increased with optimum or balanced fertilization. SOC, MBC, soil respiration and acid phosphatase activity in control (no NPK, no manure) treatment was lower than uncultivated reference soil, and soil respiration was limiting at N alone or NP alone treatments.  相似文献   

4.
Soil organic-N dynamics, its controlling factors and its relationships with stand quality were studied in the 0-15 cm soil layer of 24 pinewoods with contrasting age, productivity and parent material (granite; acid schists), searching for N variables useful to predict stand growth and site quality. No significant differences were found between young and old stands for any of the N variables considered, nor two- or three-order interactions among stand age, site quality and parent material. The soil total-N content, which was correlated positively with the Al oxides content (a soil organic matter (SOM) stabilizing agent), did not vary significantly according to parent material, but it was lower (P≤0.02) in stands with high than with low site index (2.68±1.11 and 3.97±1.13 g N kg−1 soil, respectively). The soil δ15N ranged from +3.5 to +6.5 δ, without significant differences among stand groups, and it was negatively correlated with water holding capacity, exchangeable bases, Al oxides and N content, suggesting that: (i) N losses by NO3 leaching are the most important controlling factor of δ15N in these temperate humid region soils; and (ii) soil N richness is related with limited N losses, which discriminate against 15N. At any incubation time, no significant differences were found in soil inorganic-N content among stand groups (7.78±4.57, 39.33±16.20 and 67.80±26.50 mg N kg−1 soil at 0, 42 and 84 d, respectively). During the incubation, the relative importance of ammonification decreased and that of the nitrification increased. The net N mineralization rate (NNMR, in percentage of organic N) was significantly higher in granite than in schists soils at both 42 d (1.24±0.34 and 0.75±0.37%, respectively) and 84 d (2.18±0.56 and 1.53±0.66%, respectively). In high quality pinewoods, the NNMR at 42 and 84 d (1.16±0.45 and 2.12±0.79%, respectively) were significantly higher than in low quality stands (0.83±0.35 and 1.59±0.45%, respectively). This result, together with those on soil total-N and inorganic-N supply, suggests that soil N dynamics in low and high quality stands are different: in the former there is a bigger N pool with a slower turnover, whereas in the latter there is a smaller N pool with a faster turnover, both factors being nearly compensated, making the soil available N supply in both types of stand similar. After 42 and 84 d of incubation, the NNMR and the nitrification rates were higher in the coarse textured soils, likely due to the low physical and chemical protection of their SOM; both rates were positively correlated with available P, exchangeable K+ and CEC base saturation, suggesting strong relationships among the availabilities of the main plant nutrients, and they increased with SOM quality (low C-to-N ratio). The strong negative correlation of site index with soil total-N (r=−0.707; P≤0.005), and its positive correlations with NNMR after 42 and 84 d of incubation, suggested that site quality and potential productivity are closely related to soil organic-N dynamics. Half of the site index variation in the stands studied could be predicted with a cheap and easy analysis of soil N content, the prediction being slightly improved if soil δ15N is included and, more significantly, by including N mineralization measurements.  相似文献   

