首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
镁碱化盐土微生物生物量和土壤基础呼吸   总被引:5,自引:0,他引:5  
元炳成  刘权  黄伟  李凤成 《土壤》2011,43(1):67-71
通过测定甘肃河西走廊疏勒河中游昌马冲积扇缘不同镁碱度条件下10个采样点30个土样的化学性质和生物化学性质指标,研究了电导率和镁碱度对土壤微生物生物量及其基础呼吸的影响。结果表明:微生物生物量碳(氮)和土壤基础呼吸与电导率、镁碱度和Mg2+/Ca2+之间显著负相关,表明盐度和镁碱度对土壤微生物群落有显著的抑制作用,而且盐度的抑制作用比镁碱度更大;微生物代谢熵(qCO2)和电导率、镁碱度、Mg2+/Ca2+之间为正相关关系,也说明镁碱化盐土对土壤微生物而言是一种严重的胁迫环境。  相似文献   

2.
Soil amendment with manures from intensive animal industries is nowadays a common practice that may favorably or adversely affect several soil properties, including soil microbial activity. In this work, the effect of consecutive annual additions of pig slurry (PS) at rates of 30, 60, 90, 120 and 150 m3 ha−1 y−1 over a 4-year period on soil chemical properties and microbial activity was investigated and compared to that of an inorganic fertilization and a control (without amendment). Field plot experiment conducted under a continuous barley monoculture and semiarid conditions were used. Eight months after the fourth yearly PS and mineral fertilizer application (i.e. soon after the fourth barley harvest), surface soil samples (Ap horizon, 0-15 cm depth) from control and amended soils were collected and analysed for pH, electrical conductivity (EC), contents of total organic C, total N, available P and K, microbial biomass C, basal respiration and different enzymatic activities. The control soil had a slightly acidic pH (6.0), a small EC (0.07 dS m−1), adequate levels of total N (1.2 g kg−1) and available K (483 mg kg−1) for barley growth, and small contents of total organic C (13.2 g kg−1) and available P (52 mg kg−1). With respect to the control and mineral fertilized soils, the PS-amended soils had greater pH values (around neutrality or slightly alkaline), electrical conductivities (still low) and contents of available P and K, and slightly larger total N contents. A significant decrease of total organic C was observed in soils amended at high slurry rate (12.3 g kg−1). Compared with the control and mineral treatments, which produced almost similar results, the PS-amended soils were characterized by a higher microbial biomass C content (from 311 to 442 g kg−1), microbial biomass C/total organic C ratio (from 2.3 to 3.6%) and dehydrogenase (from 35 to 173 μg INTF g−1), catalase (from 5 to 24 μmol O2 g−1 min−1), BAA-protease (from 0.7 to 1.9 μmol  g−1 h−1) and β-glucosidase (from 117 to 269 μmol PNP g−1 h−1) activities, similar basal respirations (from 48 to 77 μg C-CO2 g−1 d−1) and urease activities (from 1.5 to 2.2 μmol  g−1 h−1), and smaller metabolic quotients (from 6.4 to 7.7 ng C-CO2 μg−1 biomass C h−1) and phosphatese activities (from 374 to 159 μmol PNP g−1 h−1). For example, statistical analysis of experimental data showed that, with the exception of metabolic quotient and total organic C content, these effects generally increased with increasing cumulative amount of PS. In conclusion, cumulative PS application to soil over time under semiarid conditions may produce not only beneficial effects but also adverse effects on soil properties, such us the partial mineralization of soil organic C through extended microbial oxidation. Thus, PS should not be considered as a mature organic amendment and should be treated appropriately before it is applied to soil, so as to enhance its potential as a soil organic fertilizer.  相似文献   

