首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同土壤类型下AM 真菌分布多样性及与土壤因子的关系   总被引:8,自引:3,他引:8  
以禾本科植物群落为研究对象, 研究了宁夏六盘山林地、银川农耕地、暖泉农耕地、固原农耕地、盐池沙地、灵武沙地6 个采样地点5 种土壤类型(黑垆土、灌淤土、黄绵土、灰钙土、风沙土)下AM 真菌物种多样性及其与土壤因子的关系。结果表明: 5 种土壤类型采样点的植被根际土壤中共鉴定出5 属48 种AM真菌, 其中, 无梗囊霉属(Acaulospora)1 种, 巨孢囊霉属(Gigaspora)3 种, 球囊霉属(Glomus)37 种, 类球囊霉属(Paraglomus)1 种, 盾巨孢囊霉属(Scutellospora)6 种, 各采样点土壤均以球囊霉属为优势属。地球囊霉(G.geosporum)和木薯球囊霉(G. manihotis)是6 个采样地点中的优势种。不同土壤类型各采样点AM 真菌各属的频度存在明显差异, 球囊霉属在各点均有出现, 频度值最高。具有较高植被多样性的暖泉样点, AM 真菌的种属数量较多。土壤环境因子对AM 真菌孢子密度的影响因所处土壤、植被类型不同而异。pH、全盐、速效钾、速效磷等土壤肥力因子, 在PCA 轴上能最大程度地解释AM 真菌孢子密度与土壤环境因子之间相互关系的大部分信息。宁夏不同土壤类型区域中AM 真菌种类及分布一定程度上与该采样点的植被类型、植物多样性和土壤肥力特征相对应。  相似文献   

2.
不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响   总被引:18,自引:1,他引:18  
苏友波  林春  张福锁  李晓林 《土壤》2003,35(4):334-338,343
以三叶草为材料,利用3室隔网培养方法,研究了4种AM菌根菌侵染三叶草后对根际土壤酸性和碱性磷酸酶活性以及菌丝酶活性对土壤有机P的影响。结果表明,接种AM菌根菌 (9周) 对根际土壤酸性和碱性磷酸酶活性均有增强作用,但作用强度主要取决于菌丝在土壤中的生长状况,Glomus属菌根菌在整个菌丝室 (0~6cm) 都影响土壤磷酸酶的活性,其活性在整个菌丝室中都比Gigaspora的高。同一属不同种的根际土壤磷酸酶活性差异不大。AM菌根根际土壤磷酸酶对土壤有机P的降解有很强的促进作用。  相似文献   

3.
Assessment of diversity and understanding factors underlying species distribution are fundamental themes in ecology. However, the diversity of native arbuscular mycorrhizal fungi (AMF) species in African tropical agro-ecosystems remains weakly known. This research was carried out to assess the morphological diversity of indigenous AMF species associated with rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in different agro-ecological zones (AEZ) of Benin and to examine the effects of soil chemical properties, climatic factors and agricultural practices on this diversity. Results showed that, in Benin, cowpea was grown by farmers in very exhausted soils, where available phosphorus and potassium were deficient. The indigenous AMF spore density was on average 202 spores per 100 g dry soil and there was no difference in the density among the agro-ecological zones (P = 0.56). Fifteen AMF morphospecies belonging to eight genera (Gigaspora, Scutellospora, Racocetra, Acaulospora, Funneliformis, Rhizophagus, Glomus and Claroideoglomus) were detected. The computed species richness estimators indicated that a limited number of additional undetected morphospecies are probably present in cowpea fields. According to analysis of similarity (ANOSIM), the arbuscular mycorrhizas community composition of the Sudanian zone and Guinean zone were not significantly different (r = −0.01; P = 0.517). The diversity of AMF morphospecies in the fields was weak with prevalence of Glomeraceae (92%). Furthermore, AMF diversity and evenness indices were negatively correlated with annual rainfall (P < 0.01) and with available phosphorus (P < 0.05). However, no significant correlation was observed between AMF diversity indices and soil organic carbon. Ultimately, this study tends to confirm that soil management practices (tillage, soil disturbance) have negative effect on AMF diversity.  相似文献   