5.
Previous studies have shown that long-term irrigation with wastewater can lead to the development of soil water repellency. Little is known about the longevity of this effect. Here we address this research gap by examining the effect of long-term (~ 20 years) use of low-quality wastewater for disposal purposes, followed by 6 years of ‘recovery’ with no irrigation, on the wettability of calcareous sandy soil (Xerofluvent) under a Populus alba tree stand used as a “green filter” in SE Spain. Water repellency (WR) and soil organic matter content (SOM) were determined for 120 air-dry samples from the plot and 80 control samples from adjacent and otherwise similar non-irrigated areas. To account for plot micro-topography 40 samples each were taken from ridges (R; 0-5 cm depth), furrows (F; 0-5 cm), and furrows at depth (FD; 5-10 cm). The controls included 40 samples each (0-5 cm depth) from unvegetated and unploughed soil, and from soil under the P. alba plantation.All control samples were non-repellent whereas at the irrigated plot, water repellency was present for 48, 95 and 93% of ridge, furrow and furrow-depth samples respectively. WR and SOM was strongly correlated within the whole sample population (R2 = 0.623**) and within two sample groups (R: R2 = 0.783**; FD: R2 = 0.424**), but weakly within F samples (R2 = 0.072 n.s.). The latter showed the highest frequency and persistence (WDPT) of WR, indicating that not only quantity of SOM is controlling WR. Exploratory kaolinite clay additions (0.5-8%) to samples substantially reduced WR even at the lowest concentration, indicating that this could be a promising amelioration treatment for the WR in the soils investigated here.We conclude that for the conditions studied here (i) long-term use with poor-quality wastewater for disposal had led to the development of soil WR, (ii) a 6-year period of ‘recovery’ (i.e. non-irrigation) was insufficient to eliminate the induced WR, and (iii) kaolinite addition could be a promising amelioration treatment for these sandy soils.  相似文献   

6.
Accurate estimation of microbial adenosine 5′-triphosphate (ATP) is a pre-requisite to quantify the impact of varying environments on microbial activity of soil. We investigated the effectiveness of a high efficiency soil ATP determination method (PA) [Webster, J.J., Hampton, G.J., Leach, F.R., 1984. ATP in soil: a new extractant and extraction procedure. Soil Biology & Biochemistry 4, 335-342] in 10 Ontario (Canada) soils collected along a 100 m transect and spanning a textural class gradient ranging from a sandy loam to clay loam with increasing organic matter. Modifications of the method involved using an extract of autoclaved soil to make the standard curve, as it was found that the light emitted by ATP luciferin-luciferase bioluminescence reaction in the pure extractant was different from that in the extracts. Replacing Tricine with Tris buffer in the assay significantly improved the light emission. On an average, the internal standard calibration method (ISM) measured a smaller amount of extracted ATP (1199 ng ATP g−1 soil) and a lower recovery of ATP spike (82.4±7.2%) than did the standard curve method (SCM) (1246 ng ATP g−1 soil and 91.2±4.5%, respectively) (P<0.05 for both comparisons). However, the average total estimated ATP was higher with ISM (1474±102 ng ATP g−1 soil) than with SCM (1373±88 ng ATP g−1 soil) (P<0.07). While the recovery rates determined using SCM were consistent among the soils tested, the rates measured using ISM was negatively correlated with soil clay and organic matter content, implying that the latter assay was affected by the soil properties. Our results confirmed that the recovery rates obtained by the PA method were the highest among those reported, when only SCM was used.  相似文献   

7.
Impacts of 22-year organic and inorganic N managements on total organic carbon (TOC), water-soluble organic C (WSOC), microbial biomass C (MBC), particulate organic C (POC) and KMnO4 oxidized organic C (KMnO4-C) concentrations, C management index (CMI), and C storage in surface soil (0–20 cm) were investigated in a maize (Zea may L.) field experiment, Northeast China. The treatments included, CK: unfertilized control, M: organic manure (135 kg N ha− 1 year− 1), N: inorganic N fertilizer (135 kg N ha− 1 year− 1) and MN: combination of organic manure (67.5 kg N ha− 1 year− 1) and inorganic N fertilizer (67.5 kg N ha− 1 year− 1). TOC concentration and C storage were significantly increased under the M and MN treatments, but not under the inorganic N treatment. The organic treatments of M and MN were more effective in increasing WSOC, MBC, POC and KMnO4-C concentrations and CMI than the N treatment. The M treatment was most effective for sequestrating SOC (10.6 Mg ha− 1) and showed similar increase in degree of grain yield to the N and MN treatments, therefore it could be the best option for improving soil productivity and C storage in the maize cropping system.  相似文献   