3.
Microbial biomass and its activities in salt-affected coastal soils   总被引:2,自引:0,他引:2  
Seasonal fluctuations in salinity are typical in coastal soils due to the intrusion of seawater in the groundwater. We studied the effect of salinity on the microbial and biochemical parameters of the salt-affected soils of the coastal region of Bay of Bengal, Sundarbans, India. The average pH values and average organic C (OC) contents of soils from nine different sites cultivated with rice (Oryza sativa) ranged from 4.8 to 7.8 and from 5.2 to 14.1 g kg−1, respectively. The average electrical conductivity of the saturation extract (ECe) during the summer season was about five times higher than that during the monsoon season. Within the nine sites, three soils (S3, S4, and S5) were the most saline. The average microbial biomass C (MBC), average basal soil respiration (BSR), and average fluorescein diacetate hydrolyzing activity (FDHA) were lowest during the summer season, indicating a negative influence of soil salinity. About 59%, 50%, and 20% variation in MBC/OC, FDHA/OC, and BSR/MBC (metabolic quotient, qCO2), respectively, which are indicators of environmental stress, could be explained by the variation in ECe. The decrease in MBC and microbial activities with a rise in salinity is probably one of the reasons for the poor crop growth in salt-affected coastal soils.  相似文献   

4.
《Applied soil ecology》2007,35(2):319-328
The effects of salinity on the size, activity and community structure of soil microorganisms in salt affected arid soils were investigated in Shuangta region of west central Anxi County, Gansu Province, China. Eleven soils were selected which had an electrical conductivity (EC) gradient of 0.32–23.05 mS cm−1. There was a significant negative exponential relationship between EC and microbial biomass C, the percentage of soil organic C present as microbial biomass C, microbial biomass N, microbial biomass N to total N ratio, basal soil respiration, fluorescein diacetate (FDA) hydrolysis rate, arginine ammonification rate and potentially mineralizable N. The exponential relationships with EC demonstrate the highly detrimental effect that soil salinity had on the microbial community. In contrast, the metabolic quotient (qCO2) was positively correlated with EC, and a quadratic relationship between qCO2 and EC was observed. There was an inverse relationship between qCO2 and microbial biomass C. These results indicate that higher salinity resulted in a smaller, more stressed microbial community which was less metabolically efficient. The biomass C to biomass N ratio tended to be lower in soils with higher salinity, reflecting the bacterial dominance in microbial biomass in saline soils. Consequently, our data suggest that salinity is a stressful environment for soil microorganisms.  相似文献   

5.
 The effects of 5 years of continuous grass/clover (Cont grass/clover) or grass (Cont grass) pasture or 5 years of annual grass under conventional (Ann grass CT) or zero tillage (Ann grass ZT) were compared with that of 5 years of continuous barley (LT arable) on a site which had previously been under arable crops for 11 years. For added comparison, a long-term grass/clover pasture site (LT past) nearby was also sampled. Soil organic C (Corg) content followed the order LT arable=Ann grass CT<Ann grass ZT<Cont grass=Cont grass/clover<LTpast. Trends with treatment for microbial biomass C (Cmic), basal respiration, flourescein diacetate (FDA) hydrolytic activity, arginine ammonification rate and the activities of dehydrogenase, protease, histidase, acid phosphatase and arylsulphatase enzymes were broadly similar to those for Corg. For Cmic, FDA hydrolysis, arginine ammonification and the activities of histidase, acid phosphatase and arylsulphatase, the percentage increase caused by 5 years of continuous pasture (in comparison with LT arable) was 100–180%, which was considerably greater than that for organic C (i.e. 60%). The microbial metabolic quotient (qCO2) was higher for the two treatments which were mouldboard ploughed annually (LT arable and Ann grass CT) than for the undisturbed sites. At the undisturbed sites, Corg declined markedly with depth (0–15 cm) and there was a similar stratification in the size and activity of Cmic and enzyme activity. The microbial quotient (Cmic/Corg) declined with depth whilst qCO2 tended to increase, reflecting a decrease in the proportion of readily available substrate with depth. Received: 7 July 1998  相似文献   