4.
Arbuscular mycorrhizal fungi (AMF) have great potential for assisting metal-hyperaccumulating plants in the remediation of contaminated soils. However, little information is available about the symbiosis and community composition of AMF associated with manganese (Mn) hyperaccumulator, such as Phytolacca americana, growing on Mn-contaminated soils under natural conditions. Therefore, the objective of this study was to analyze AMF diversity and community composition in P. americana roots growing at an Mn mining site. Molecular techniques were used to analyze AMF community composition and phylogenetic relationship in P. americana roots sampled from three Mn mine spoils and one adjacent reference areas. Results obtained showed that mycorrhizal symbionts successfully established even in the most heavily Mn-polluted sites. Root colonization and AMF diversity were significantly negatively correlated with total and extractable Mn concentrations. Principal component analysis (PCA) revealed that Mn contamination impacted AMF diversity, and shaped AMF community structure. Phylogenetic analyses demonstrated that all species were affiliated with Glomus, suggesting that Glomus was the dominant genus in this AMF community. Some unique sequences that occurred exclusively in heavily polluted sites associated with P. americana may belong to symbiotic fungi with great potential for improving the phytoremediation efficiency of Mn-contaminated soils.  相似文献   

5.
The impact of winter cover crops, specifically wheat (Triticum aestivum L.), red clover (Trifolium pratense L.), and rapeseed (Brassica napus L.) or winter fallow, on community composition of arbuscular mycorrhizal fungi (AMF) in subsequent soybean roots was investigated in a 5-year field trial on andosolic soils in Japan. Soybean roots were sampled at full-flowering and analyzed for AMF communities using a partial LSU rDNA region. Phylogenetic analysis detected 22 AMF phylotypes, including eight Glomus, three Gigaspora, two Scutellospora, three Acaulospora, two Rhizophagus, and one of Funneliformis, Diversispora, Paraglomus, and an unknown glomeromycete in the roots. The 5-year rotation of different winter cover crops or winter fallow did not impact the molecular diversity of AMF communities colonizing the roots of subsequent soybean. In all of the rotations, Glomus and Gigaspora phylotypes were common to soybean roots over the 5-year period. Redundancy analysis (RDA) demonstrated that AMF communities in the roots of subsequent soybean were not significantly different among winter cover crop rotations or fallow. However, AMF communities in soybean roots were clearly influenced by rotation year suggesting that climate or other environmental factors were more important than winter cover cropping system management.  相似文献   

6.
It is suggested that the diversity of arbuscular mycorrhizal fungi (AMF) and their association with distinct plants species are crucial in the early stages of revegetation procedures since the AMF roots colonisation plays an important role improving plant establishment and growth. We carried out a study where we analyse the AMF community composition in the roots of Ephedra fragilis, Rhamnus lycioides, Pistacia lentiscus and Retama sphaerocarpa fourteen months after revegetation in a Mediterranean semiarid degraded area of southeast Spain in order to verify whether different plant species can variably promote the diversity of AM fungi in their rhizospheres after planted. We analysed a portion of approximately 795 bases pairs of the small-subunit ribosomal DNA by means of nested PCR, cloning, sequencing and phylogenetic analyses. Eight fungal sequence types belonging to Glomus group A and B and to the genus Paraglomus were identified. The different plant species had different AM fungal community composition. Thus, R. lycioides harboured the highest number of four fungal sequence types while from E. fragilis only two types could be characterized that were specific for this plant species. P. lentiscus and R. sphaerocarpa harboured each one three sequence types and two of them were shared. All AMF sequence types were found in the natural soil. These results show that one effective way of restoring degraded lands is to increase the number of plant species used, which would increase the AMF diversity in the soil and thus the below-ground, positive interactions.  相似文献   

7.
Hyphae of symbiotic arbuscular mycorrhizal (AM) fungi extend into the soil, affecting the hyphosphere and interact with beneficial soil bacteria. This study aimed to elucidate differences in hyphosphere, hyphoplane and bulk soil bacterial communities and their role in mobilization of sulfonate-sulfur. Abundances of cultivable hyphosphere and hyphoplane bacteria were significantly increased over bulk soil. Cultivation independent fingerprinting revealed significantly different community structures of both hyphosphere and hyphoplane bacteria, fungi and AM fungi over bulk soil. However, cultivation dependent and independent analysis did not identify a difference between bacterial hyphoplane and hyphosphere (hyphospheric) communities. Isolated bacteria capable of aromatic sulfonate desulfurization were almost exclusively of hyphospheric origin. Members of the hyphospheric Gammaproteobacteria and Actinobacteria were found to possess marker gene asfA for aromatic sulfonate desulfurization and hrcR for attachment to fungal hyphae with a type III secretion system, that were not detected in bulk soil. These findings suggest that AM hyphae host a distinct population of sulfonate desulfurizing bacteria putatively capable of hyphal attachment with potential to increase plant sulfur supply.  相似文献   

