首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphorus (P) content of crop residues and its availability to a subsequent crop can range from agronomically insignificant, to quantities in excess of crop P requirement. However, the contribution of crop residues to the P nutrition of subsequent crops has not been widely recognised, and simple predictive tools are lacking. By reviewing the published literature in which quantitative measurements of P transformations from plant residues applied to soil have been reported, we have evaluated the contribution of crop residue-derived P to the P nutrition of subsequent crops, assessed the key factors involved and summarised the knowledge as an empirical model. The contribution of crop residues to P availability is likely to be significant only under conditions where large amounts of crop residues of relatively high P concentration are applied to soil. Crop residues with low P concentration, such as cereal stubble (eg. due to re-translocation of a large proportion of stubble P into grain), will not make an agronomically significant contribution to soil P availability, but may reduce P availability due to assimilation in the microbial biomass. However, a productive green manure crop may release sufficient P to meet the requirements of a subsequent cash crop. The release of P from crop residues is significantly reduced in systems where the P-status of crops and soils is low, which reinforces the reliance on external P inputs for sustained crop productivity. The large variability in the potential contributions of plant residues to the P nutrition of subsequent crops suggests that there is a strong need to integrate model predictions of organically-cycled P with fertiliser management strategies.  相似文献   

2.
Microbial biomass and organic matter turnover in wetland rice soils   总被引:3,自引:0,他引:3  
A decline in rice yields has been associated with intensification of rice production. In continuously irrigated systems this has been attributed to a decline in soil N supply. Nutrient mineralisation and immobilisation is constrained by the quantity and nature of the organic substrates and the physico-chemical environment of the soil system itself. A flooded soil is very different from an aerobic one; electron acceptors other than oxygen have to be used. The transition to continuously anaerobic conditions associated with the intensification of wetland rice systems affects their organic matter turnover and may adversely affect their productivity.  相似文献   

3.
Soil organic P (Po) mineralization plays an important role in soil P cycling. Quantitative information on the release of available inorganic P (Pi) by this process is difficult to obtain because any mineralized Pi gets rapidly sorbed. We applied a new approach to quantify basal soil Po mineralization, based on 33PO4 isotopic dilution during 10 days of incubation, in soils differing in microbiological activity. The soils originated from a 20 years old field experiment, including a conventional system receiving exclusively mineral fertilizers (MIN), a bio-organic (ORG) and bio-dynamic (DYN) system. Indicators of soil microbiological activity, such as size and activity of the soil microbial biomass and phosphatase activity, were highest in DYN and lowest in MIN. In order to assess Po hydrolysis driven by phosphatase in sterile soils, a set of soil samples was γ-irradiated. Basal Po mineralization rates in non-irradiated samples were between 1.4 and 2.5 mg P kg−1 day−1 and decreased in the order DYN>ORG≥MIN. This is an amount lower, approximately equivalent to, or higher than water soluble Pi of MIN, ORG and DYN soils, respectively, but in every soil was less than 10% of the amount of P isotopically exchangeable during one day. This shows that physico-chemical processes are more important than basal mineralization in releasing plant available Pi. Organic P mineralization rates were higher, and differences between soils were more pronounced in γ-irradiated than in non-irradiated soils, with mineralization rates ranging from 2.2 to 4.6 mg P kg−1 day−1. These rates of hydrolysis, however, cannot be compared to those in non-sterile soils as they are affected by the release of cellular compounds, e.g. easily mineralizable Po, derived from microbial cells killed by γ-irradiation.  相似文献   

4.
Biuret is a known contaminant of urea fertilisers that might be useful as a slow release N fertiliser for forestry. We studied carbon (C), net nitrogen (N) mineralisation and soil microbial biomass C and N dynamics in two forest soils (a sandy loam and a silt loam) during a 16-week long incubation following application of biuret (C 23.3%, N 40.8%, O 30.0% and H 4.9%) at concentrations of 0, 2, 10, 100 and 1000 mg kg−1 (oven-dried) soil to assess the potential of biuret as a slow-release N fertiliser. Lower concentrations of biuret specifically increased C mineralisation and soil microbial biomass C in the sandy loam soil, but not in the silt loam soil. A significant decrease of microbial biomass C was found in both soils at week 16 after biuret was applied at higher concentrations. C mineralisation declined with duration of incubation in both soils due to decreased C availability. Biuret at concentrations from 10 to 100 mg kg−1 soil had a significantly positive priming effect on soil organic N mineralisation in both soils. The causes for the priming effects were related to the stimulation of microbial growth and activity at an early stage of the incubation and/or the death of microbes at a later stage, which was biuret-concentration-dependent. The patterns in NH4+-N accumulation differed markedly between the two soils. Net N mineralisation and nitrification were much greater in the sandy loam soil than in the silt loam soil. However, the onset of net nitrification was earlier in the silt loam soil. Biuret might be a potential slow-release N source in the silt loam soil.  相似文献   