6.
The content levels and activities of the microbiota were estimated in topsoils and in one soil profile at agricultural and forest sites of the Bornhöved Lake district in northern Germany. Discrepancies between data achieved by fumigation-extraction (FE) and substrate-induced respiration (SIR), both used for the quantification of microbial biomass, were attributed to the composition of the microbial populations in the soils. In the topsoils, the active, glucose-responsive (SIR) versus the total, chloroform-sensitive microbial (FE) biomass decreased in the order; field maize monoculture (field-MM)>field crop rotation (field-CR) and dry grassland>beech forest. This ratio decreased within the soil profile of the beech forest from the litter horizon down to the topsoil. Differences between microbial biomass and activities suggested varying biomass-specific transformation intensities in the soils. The metabolic quotient (qCO2), defined as the respiration rate per unit of biomass, indicates the efficiency in acquiring organic C and the intensity of C mineralization, while biomass-specific arginine-ammonification (arginine-ammonification rate related to microbial biomass content) seems to be dependent on N availability. The qCO2, calculated on the basis of the total microbial biomass, decreased for the topsoils in the same order as did the ratio between the active, glucose-responsive microbial biomass to the total, chloroform-sensitive microbial biomass, in contrast to qCO2 values based on the glucose-responsive microbial biomass, which did not. There was no difference between the levels of biomass-specific arginine-ammonification in topsoils of the fertilized field-CR, fertilized field-MM, fertilized dry grassland and eutric alder forest, but levels were lower in the beech forest, dystric alder forest, and unfertilized wet grassland topsoils. Ratios between values of different microbiological features are suggested to be more useful than microbiological features related to soil weight when evaluating microbial populations and microbially mediated processes in soils.  相似文献   

7.
Microbial biomass in soils of Russia under long-term management practices   总被引:6,自引:0,他引:6  
 Non-tilled and tilled plots on a spodosol (Corg 0.65–1.70%; pH 4.1–4.5) and a mollisol (Corg 3.02–3.13%, pH 4.9–5.3), located in the European region of Russia, were investigated to determine variances in soil microbial biomass and microbial community composition. Continuous, long-term management practices, including tillage and treatment with inorganic fertilizers or manure, were used on the spodosol (39 years) and mollisol (22 years). Total microbial biomass (Cmic), estimated by the substrate-induced respiration (SIR) method, and total fungal hyphae length (membrane filter technique) were determined seasonally over a 3-year period. Long-term soil management practices (primarily tillage and fertilizer application) led to decreases in total microbial biomass (80–85% lower in spodosol and 20–55% lower in mollisol), decreases in the contribution of Cmic to Corg (2.3- to 3.5-fold lower in spodosol and 1.2- to 2.3-fold lower in mollisol), and 50–87% decreases in total fungal hyphae length compared to non-tilled control plots. The contribution of fungi to total SIR in virgin mollisol and fallow spodosol plots was approximately 30%. However, the contribution of fungi to SIR was approximately two times greater in tilled spodosol plots compared to a fallow plot. In contrast, the contribution of fungi to SIR in tilled plots of mollisol was less (1.4–4.7 times) than for a virgin plot. In summary, long-term soil management practices such as tillage and treatment with organic or inorganic fertilizers are important determinants of soil microbial biomass and the contribution of fungi to total SIR. Received: 28 April 1998  相似文献   

8.
The aim of this study was to assess the potential harmful effects of novaluron on soil microbiological parameters in clay loam alluvial soil (Typic udifluvent) and coastal saline soil (Typic endoaquept) under controlled laboratory tests. The applications of novaluron were made at or above the recommended rates, which includes field rate (FR), two times (2FR), and ten times (10FR) the FR. The laboratory incubation study was carried out at 60% of maximum water holding capacity of soils and at 30°C. Novaluron application rate even up to 10FR resulted in a short-lived and transitory toxic effect on soil microbial biomass C and fluorescein diacetate-hydrolyzing activity. Microbial metabolic quotient changed but for a short period. It can be concluded that novaluron had a transient and negligible harmful effect on the soil microbiological parameters studied at higher rates than those usually used in the field.  相似文献   