8.
Soil CO2 efflux is a large component of total respiration in many ecosystems. It is important to understand the environmental controls on soil CO2 efflux, in order to evaluate potential responses of ecosystems to climate change. This study investigated the relationship between total soil CO2 efflux and soil temperature, soil moisture and solar radiation on an interannual basis for a plot of temperate deciduous ancient semi-natural woodland at Wytham Woods in central southern England. We also aimed to quantify the contribution of soil organic matter decomposition (SOM), root-and-rhizosphere respiration, and mycorrhizal respiration components to total soil CO2 efflux, and determine their environmental correlates. Total soil CO2 efflux was measured regularly from April 2006 to December 2008 and found to average 4.1 Mg C ha−1 yr−1 in both 2007 and 2008. In addition, we applied a recently developed approach to partition the efflux into SOM, root-and-rhizosphere, and mycorrhizal components in situ using mesh bags. SOM decomposition, root-and-rhizosphere, and mycorrhizal respiration were estimated to contribute 70 ± 6%, 22 ± 6% and 8 ± 3% of total soil CO2 efflux respectively, equating to 3.0 ± 0.3, 0.9 ± 0.2 and 0.3 ± 0.1 Mg C ha−1 yr−1. In order to avoid the effect of temporal correlation between variables caused by seasonality, we investigated interannual variability by examining the relationship between CO2 flux anomalies and anomalies in environmental variables. Variation in soil temperature explained 50% of the interannual variance in soil CO2 efflux, and soil moisture a further 18% of the residual variance. Solar radiation, as a proxy for plant photosynthesis, had no significant effect on total soil CO2 efflux, but was positively correlated with root-and-rhizosphere respiration, and mycorrhizal respiration. The relationship between anomalies in soil CO2 efflux and soil temperature was highly significant, with a sensitivity of 0.164 ± 0.023 μmol CO2 m−2 s−1 °C−1. For mean peak summer efflux rates (2.03 μmol CO2 m2 s−1), this is equivalent to 8% per °C, or a Q10 temperature sensitivity of 2.2 ± 0.2. We demonstrate the utility of an anomaly analysis approach and conclude that soil temperature is the key driver of total soil CO2 efflux primarily through its positive relationship with SOM-decomposition rate.  相似文献   

9.
The use of composts in agricultural soils is a widespread practice and the positive effects on soil and plants are known from numerous studies. However, there have been few attempts to compare the effects of different kinds of composts in one single study. The aim of this paper is to investigate to what extent and to which soil depth four major types of composts would affect the soil and its microbiota.In a crop-rotation field experiment, composts produced from (i) urban organic wastes, (ii) green wastes, (iii) manure and (iv) sewage sludge were applied at a rate equivalent to 175 kg N ha−1 yr−1 for 12 years. General (total organic C (Corg), total N (Nt), microbial biomass C (Cmic), and basal respiration), specific (enzyme activities related to C, N and P cycles), biochemical properties and bacterial genetic diversity (based on DGGE analysis of 16S rDNA) were analyzed at different depths (0-10, 10-20 and 20-30 cm).Compost treatment increased Corg at all depths from 11 g kg−1 for control soil to 16.7 g kg−1 for the case of sewage sludge compost. Total N increased with compost treatment at 0-10 cm and 10-20 cm depths, but not at 20-30 cm. Basal respiration and Cmic declined with depth, and the composts resulted in an increase of Cmic and basal respiration. Enzyme activities were different depend on the enzyme and among compost treatments, but in general, the enzyme activities were higher in the upper layers (0-10 and 10-20 cm) than in the 20-30 cm layer. Diversity of ammonia oxidizers and bacteria was lower in the control than in the compost soils. The type of compost had less influence on the composition of the microbial communities than did soil depth.Some of the properties were sensitive enough to distinguish between different compost, while others were not. This stresses the need of multi-parameter approaches when investigating treatment effects on the soil microbial community. In general, with respect to measures of activity, biomass and community diversity, differences down the soil profile were more pronounced than those due to the compost treatments.  相似文献   