5.
A CHCl3 fumigation and 0.03 M NH4F-0.025 M HCl extraction procedure was used to measure microbial biomass P (Pmic) in 11 acid red soils (pH <6.0) from southern China and the results compared to those obtained by the commonly-used CHCl3 fumigation and 0.5 M NaHCO3 extraction method. Extraction with NH4F-HCl was found to be more effective and accurate than NaHCO3 extraction for detecting the increase of P from microbial biomass P following chloroform fumigation due to its higher efficiency in extracting both native labile phosphate and added phosphate (32P) in the soils. This was confirmed by the recovery of 32P from in situ 32P-labeled soil microbial biomass following fumigation and extraction by the NH4F-HCl solution. Soil microbial biomass P, measured by the NH4F-HCl extraction method, was more comparable with soil microbial biomass C (with a more narrow C:P ratio range of 4.3 to 22.3 and a mean of 15.6 in the microbial biomass), than that obtained by NaHCO3 solution (with a mean C:P ratio of 30.7 and a wide range of 14.9 to 48.9). Kp, the fraction of soil microbial biomass P extracted after CHCl3 fumigation, by the NH4F-HCl solution was 0.34. The amount of microbial biomass P determined (using Kp =0.34) was 3–400% (mean 131%) higher than that obtained by the NaHCO3 extraction (using Kp =0.40) for the 11 red soils studied. The results suggest that the CHCl3 fumigation and NH4F-HCl extraction method is more reliable for measuring microbial biomass P than the NaHCO3 extraction method in acid red soils.  相似文献   

6.
Microbial biomass phosphorus (P) can play an important role in P cycling and availability to plants by acting as a source (remineralization) or sink (immobilization) of phosphate ions (iP). To assess the role of the microbial P pools, both the dynamics (i.e. the turnover) and the size of the microbial P pools were studied in forest soils. Combining an isotopic dilution method with a modelling approach, we showed the existence of two pools of microbial P with different dynamics and therefore of different importance in soil P availability and cycling. In particular, we showed that the largest pool of microbial P (80%) had a fast turnover (nine days). Microbial P increased with an increase in soil organic matter and represented up to 53% of total P in contrasting forest soils. By combining these results with the turnover times of microbial P obtained in the modelling study, we evaluated that 8.5-17.3 kg P ha−1 of microbial P could turn over in a few days. This suggests that microbial biomass P is a potentially significant source of available iP, and that micro-organisms can play a major role in P cycling in the forest studied here. However, microbial biomass can also be in competition with the trees since most of the remineralized P could be immobilized again in the microbial turnover.  相似文献   

7.
Animal manure can be a valuable resource of P for plant growth. Organic phosphates (Po) are considered bioavailable if they can be hydrolyzed to inorganic P (Pi). Therefore, investigation of the susceptibility of manure Po to hydrolysis may increase our understanding of manure Po bioavailability. In this study, we demonstrate that three orthophosphate-releasing enzymes, acid phosphatase from wheat germ, alkaline phosphatase from bovine intestinal mucosa, and fungal phytase from Aspergillus ficcum, were able to hydrolyze certain amounts of Po in animal manure. A scheme of sequential enzymatic release of Po in manure was developed and then used to investigate changes in swine and cattle manure P distribution after storage at –20°C, 4°C or 22°C for about a year. Assuming that the P distribution in manure maintained at –20°C remained unchanged (i.e., similar to fresh manure), bioavailable P (Pi and enzyme-hydrolysable Po) in swine manure remained relatively constant [72.8–76.3% of total P (Pt)]. Soluble but enzymatically unhydrolysable Po (Pue) increased from 7.2% to 32.1% of Pt during storage at 4°C. In cattle manure, bioavailable P decreased from 71.6% to 62.9% of Pt, and Pue increased from 21.7% to 37.2% of Pt during storage at 22°C. These data indicated that the major change during the storage of animal manure for a year was the increase in Pue, so manure P solubility may increase with storage, but the increase would not produce more bioavailable P in the manure. The effects of storage on the bioavailability of manure P should be further investigated to develop an efficient manure-P management strategy.Trade or manufacturers' names mentioned in the paper are for information only and do not constitute endorsement, recommendation, or exclusion by the USDA-ARS  相似文献   