9.
Alkaline and acid phosphomonoesterase, β-glucosidase, arylsulfatase, protease and urease activities, CO2-C evolution and ATP content were monitored in long-term Cd-contaminated (0-40 mg Cd kg−1 dry weight soil) sandy soils, kept under maize or ‘set aside’ regimes, amended with plant residues. The organic matter input increased soil respiration, ATP contents and hydrolase activities in all soils. However, the Cd-contaminated soils had significantly higher metabolic quotients (qCO2), as calculated by the CO2-to-ATP ratio, and significantly lower hydrolase activities and hydrolase activity-to-ATP ratios for alkaline phosphomonoesterase, arylsulfatase and protease activities, compared with the respective uncontaminated soils. The ratios between acid phosphomonoesterase, β-glucosidase and urease activities and ATP were unaffected. A significantly higher qCO2/μ ratio, an expression of maintenance energy, was observed in most of the contaminated soils, indicating that more energy was required for microbial synthesis in the presence of high Cd concentrations. It was concluded that exposure to high Cd concentrations led to a less efficient metabolism, which was responsible for lower enzyme activity and synthesis and lower hydrolase activity-to-ATP ratios observed in these Cd-contaminated soils.  相似文献   

10.
The effects of crop residue management and fertilizer applications on the size and activity of the microbial community and the activity of exocellular enzymes involved in mineralization of C, N, P and S were examined on a long-term (60 years) field trial under sugarcane situated at Mount Edgecombe, South Africa. Treatments at the site included pre-harvest burning with harvest residues removed (B), burning with harvest residues (unburnt tops) left on the soil surface (Bt) and green cane harvesting with retention of a trash blanket (T). Plots were either fertilized annually with N, P and K or unfertilized. The size and activity of the microbial community and the activity of soil enzymes assayed increased with increasing inputs of crop residues (B < Bt < T) and this effect was evident to a depth of 30 cm. The metabolic quotient was decreased by inputs of both crop residues and fertilizers. Annual fertilizer additions did not affect basal respiration, increased fluorescein diacetate (FDA) hydrolysis rate and acid phosphatase, invertase and protease activities and decreased arginine ammonification rate and dehydrogenase, alkaline phosphatase, arylsulphatase and histidase activities. These effects were attributed to an interaction between the positive effect of fertilizer in increasing the size of the microbial biomass and the negative effect of fertilizer-N-induced soil acidification on microbial activity and on the activity of exocellular enzymes. Such results demonstrate the importance of using a range of measurements of microbial and enzyme activity when determining the effects of management on soil microbial and biochemical properties.  相似文献   

11.
The advantages of no-tillage (NT) over conventional tillage (CT) systems in improving soil quality are generally accepted, resulting from benefits in soil physical, chemical and biological properties. However, most evaluations have only considered surface soil layers (maximum 0-30 cm depth), and values have not been corrected to account for changes in soil bulk density. The objective of this study was to estimate a more realistic contribution of the NT to soil fertility, by evaluating C- and N-related soil parameters at the 0-60 cm depth in a 20-year experiment established on an oxisol in southern Brazil, with a soybean (summer)/wheat (winter) crop succession under NT and CT. At full flowering of the soybean crop, soil samples were collected at depths of 0-5, 5-10, 10-20, 20-30, 30-40, 40-50 and 50-60 cm. For the overall 0-60 cm layer, correcting the values for soil bulk density, NT significantly increased the stocks of C (18%) and N (16%) and microbial biomass C (35%) and N (23%) (MB-C and -N) in comparison to CT. Microbial basal respiration and microbial quotient (qMic) were also significantly increased under NT. When compared with CT, NT resulted in gains of 0.8 Mg C ha−1 yr−1 (67% of which was in the 0-30 cm layer) and 70 kg N ha−1 yr−1 (73% in the 0-30 cm layer). In the 0-5-cm layer, MB-C was 82% higher with NT than with CT; in addition, the 0-30 cm layer accumulated 70% of the MB-C with NT, and 58% with CT. In comparison to CT, the NT system resulted in total inputs of microbial C and N estimated at 38 kg C ha−1 yr−1 and 1.5 kg N ha−1 yr−1, respectively. Apparently, N was the key nutrient limiting C and N stocks, and since adoption of NT resulted in a significant increase of N in soils which were deficient in N, efforts should be focused on increasing N inputs on NT systems.  相似文献   