8.
为了研究紫茎泽兰(Ageratina adenophora)入侵对土壤菌根真菌(mycorrhizal fungi, MF)群落的影响,采用嵌套PCR 技术分析了外来植物紫茎泽兰入侵生境内土著植物群落、土著植物与紫茎泽兰混生群落、紫茎泽兰单优群落中, 侵染紫茎泽兰及土著植物的MF 群落结构, 及紫茎泽兰与土著植物根围土壤中MF 群落结构。结果表明, 紫茎泽兰不同入侵进程MF 群落结构存在差异, 其中, 从土著植物群落的植物根内检测到内养球囊霉(Glomus intraradices)型克隆; 从土著植物与紫茎泽兰混生群落的紫茎泽兰根内也检测到内养球囊霉型克隆, 而在土著植物根内检测到1 个球囊霉属(Glomus sp 2)型克隆; 从紫茎泽兰单优群落的紫茎泽兰根内未检测到MF, 但从其根围土壤中检测到2 个球囊霉属(Glomus sp 1 和Glomus sp 2)型克隆。在土著植物与紫茎泽兰混生群落中, 从紫茎泽兰根围土壤中检测到4 个克隆型, 分别为毛舌菌阔孢(Trichoglossum hirsutum)、皂味口磨(Tricholoma saponaceum)、亚盖趋本菌(Xylobolus subpileatus)和翘鳞肉齿菌(Sarcodon imbricatus), 从土著植物根围土壤中也检测到4 个克隆型, 分别为小皮伞(Camarophyllopsis hymenocephala)、肉色香蘑(Lepista irina)、皂味口磨及亚侧耳(Panellus serotinus)型克隆; 在土著植物群落中, 从根围土壤只检测到皂味口磨型克隆。紫茎泽兰入侵改变了土著MF 群落结构, 其中在土著植物占据的土壤中以外生菌根真菌为主, 而外来植物紫茎泽兰则更多地积累了丛枝菌根真菌。文中讨论了紫茎泽兰改变入侵地土壤菌根菌群落及其可能对紫茎泽兰入侵的反馈。  相似文献   

9.
A simple method is described for trapping phosphate solubilizing bacteria (PSB) strongly attached to the hyphae of the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis (Ri). Bacteria were isolated from the hyphosphere of mycorrhizal leek plants growing on Turface previously inoculated with soil suspensions, obtained from the mycorrhizosphere of mycorrhizal plants growing in agricultural settings or maple forests in Quebec, Canada. Among the best PSB strongly attached to the hyphae of Ri, 26 isolates belonged to Burkholderia spp. and one was identified as Rhizobium miluonense. Four hyphobacteria exhibiting high potential of inorganic and organic P mobilization were further compared with four equivalent mycorrhizobacteria directly isolated from mycorrhizospheric soils sampled. In general, hyphobacteria were superior in mobilizing P from hydroxyapatite and from a low reactivity igneous phosphate rock from Quebec. Release of gluconic acid or the product of its oxidation 2-ketogluconic acid, are the main mechanisms involved in P solubilization. In a two compartments Petri plate system, Ri extraradical hyphal exudates, supported PSB growth and activity. In the absence of PSB Ri showed a negligible P solubilization activity. In the presence of PSB a substantial increase in P mobilization was observed, and the superiority of hyphobacterial activity was also observed under this system. Our results suggest that in developing a bioinoculant based on selected PSB, their interaction with AMF hyphae should not be overlooked.  相似文献   

10.
The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species, H. fruticosa and S. auricula had different compositions of the AMF community and higher diversity than B. rubens. This annual plant species shared the full composition of its AMF community with both perennial plant species. Seasonal variations in the colonisation of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.  相似文献   