10.
We examined net greenhouse gas exchange at the soil surface in deciduous forests on soils with high organic contents. Fluxes of CO2, CH4 and N2O were measured using dark static chambers for two consecutive years in three different forest types; (i) a drained and medium productivity site dominated by birch, (ii) a drained and highly productive site dominated by alder and (iii) an undrained and highly productive site dominated by alder. Although the drained sites had shallow mean groundwater tables (15 and 18 cm, respectively) their average annual rates of forest floor CO2 release were almost twice as high compared to the undrained site (1.9±0.4 and 1.7±0.3, compared to 1.0±0.2 kg CO2 m−2 yr−1). The average annual CH4 emission was almost 10 times larger at the undrained site (7.6±3.1 compared to 0.9±0.5 g CH4 m−2 yr−1 for the two drained sites). The average annual N2O emissions at the undrained site (0.1±0.05 g N2O m−2 yr−1) were lower than at the drained sites, and the emissions were almost five times higher at the drained alder site than at the drained birch site (0.9±0.35 compared to 0.2±0.11 g N2O m−2 yr−1). The temporal variation in forest floor CO2 release could be explained to a large extent by differences in groundwater table and air temperature, but little of the variation in the CH4 and N2O fluxes could be explained by these variables. The measured soil variables were only significant to explain for the within-site spatial variation in CH4 and N2O fluxes at the undrained swamp, and dark forest floor CO2 release was not explained by these variables at any site. The between-site spatial variation was attributed to variations in drainage, groundwater level position, productivity and tree species for all three gases. The results indicate that N2O emissions are of greater importance for the net greenhouse gas exchange at deciduous drained forest sites than at coniferous drained forest sites.  相似文献   

11.
Elevated pCO2 increases the net primary production, C/N ratio, and C input to the soil and hence provides opportunities to sequester CO2-C in soils to mitigate anthropogenic CO2. The Swiss 9 y grassland FACE (free air carbon-dioxide enrichment) experiment enabled us to explore the potential of elevated pCO2 (60 Pa), plant species (Lolium perenne L. and Trifolium repens L.) and nitrogen fertilization (140 and 540 kg ha−1 y−1) on carbon sequestration and mineralization by a temperate grassland soil. Use of 13C in combination with respired CO2 enabled the identification of the origins of active fractions of soil organic carbon. Elevated pCO2 had no significant effect on total soil carbon, and total soil carbon was also independent of plant species and nitrogen fertilization. However, new (FACE-derived depleted 13C) input of carbon into the soil in the elevated pCO2 treatments was dependent on nitrogen fertilization and plant species. New carbon input into the top 15 cm of soil from L. perennne high nitrogen (LPH), L. perenne low nitrogen (LPL) and T. repens low nitrogen (TRL) treatments during the 9 y elevated pCO2 experiment was 9.3±2.0, 12.1±1.8 and 6.8±2.7 Mg C ha−1, respectively. Fractions of FACE-derived carbon in less protected soil particles >53 μm in size were higher than in <53 μm particles. In addition, elevated pCO2 increased CO2 emission over the 118 d incubation by 55, 61 and 13% from undisturbed soil from LPH, LPL and TRL treatments, respectively; but only by 13, 36, and 18%, respectively, from disturbed soil (without roots). Higher input of new carbon led to increased decomposition of older soil organic matter (priming effect), which was driven by the quantity (mainly roots) of newly input carbon (L. perenne) as well as the quality of old soil carbon (e.g. higher recalcitrance in T. repens). Based on these results, the potential of well managed and established temperate grassland soils to sequester carbon under continued increasing concentrations of atmospheric CO2 appears to be rather limited.  相似文献   