12.
Summary The effects of heavy metals on microbial biomass and activity were investigated in 30 urban soils, contaminated mainly with Zn and Pb to different extents, in terms of the physicochemical and biological characteristics of the soils. Evaluated by simple and multiple regression analyses, the microbial biomass was not affected significantly by easily soluble Zn + Pb (extractable with 0.1 NHCI). The biomass was accounted for as a function of cation exchange capacity (CEC), total organic C and the numbers of fungal colonies present (R 2 = 0.692). Carbon dioxide evolution from soils, which reflected microbial activity, was studied on soils incubated with microbial-promoting substrates (glucose and ammonium sulfate) or without. Carbon dioxide evolution was negatively related to Zn+Pb, and this inhibitory effect of the metals was greater in the soils incubated with substrates. Carbon dioxide evolution in soils with substrates was closely related to Zn+Pb, bacterial numbers and the numbers of fungal colonies (R 2 = 0.718). Carbon dioxide evolution in soils without substrates was accounted for as a function of Zn + Pb, biomass and the C/N ratio (R 2 = 0.511). Using these relationships, the effects of heavy metals on soil microorganisms are discussed in terms of metabolically activated and dormant populations.  相似文献   

13.
Summary The chloroform fumigation-incubation method (CFIM) was used to measure the microbial biomass of 17 agricultural soils from Punjab Pakistan which represented different agricultural soil series. The biomass C was used to calculate biomass N and the changes occurring in NH4 +-N and NO3 -N content of soils were studied during the turnover of microbial biomass or added C source. Mineral N released in fumigated-incubated soils and biomass N calculated from biomass C was correlated with some N availability indexes.The soils contained 427–1240 kg C as biomass which represented 1.2%–6.9% of the total organic C in the soils studied. Calculations based on biomass C showed that the soils contained 64–186 kg N ha–1 as microbial biomass. Immobilization of NCO3 -N was observed in different soils during the turnover of microbial biomass and any net increase in mineral N content of fumigated incubated soils was attributed entirely to NH4 +-N.Biomass N calculated from biomass C showed non-significant correlation with different N availability indexes whereas mineral N accumulated in fumigated-incubated soils showed highly significant correlations with other indexes including N uptake by plants.  相似文献   

14.
Chemical characteristics and some parameters related to biological components were determined in 16 soils from a fairly homogeneous area in the north of Italy, contaminated with different levels of heavy metals. Correlation analysis of the parameters studied showed close positive relationships among the metals and with the organic C content in the soils studied. Negative relationships were observed among the heavy metals, soil respiration, and the ratio between evolved CO2–C and microbial biomass C per unit time (specific respiratory activity). This was ascribed to an adverse heavy metal effect on the soil microflora, which appeared to increase the accumulation of organic matter as the heavy metal content increased, probably because the biomass was less effective in mineralising soil organic matter under these conditions.  相似文献   