11.
The objectives of this study were to evaluate the contribution of arbuscular mycorrhizal (AM) fungal hyphae to 15N uptake from vineyard cover crop litter (Medicago polymorpha), and to examine the soil microbial community under the influence of mycorrhizal roots and extraradical hyphae. Mycorrhizal grapevines (Vitis vinifera) were grown in specially designed containers, within which a polyvinyl chloride (PVC) mesh core was inserted. Different sizes of mesh allowed mycorrhizal roots (mycorrhizosphere treatment) or extraradical hyphae (hyphosphere treatment) to access dual labeled 15N and 13C cover crop litter that was placed inside the cores after 4 months of grapevine growth. Mesh cores in the bulk soil treatment, which served as a negative control, had the same mesh size as the hyphosphere treatment, but frequent rotation prevented extraradical hyphae from accessing the litter. Grapevines and soils were harvested 0, 7, 14, and 28 days after addition of the cover crop litter and examined for the presence of 15N. Soil microbial biomass and the soil microbial community inside the mesh cores were examined using phospholipid fatty acid analysis. 15N concentrations in grapevines in the hyphosphere treatment were twice that of grapevines in the bulk soil treatment, suggesting that extraradical hyphae extending from mycorrhizal grapevine roots may have a role in nutrient utilization from decomposing vineyard cover crops in the field. Nonetheless, grapevines in the mycorrhizosphere treatment had the highest 15N concentrations, thus highlighting the importance of a healthy grapevine root system in nutrient uptake. We detected similar peaks in soil microbial biomass in the mycorrhizosphere and hyphosphere treatments after addition of the litter, despite significantly lower microbial biomass in the hyphosphere treatment initially. Our results suggest that although grapevine roots play a dominant role in the uptake of nutrients from a decomposing cover crop, AM hyphae may have a more important role in maintaining soil microbial communities associated with nutrient cycling.  相似文献   

12.
The diversity of arbuscular mycorrhizal fungi (AMF) colonizing the roots and rhizosphere soils of Heteropogon contortus and Dodonaea viscose growing in a valley-type savanna, southwest China, were analyzed by the large subunit ribosomal RNA genes (LSU). A total of 547 AMF sequences were screened for establishment of four clone libraries. Phylogenetic analysis revealed that the sequences clustered in at least 8 discrete sequence groups, all belonging to the genus Glomus. Among the Glomus spp., Glo 1 (GlGr A) and Glo 7 (GlGr B) were the most common in all root and soil samples of the two xerophytes, accounting for 42% and 33% of all screened clones, respectively. The ∫-LIBSHUFF analysis revealed that the composition of AMF communities associated with the two xerophytic hosts varied greatly both in roots and their rhizosphere soils.  相似文献   

13.
Little is known about the characteristics of arbuscular mycorrhizal fungi (AMF) community in the roots of host plants growing on heavy metal contaminated sites. The objectives of this study were to examine the community structure of AMF associated with the roots of a copper (Cu) tolerant plant—Elsholtzia splendens in a Cu mining area in southeastern Anhui Province, China. Molecular techniques were used to analyze AMF community composition and phylogenetic relationship in E. splendens roots sampled from three Cu mine spoils and two adjacent reference areas. Results obtained showed that root colonization and AMF diversity were very low and negatively correlated with total and extractable Cu concentrations. All the DNA sequences recovered belonged to the genus of Glomus. The principal component analysis (PCA) revealed that the AMF community composition varied remarkably among different sites and was related closely to soil properties, especially Cu concentrations. The distribution pattern of AMF species in various sites suggested the degree of AMF tolerance to Cu contamination. The unique AMF species that presented exclusively in heavily contaminated sites need to be further examined for potential application in phytoremediation of metal contaminated soils.  相似文献   

14.
An extensive area has been buried due to the repeated occurrence of mud flows (lahars) derived from volcanic deposits during the eruption of Mt. Pinatubo in the Philippines. Most of the area was covered with sparse vegetation consisting of only a few gramineous pioneer plants such as Saccharum spontaneum (site SV). However dense vegetation consisting of wild leguminous plants such as Calpogonium mucunoides showed a patch distribution (site DV). In 1999, we investigated the community composition of AMF at these two sites. S. spontaneum at both sites was slightly colonized with AMF while the leguminous plants were highly colonized. Spores of AMF were collected from the rhizosphere of these plants. Eight spore morphotypes were identified; one each for Acaulospora and Entrophospora colombiana, two for Glomus, one for Paraglomus, and three for Scutellospora. Part of the 18S rRNA gene of AMF colonizing the plant roots was amplified with AMF-specific primers, NS31 and AM1, cloned and sequenced. Fifty-three AMF clones were phylogenetically classified into 8 phylotypes as follows: one each for Acaulospora and E. colombiana, five for Glomus, and one for Scutellospora. Both molecular and morphological examinations showed that the diversity of AMF was comparable to that in other temperate ecosystems with abundant vegetation and did not differ significantly between sites SV and DV, regardless of the vegetation cover. Furthermore, S. spontaneum supported diverse AMF species in spite of its scant growth at site SV. E. colombiana was mostly associated with C. mucunoides. Significance of AMF for the primary plant succession in the lahar area was analyzed.  相似文献   