12.
Values for annual NEP of micrometeorological tower sites are usually published without an estimate of associated uncertainties. Few authors quantify total uncertainty of annual NEP. Moreover, different methods to assess total uncertainty are applied, usually addressing only one aspect of the uncertainty. This paper presents a robust and easy to apply method to quantify uncertainty of annual totals of Net Ecosystem Productivity (NEP), related to multiple factors involved therein. The method was applied to NEP observations for a Scots pine forest (Loobos) in the Netherlands. Total uncertainty of annual NEP for the Loobos site was on average ±32 g C m−2 a−1 (±8% of NEP), which is a quarter of the standard deviation of annual NEP (127 g C m−2 a−1).  相似文献   

13.
In the grassland/forest ecotone of North America, many areas are experiencing afforestation and subsequent shifts in ecosystem carbon (C) stocks. Ecosystem scientists commonly employ a suite of techniques to examine how such land use changes can impact soil organic matter (SOM) forms and dynamics. This study employs four such techniques to compare SOM in grassland (Bromus inermis) and recently forested (∼35 year, Ulmus spp. and Quercus spp.) sites with similar soil types and long-term histories in Kansas, USA. The work examines C and nitrogen (N) parameters in labile and recalcitrant SOM fractions isolated via size and density fractionation, acid hydrolysis, and long-term incubations. Size fractionation highlighted differences between grassland and forested areas. N concentration of forested soils’ 63-212 μm fraction was higher than corresponding grassland soils’ values (3.0±0.3 vs. 2.3±0.3 mg gfraction−1, P<0.05), and N concentration of grassland soils’ 212-2000 μm fraction was higher than forested soils (3.0±0.4 vs. 2.3±0.2 mg gfraction−1, P<0.05). Similar trends were observed for these same fractions for C concentration; forested soils exhibited 1.3 times the C concentration in the 63-212 μm fraction compared to this fraction in grassland soils. Fractions separated via density separation and acid hydrolysis exhibited no differences in [C], [N], δ15N, or δ13C when compared across land use types. Plant litterfall from forested sites possessed significantly greater N concentrations than that from grassland sites (12.41±0.10 vs. 11.62±0.19 mg glitter−1). Long-term incubations revealed no differences in C or N dynamics between grassland and forested soils. δ13C and δ15N values of the smallest size and the heavier density fractions, likely representing older and more recalcitrant SOM, were enriched compared to younger and more labile SOM fractions; δ15N of forested soils’ 212-2000 μm fraction were higher than corresponding grassland soils (1.7±0.3‰ vs. 0.5±0.4‰). δ13C values of acid hydrolysis fractions likely reflect preferential losses of 13C-depleted compounds during hydrolysis. Though C and N data from size fractions were most effective at exhibiting differences between grassland and forested soils, no technique conclusively indicates consistent changes in SOM dynamics with forest growth on these soils. The study also highlights some of the challenges associated with describing SOM parameters, particularly δ13C, in SOM fractions isolated by acid hydrolysis.  相似文献   

14.
Spartina alterniflora is an invasive C4 perennial grass, native to North America, and has spread rapidly along the east coast of China since its introduction in 1979. Since its intentional introduction to the Jiuduansha Island in the Yangtze River estuary, Spartina alterniflora community has become one of the dominant vegetation types. We investigated the soil carbon in the Spartina alterniflora community and compared it with that of the native C3Scirpus mariqueter community by measuring total soil carbon (TC), soil organic carbon (SOC), total soil nitrogen (TN), and the stable carbon isotope composition (δ13C) of various fractions. TC and SOC were significantly higher in Spartina alterniflora in the top 60 cm of soil. However, there was no significant difference in soil inorganic carbon (IC) between the two communities. Stable carbon isotopic analysis suggests that the fraction of SOC pool contributed by Spartina alterniflora varied from 0.90% to 10.64% at a soil depth of 0-100 cm with a greater percentage between 20 and 40 cm deep soils. The δ13C decreased with increasing soil depth in both communities, but the difference in δ13C among layers of the top 60 cm soil was significant (p<0.05), while that for the deeper soil layers (>60 cm) was not detected statistically. The changes in δ13C with depth appeared to be associated with the small contribution of residues from Spartina alterniflora at greater soil depth that was directly related to the vertical root distribution of the species.  相似文献   