15.
The response of the soil microbial biomass to seasonal changes was investigated in the field under pastures. These studies showed that over a 9-month period, microbial biomass carbon, phosphorus and sulphur (biomass C, P, S), and their ratios (C:P, C:S, and P:S) responded differently to changes in soil moisture and to the input of fresh organic materials. From October to December (1993), when plant residues were largely incorporated into the soils, biomass C and S increased by 150–210%. Biomass P did not increase over this time, having decreased by 22–64% over the dry summer (July to September). There was no obvious correlation between biomass C, P, and S and air temperature. The largest amounts of biomass C and P (2100–2300μg and 150–190μgg–1 soil, respectively) were found in those soils receiving farmyard manure (FYM or FYM+NPK) and P fertilizer, whereas the use of ammonium sulphate decreased biomass C and P. The C:P, C:S, and P:S ratios of the biomass varied considerably (9–276:1; 50–149:1; and 0.3–14:1, respectively) with season and fertilizer regime. This reflected the potential for the biomass to release (when ratios were narrow) or to immobilize (wide ratios) P and S at different times of the year. Thus, seasonal responses in biomass C, P, and S are important in controlling the cycling of C, P, and S in pasture and ultimately in regulating plant availability of P and S. The uptake of P in the pasture was well correlated with the sum of P in the biomass and soil available pools. Thus, the simultaneous measurement of microbial biomass P and available P provide useful information on the potential plant availability of P. Received: 25 May 1996  相似文献   

16.
Summary Distribution of soil microbial biomass and potentially mineralizable nitrogen (PMN) in long-term tillage comparisons at seven sites in the United States varied with tillage management and depth in soil. Microbial biomass and PMN levels of no-tillage soils averaged 54% and 37% higher, respectively, than those in the surface layer of plowed soil. Biomass and PMN levels were greatest in the surface 0 to 7.5-cm layer of no-tillage soil and decreased with depth in soil to 30 cm. Biomass and PMN levels of plowed soil, however, were generally greatest at the 7.5 –15 cm depth. Microbial biomass levels were closely associated with soil distributions of total C and N, water content, and water-soluble C as influenced by tillage management. Potentially mineralizable N levels in soil were primarily associated with distributions of microbial biomass and total N. Absolute levels of PMN and microbial biomass and the relative differences with tillage management were dependent on climatic, cropping, and soil conditions across locations. The additional N contained in soil biomass and PMN in the surface 0–7.5 cm of no-tillage compared with plowed soils ranged from 13 to 45 and 12 to 122 kg N/ha, respectively, for 6 of 7 locations. Fertilizer placement below the biologically rich surface soil layer and/or rotational tillage may improve short-term nitrogen use efficiency and crop growth on reduced-tillage soils.Contribution from USDA-ARS in cooperation with the Nebraska Agricultural Experimental Station, published as paper no. 8086, Journal Series, Nebraska Agricultural Experimental Station  相似文献   

17.
Variations in the microbial biomass and the in situ metabolic quotient (qCO2) due to climatic conditions were determined in a typical soil from the Argentine Rolling Pampa. Microbial C was evaluated by fumigation-incubation and qCO2 was calculated using soil respiration in the field. An inverse relationship between microbial C and soil temperature was fitted to a model (r 2=0.90, P=0.01). No significant association with the soil water content was detected because the soil was generally near field capacity and thus water availability did not limited microbial growth and activity. Values of qCO2 increased (r 2=0.89, P=0.01) as the result of metabolic activatìon, likely induced by a higher maintenance energy requirement at high temperatures. The highest values of qCO2 were obtained when microbial C was the lowest, which was attributed to self consumption of microbial C in the presence of high temperatures. Consequently, microbial C was generally higher (P=0.05) in winter than in summer. Therefore, when microbial C is used as an index of soil biological activity, the influence of temperature should be taken into account.  相似文献   