15.
Arbuscular mycorrhizal fungi (AMF) and N2-fixing legumes can alter the community structure of grasses. However, the effect of AMF, N2-fixing legumes, and their interaction on the dynamics of prairie grass communities remains unclear. The aim of this study was to clarify the influence of two AMF (Glomus cubense and Glomus sp.) and two legumes (Medicago sativa and Dalea purpurea) on the competitive relationship between three native cool-season (Elymus canadensis, Elymus trachycaulus ssp. subsecundus, and Elymus lanceolatus ssp. lanceolatus) and two native warm-season species of grasses (Schizachyrium scoparium and Bouteloua gracilis). Results show that AMF and legumes altered the community structure of the grasses. G. cubense favoured the productivity of warm-season B. gracilis when growing with M. sativa. This might be related to a negative impact of G. cubense on the nitrogen-fixing activity of M. sativa and to a lower N-use efficiency of E. canadensis and E. lanceolatus ssp. lanceolatus under competition. This suggested an increased ability of B. gracilis to use the available N resource as affected by more competitive species, whereas Glomus sp. reduced the competitive ability of this grass when associated with M. sativa. The decrease in B. gracilis biomass was thus likely caused by enhancement of P uptake by M. sativa over this grass. Glomus sp. was beneficial to S. scoparium, another warm-season species, in the absence of legumes, and this may be attributed to improved P-use efficiency of this grass under competition with cool season-grasses. In contrast, AMF and legumes were not beneficial for the cool season grasses. G. cubense depressed the growth of E. trachycaulus ssp. subsecundus, and M. sativa decreased nutrient uptake by cool-season native grasses. This study shows that beneficial effect of the arbuscular mycorrhizal symbiosis on the coexistence of warm-season grasses with more competitive cool-season grasses depends on the identity of the AMF symbiont, the presence of legume species, and nitrogen resource availability that was affected by the most competitive species or P-use efficiency of warm season species.  相似文献   

16.
《Applied soil ecology》2007,35(2-3):200-208
The temporal and spatial dynamics of arbuscular mycorrhizal fungi (AMF) were investigated in Indian Thar Desert. Soil samples under Mitragyna parvifolia were collected from July 2003 to June 2004. AMF colonization and spore density were used to compare the responses of AMF to different abiotic parameters. The mean percent colonization and spore density of AMF reached maximal values in rainy and summer seasons, respectively. Vesicular and hyphal colonizations were positively correlated with soil organic carbon content. AMF spore density was positively correlated with soil pH and negatively correlated with Olsen P content. A high Shannon–Weiner diversity index of AMF was observed in Thar Desert. A total of fifteen AMF species were associated with M. parvifolia. Percent spore density and species richness suggest that the genus Glomus was the predominant AMF under Thar Desert environment. The reasons for the observed variations are discussed.  相似文献   

17.
Pre-inoculation of seedlings with commercial, typically non-indigenous, AMF inoculants is common practice in horticultural and land reclamation industries. How these practices influence AMF community composition in pre-inoculated seedlings after they are planted in soil containing a resident AMF community is almost completely unknown. However, there may be important implications regarding success of horticultural practices, as well as unexpected ecological consequences. In this study we exposed Leucanthemum vulgare seedlings to five different AMF treatments (pre-inoculation with a representative of Glomus group A and Glomus group B, one of two Gigaspora spp., or no AMF) prior to exposure to a whole-soil, mixed-AMF community inoculum. After a growth period of 75 additional for 28 days, AMF community composition within the roots was analyzed using an approach combining LSU rDNA sequencing and T-RFLP analysis. Our results indicate that the AMF communities that assemble within roots were strongly influenced by AMF pre-inoculant identity. Pre-inoculation with either Glomus spp., unlike what was found for Gigaspora, greatly restricted numbers of other AMF ribotypes able to subsequently colonize roots after exposure to our Glomeraceae-dominated field soil; this suggested that phylogenetic relatedness and life history strategies may play a role in AMF community assembly. Our results further revealed concurrent changes in AMF community functions, as indicated by differences in plant biomass and foliar nutrients. These results serve to highlight the importance of considering life history differences when designing AMF inoculants and may have important implications regarding the introduction of non-indigenous AMF.  相似文献   