15.
Quantifying the net carbon (C) storage of forest plantations is required to assess their potential to offset fossil fuel emissions. In this study, a biometric approach was used to estimate net ecosystem productivity (NEP) for two monoculture plantations in South China: Acacia crassicarpa and Eucalyptus urophylla. This approach was based on stand-level net primary productivity (NPP, based on direct biometric inventory) and heterotrophic respiration (Rh). In comparisons of Rh determination based on trenching vs. tree girdling, both trenching and tree girdling changed soil temperature and soil moisture relative to undisturbed control plots, and we assess the effects of corrections for disturbances of soil moisture and soil moisture on the estimation of soil CO2 efflux partitioning. Soil microbial biomass and dissolved organic carbon were significantly lower in trenched plots than in tree girdled plots for both plantations. Annual soil CO2 flux in trenched plots (Rh-t) was significantly lower than in tree-girdled plots (Rh-g) in both plantations. The estimates of Rh-t and Rh-g, expressed as a percentage of total soil respiration, were 58 ± 4% and 74 ± 6%, respectively, for A. crassicarpa, and 64 ± 3% and 78 ± 5%, respectively, for E. urophylla. By the end of experiment, the difference in soil CO2 efflux between the trenched plots and tree-girdled plots had become small for both plantations. Annual Rh (mean of the annual Rh-t and Rh-g) and net primary production (NPP) were 470 ± 25 and 800 ± 118 g C m−2 yr−1, respectively, for A. crassicarpa, and 420 ± 35 and 2380 ± 187 g C m−2 yr−2, respectively, for E. urophylla. The two plantations in the developmental stage were large carbon sinks: NEP was 330 ± 76 C m−2 yr−1 for A. crassicarpa and 1960 ± 178 g C m−2 yr−1 for E. urophylla.  相似文献   

16.
Isotope fractionation during composting may produce organic materials with a more homogenous δ13C and δ15N signature allowing study of their fate in soil. To verify this, C, N, δ13C and δ15N content were monitored during nine months covered (thermophilic; >40 °C) composting of corn silage (CSC). The C concentration reduced from 10.34 to 1.73 g C (g ash)−1, or 83.3%, during composting. Nitrogen losses comprised 28.4% of initial N content. Compost δ13C values became slightly depleted and increasingly uniform (from −12.8±0.6‰ to −14.1±0.0‰) with composting. Compost δ15N values (0.3±1.3 to 8.2±0.4‰) increased with a similar reduced isotope variability.The fate of C and N of diverse composts in soil was subsequently examined. C, N, δ13C, δ15N content of whole soil (0-5 cm), light (<1.7 g cm−3) and heavy (>1.7 g cm−3) fraction, and (250-2000 μm; 53-250 μm and <53 μm) size separates, were characterized. Measurements took place one and two years following surface application of CSC, dairy manure compost (DMC), sewage sludge compost (SSLC), and liquid dairy manure (DM) to a temperate (C3) grassland soil. The δ13C values and total C applied (Mg C ha−1) were DM (−27.3‰; 2.9); DMC (−26.6‰; 10.0); SSLC (−25.9‰; 10.9) and CSC (−14.0‰; 4.6 and 9.2). The δ13C of un-amended soil exhibited low spatial (−28.0‰±0.2; n=96) and temporal (±0.1‰) variability. All C4 (CSC) and C3 (DMC; SSLC) composts, except C3 manure (DM), significantly modified bulk soil δ13C and δ15N. Estimates of retention of compost C in soil by carbon balance were less sensitive than those calculated by C isotope techniques. One and two years after application, 95 and 89% (CSC), 75 and 63% (SSLC) and 88 and 42% (DMC) of applied compost C remained in the soil, with the majority (80-90%) found in particulate (>53 μm) and light fractions. However, C4 compost (CSC) was readily detectable (12% of compost C remaining) in mineral (<53 μm) fractions. The δ15N-enriched N of compost supported interpretation of δ13C data. We can conclude that composts are highly recalcitrant with prolonged C storage in non-mineral soil fractions. The sensitivity of the natural abundance tracer technique to characterize their fate in soil improves during composting, as a more homogeneous C isotope signature develops, in addition to the relatively large amounts of stable C applied in composts.  相似文献   