18.
Understanding the chronological changes in soil microbial properties of turfgrass ecosystems is important from both the ecological and management perspectives. We examined soil microbial biomass, activity and N transformations in a chronosequence of turfgrass systems (i.e. 1, 6, 23 and 95 yr golf courses) and assessed soil microbial properties in turfgrass systems against those in adjacent native pines. We observed age-associated changes in soil microbial biomass, CO2 respiration, net and gross N mineralization, and nitrification potential. Changes were more evident in soil samples collected from 0 to 5 cm than the 5 to 15 cm soil depth. While microbial biomass, activity and N transformations per unit soil weight were similar between the youngest turfgrass system and the adjacent native pines, microbial biomass C and N were approximately six times greater in the oldest turfgrass system compared to the adjacent native pines. Potential C and N mineralization also increased with turfgrass age and were three to four times greater in the oldest vs. the youngest turfgrass system. However, microbial biomass and potential mineralization per unit soil C or N decreased with turfgrass age. These reductions were accompanied by increases in microbial C and N use efficiency, as indicated by the significant reduction in microbial C quotient (qCO2) and N quotient (qN) in older turfgrass systems. Independent of turfgrass age, microbial biomass N turnover was rapid, averaging approximately 3 weeks. Similarly, net N mineralization was ∼12% of gross mineralization regardless of turfgrass age. Our results indicate that soil microbial properties are not negatively affected by long-term management practices in turfgrass systems. A tight coupling between N mineralization and immobilization could be sustained in mature turfgrass systems due to its increased microbial C and N use efficiency.  相似文献   

19.
The concentrations of organic C, labile organic fractions and the size and activity of the microbial community were measured to a depth of 30 cm below the plant row and at distances of 30 and 60 cm into the inter-row area under sugarcane under pre-harvest burning or green cane harvesting with retention of a crop residue (trash) mulch. Total root mass was similar under burning and trashing but under trashing there was a redistribution of roots towards the surface 0-10 cm in the inter-row space as roots proliferated beneath the trash mulch. Soil organic C content decreased in response to both increasing distance from the plant row (to a depth of 20 cm) and burning rather than trashing (to a depth of 10 cm). Declines in K2SO4-extractable C, light fraction C, microbial biomass C, basal respiration and aggregate stability in response to distance and burning were much more marked than those for organic C and occurred to a depth of 30 cm. Bulk density was greater under burnt than trashed sugarcane and was greater in the inter-row than row, particularly under burning. Heterotrophic functional diversity (measured by analysis of catabolic response profiles to 36 substrates) was also investigated. Principal component analysis of response profiles demonstrated that soils below the row and those under trashing at 30 cm out from this row were separated from the other soils on PC1 and the sample from the inter-row centre (60 cm out) under burning was separated from the others on PC2. Catabolic evenness was least for the latter soil. It was concluded that soil in the inter-row of burnt sugarcane receives few inputs of organic matter and that conversion to green cane harvesting with retention of a trash mulch greatly improves the organic matter, microbial and physical status of the inter-row soil.  相似文献   

20.
The effects of soil texture (silt loam or sandy loam) and cultivation practice (green manure) on the size and spatial distribution of the microbial biomass and its metabolic quotient were investigated in soils planted with a permanent row crop of hops (Humulus lupulus). The soil both between and in the plant rows was sampled at three different depths (0–10, 10–20, and 20–30 cm). The silt loam had a higher overall microbial biomass C concentration (260 g g-1) than the sandy loam (185 g g-1), whereas the sandy loam had a higher (3.1 g CO2-C mg-1 microbial Ch-1) metabolic quotient than the silt loam (2.6 g CO2-C mg-1 microbial C h-1), on average over depth (0–30 cm) and over all treatments. There was a sharp decrease in the microbial biomass with increasing depth for all plots. However, this was more pronounced in the silt loam than in the sandy loam. There was no distinct influence of sampling depth on the metabolic quotient. The microbial biomass was considerably higher in the rows than between the rows, especially in the silt loam plots. There was no significant difference between plots without green manure and plots with green manure for either the microbial biomass or the metabolic quotient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号