18.
A mesocosm experiment was conducted to investigate whether communities of arbuscular mycorrhizal (AM) fungi associated with roots of native (Piptatherum miliaceum, Retama sphaerocarpa, Psoralea bituminosa, Coronilla juncea, and Anthyllis cytisoides) and for comparison (Lolium perenne) seedlings in a heavy-metal-contaminated, semiarid soil were affected by the application of composted sugar beet waste. We also investigated whether there were relation between AMF diversity and metal concentration (Al, Cd, Cu, Fe, Mn, Pb and Zn) and total P in shoot as well as some soil parameters (total organic carbon and total N) when the SB waste was added to the soil. We analyzed a portion of approximately 795 base pairs of the small-subunit (SSU) rRNA gene by nested PCR, cloning, sequencing, and phylogenetic analyses. Twelve different AMF sequence types were distinguished: seven of these belonged to Glomus group A, one to Glomus group B, one to Diversispora, one to Archaeospora, and two to Paraglomus. The AM fungal populations colonizing roots in a heavy-metal-polluted soil were quite dependent on the host plant, the highest diversity values being obtained in authochtonous plants recognized as metallophytes, such as P. bituminosa, and in an allochtonous, invasive species (L. perenne). No significant correlation was found between AMF diversity and plant metal concentration and soil parameters. Excepting P. bituminosa, when sugar beet waste was added to soil, the populations of AM fungi in roots increased and the shoot metal concentrations decreased in all host plant species studied. Therefore, the addition of sugar beet waste can be considered a good strategy for the remediation and/or phytostabilization of mine tailing sites.  相似文献   

19.
秦华  白建峰  徐秋芳  李永春 《土壤》2015,47(4):704-710
以摩西球囊霉(Glomus mosseae)为供试菌种,在光照培养箱内利用分室根箱研究丛枝菌根真菌菌丝对多氯联苯(polychlorinated biphenyls,PCBs)污染土壤的修复效应及其机理。试验设置接种丛枝菌根真菌的处理以及不接种的对照,选用美国南瓜(Cucurbita pepo L.)为供试植物,在南瓜生长40天后将接种菌根真菌处理的菌丝室土壤从尼龙网向外水平分为4层取样,测定PCBs及磷脂脂肪酸含量。结果表明:菌丝可以穿越尼龙网影响菌丝室土壤,且距离尼龙网越远菌丝量越低;菌丝显著促进了土壤微生物量(P0.05),并改变了不同土层土壤微生物群落结构;接种菌根真菌处理各土层PCBs降解率为35.67%~57.39%,均显著高于对照的17.31%,相关分析结果表明土壤三氯、四氯联苯以及PCBs总量与菌丝量呈极显著负相关(P0.01);菌丝际土壤微生物量,特别是细菌生物量与土壤三氯联苯含量呈显著负相关(P0.05)。可见,菌丝通过影响菌丝际土壤微生物群落结构及生物量,促进三氯及四氯联苯降解,从而提高土壤PCBs修复效率。  相似文献   

20.
Arbuscular mycorrhizal fungi (AMF) are of great importance for the successful regeneration of degraded natural areas. The objective of this study was to examine how the time of environmental recuperation is affecting the occurrence and diversity of AMF species in riparian areas belonging to the Atlantic Forest biome in the State of São Paulo, Brazil. The study involved a native forest area (NT) and a gradient of environmental restoration: five (R05), ten (R10), and twenty (R20) years after reforestation. Soil samples were collected in the rainy (January) and dry season (June). Chemical, physical and microbiological analyses were performed including the amount of glomalin and quantification of AMF spores. The frequency of occurrence of genera and ecological indices, as richness (R), Shannon's diversity (H) and Simpson's dominance index (Is) were calculated. The largest spore number was found in R05 and the highest richness and diversity indices of AMF species in NT. Considering the two sampling periods and the four areas studied, we found 22 AMF species, and the genera Glomus and Acaulospora were the most frequent. A Canonical Discriminant Analysis showed that Glomus viscosum, Acaulospora scrobiculata, Acaulospora mellea and Scutellospora heterogama were the species that contributed the most to distinguishing the areas. Moisture, density and glomalin were positively correlated with the number of spores, however, soil nitrate showed a negative correlation. This work gives a better understanding of the interactions between AMF and forest soils and allows to know the distribution of AMF species according to environmental recovery time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号