17.
The advantages of no-tillage (NT) over conventional tillage (CT) systems in improving soil quality are generally accepted, resulting from benefits in soil physical, chemical and biological properties. However, most evaluations have only considered surface soil layers (maximum 0-30 cm depth), and values have not been corrected to account for changes in soil bulk density. The objective of this study was to estimate a more realistic contribution of the NT to soil fertility, by evaluating C- and N-related soil parameters at the 0-60 cm depth in a 20-year experiment established on an oxisol in southern Brazil, with a soybean (summer)/wheat (winter) crop succession under NT and CT. At full flowering of the soybean crop, soil samples were collected at depths of 0-5, 5-10, 10-20, 20-30, 30-40, 40-50 and 50-60 cm. For the overall 0-60 cm layer, correcting the values for soil bulk density, NT significantly increased the stocks of C (18%) and N (16%) and microbial biomass C (35%) and N (23%) (MB-C and -N) in comparison to CT. Microbial basal respiration and microbial quotient (qMic) were also significantly increased under NT. When compared with CT, NT resulted in gains of 0.8 Mg C ha−1 yr−1 (67% of which was in the 0-30 cm layer) and 70 kg N ha−1 yr−1 (73% in the 0-30 cm layer). In the 0-5-cm layer, MB-C was 82% higher with NT than with CT; in addition, the 0-30 cm layer accumulated 70% of the MB-C with NT, and 58% with CT. In comparison to CT, the NT system resulted in total inputs of microbial C and N estimated at 38 kg C ha−1 yr−1 and 1.5 kg N ha−1 yr−1, respectively. Apparently, N was the key nutrient limiting C and N stocks, and since adoption of NT resulted in a significant increase of N in soils which were deficient in N, efforts should be focused on increasing N inputs on NT systems.  相似文献   

18.
垄覆膜集雨对苜蓿草地土壤水分动态及利用效率的影响   总被引:2,自引:1,他引:2  
我国西北黄土高原干旱半干旱区年降雨稀少和土壤水分周期性亏缺, 导致人工草地生产力低下、水分利用效率低。本试验在旱作条件下, 将垄覆膜集雨措施应用于紫花苜蓿种植, 研究了沟垄宽比和覆膜方式对2 年龄苜蓿草地土壤水分动态及水分利用效率的影响。结果表明: 垄覆膜集雨在集雨前期(4 月中旬至6 月上旬)显著提高0~20 cm 土层土壤含水量, 在集雨中后期(6 月中旬至9 月下旬)显著提高0~120 cm 土层平均含水量,越冬期增加土壤水分入渗能力, 提高20~120 cm 土层平均含水量; 且垄覆膜处理的集雨效率高于土垄处理。随着生育时期的延伸, 垄覆膜处理0~120 cm 土壤平均贮水量呈先降后升的趋势, 土垄处理0~120 cm 土壤平均贮水量呈由高到低的趋势; 在苜蓿生长后期垄覆膜处理的蓄墒能力显著高于土垄处理。垄覆膜处理的平均水分利用效率为34.91 kg·mm-1·hm-2, 为对照(平作, CK)的2.25 倍, 土垄处理的平均水分利用效率为28.47kg·mm-1·hm-2, 为CK 的1.83 倍, 垄覆膜相对土垄处理平均水分利用效率提高22.62%; 垄覆膜处理以沟垄宽比为60 cm∶60 cm 和60 cm∶75 cm 的水分利用效率最高。  相似文献   

19.
Understanding the sensitivity of soil respiration to temperature change and its impacting factors is an important base for accurately evaluating the response of terrestrial carbon balance to future climatic change, and thus has received much recent attention. In this study, we synthesized 161 field measurement data from 52 published papers to quantify temperature sensitivity of soil respiration in different Chinese ecosystems and its relationship with climate factors, such as temperature and precipitation. The results show that the observed Q10 value (the factor by which respiration rates increase for a 10 °C increase in temperature) is strongly dependent on the soil temperature measurement depth. Generally, Q10 significantly increased with the depth (0 cm, 5 cm, and 10 cm) of soil temperature measuring point. Different ecosystem types also exhibit different Q10 values. In response to soil temperature at the depth of 5 cm, alpine meadow and tundra has the largest Q10 value with magnitude of 3.05 ± 1.06, while the Q10 value of evergreen broadleaf forests is approximately half that amount (Q10 = 1.81 ± 0.43). Spatial correlation analysis also shows that the Q10 value of forest ecosystems is significantly and negatively correlated with mean annual temperature (R = −0.51, P < 0.001) and mean annual precipitation (R = −0.5, P < 0.001). This result not only implies that the temperature sensitivity of soil respiration will decline under continued global warming, but also suggests that such acclimation of soil respiration to warming should be taken into account in forecasting future terrestrial carbon cycle and its feedback to climate system.  相似文献   

20.
Enzyme activities and microbial biomass in coastal soils of India   总被引:1,自引:0,他引:1  
Soil salinity is a serious problem for agriculture in coastal regions, wherein salinity is temporal in nature. We studied the effect of salinity, in summer, monsoon and winter seasons, on microbial biomass carbon (MBC) and enzyme activities (EAs) of the salt-affected soils of the coastal region of the Bay of Bengal, Sundarbans, India. The average pH of soils collected from different sites, during different seasons varied from 4.8 to 7.8. The average organic C (OC) and total N (TN) content of the soils ranged between 5.2-14.1 and 0.6-1.4 g kg−1, respectively. The electrical conductivity of the saturation extract (ECe) of soils, averaged over season, varied from 2.2 to 16.3 dSm−1. The ECe of the soils increased five fold during the summer season (13.8 dSm−1) than the monsoon season (2.7 dSm−1). The major cation and anion detected were Na+ and Cl, respectively. Seasonality exerted considerable effects on MBC and soil EAs, with the lowest values recorded during the summer season. The activities of β-glucosidase, urease, acid phosphatase and alkaline phosphatase were similar during the winter and monsoon season. The dehydrogenase activity of soils was higher in monsoon than in winter. Average MBC, dehydrogenase, β-glucosidase, urease, acid phosphatase and alkaline phosphatase activities of the saline soils ranged from 125 to 346 mg kg−1 oven dry soil, 6-9.9 mg triphenyl formazan (TPF) kg−1 oven dry soil h−1, 18-53 mg p-nitro phenol (PNP) kg−1 oven dry soil h−1, 38-86 mg urea hydrolyzed kg−1 oven dry soil h−1, 213-584 mg PNP kg−1 oven dry soil h−1 and 176-362 mg PNP g−1 oven dry soil h−1, respectively. The same for the non-saline soils were 274-446 mg kg−1 oven dry soil, 8.8-14.4 mg TPF kg−1 oven dry soil h−1, 41-80 mg PNP kg−1 oven dry soil h−1, 89-134 mg urea hydrolyzed kg−1 oven dry soil h−1, 219-287 mg PNP kg−1 oven dry soil h−1 and 407-417 mg PNP kg−1 oven dry soil h−1, respectively. About 48%, 82%, 48%, 63%, 40% and 48% variation in MBC, dehydrogenase activity, β-glucosidase activity, urease activity, acid phosphatase activity and alkaline phosphatase activity, respectively, could be explained by the variation in ECe of saline soils. Suppression of EAs of the coastal soils during summer due to salinity rise is of immense agronomic significance and needs suitable interventions for sustainable crop production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号