8.
The objective of this work was to assess the changes of soil P fractions by Lotus corniculatus and to determine contribution of each fraction to plant P nutrition. Phosphorus was added at a rate of 240 mg/pot as triple superphosphate (20% P), phosphate rock (13% P), or poultry litter (2% P) to a Vertisol or an Inceptisol; a control treatment (without P fertilizer) was also included. Then, L. corniculatus was sowed and harvested eight times; both yields and P content of plant were determined at each harvest. Soil P fractions were determined by Hedley’s modified method. The content of labile and moderately labile P [anionic exchange membrane-Pi (AEM-Pi), NaHCO3-Pi, and NaOH-Pi] fractions were markedly reduced and were probably due to P uptake by plants. The content of the HCl-Pi fraction of the phosphate-rock-treated soil decreased whereas that of the residual P fraction was not modified. The content of organic forms increased in all treatments. The content of both labile organic P and moderately labile organic P were positively and significantly correlated with the P concentration of roots and with roots biomass, suggesting that the increase in these two organic fractions was related to root production. AEM-Pi accounted for 95% and 84% of absorbed P in Vertisol and Inceptisol, respectively.  相似文献   

9.
We investigated the relationship between soil organic matter (SOM) content and N dynamics in three grassland soils (0-10 and 10-20 cm depth) of different age (6, 14 and 50 y-old) with sandy loam textures. To study the distribution of the total C and N content the SOM was fractionated into light, intermediate and heavy density fractions of particulate macro-organic matter (150-2000 μm) and the 50-150 μm and <50 μm size fractions. The potential gross N transformation rates (mineralisation, nitrification, NH4+ and NO3 immobilization) were determined by means of short-term, fully mirrored 15N isotope dilution experiments (7-d incubations). The long-term potential net N mineralisation and gross N immobilization rates were measured in 70-d incubations. The total C and N contents mainly tended to increase in the 0-10 cm layer with increasing age of the grassland soils. Significant differences in total SOM storage were detected for the long-term (50 y-old) conversion from arable land to permanent grassland. The largest relative increase in C and N contents had occurred in the heavy density fraction of the macro-organic matter, followed by the 50-150 and <50 μm fractions. Our results suggest that the heavy density fraction of the macro-organic matter could serve as a good indicator of early SOM accumulation, induced by converting arable land to permanent grassland. Gross N mineralisation, nitrification, and (long-term) gross N immobilization rates tended to increase with increasing age of the grasslands, and showed strong, positive correlations with the total C and N contents. The calculated gross N mineralisation rates (7-d incubations) and net N mineralisation rates (70-d incubations) corresponded with a gross N mineralisation of 643, 982 and 1876 kg N ha−1 y−1, and a net N mineralisation of 195, 208 and 274 kg N ha−1 y−1 in the upper 20 cm of the 6, 14 and 50 y-old grassland soils, respectively. Linear regression analysis showed that 93% of the variability of the gross N mineralisation rates could be explained by variation in the total N contents, whereas total N contents together with the C-to-N ratios of the <50 μm fraction explained 84% of the variability of the net N mineralisation rates. The relationship between long-term net N mineralisation rates and gross N mineralisation rates could be fitted by means of a logarithmic equation (net m=0.24Ln(gross m)+0.23, R2=0.69, P<0.05), which reflects that the ratio of gross N immobilization-to-gross N mineralisation tended to increase with increasing SOM contents. Microbial demand for N tended to increase with increasing SOM content in the grassland soils, indicating that potential N retention in soils through microbial N immobilization tends to be limited by C availability.  相似文献   

10.
The response of the soil microbial biomass to seasonal changes was investigated in the field under pastures. These studies showed that over a 9-month period, microbial biomass carbon, phosphorus and sulphur (biomass C, P, S), and their ratios (C:P, C:S, and P:S) responded differently to changes in soil moisture and to the input of fresh organic materials. From October to December (1993), when plant residues were largely incorporated into the soils, biomass C and S increased by 150–210%. Biomass P did not increase over this time, having decreased by 22–64% over the dry summer (July to September). There was no obvious correlation between biomass C, P, and S and air temperature. The largest amounts of biomass C and P (2100–2300μg and 150–190μgg–1 soil, respectively) were found in those soils receiving farmyard manure (FYM or FYM+NPK) and P fertilizer, whereas the use of ammonium sulphate decreased biomass C and P. The C:P, C:S, and P:S ratios of the biomass varied considerably (9–276:1; 50–149:1; and 0.3–14:1, respectively) with season and fertilizer regime. This reflected the potential for the biomass to release (when ratios were narrow) or to immobilize (wide ratios) P and S at different times of the year. Thus, seasonal responses in biomass C, P, and S are important in controlling the cycling of C, P, and S in pasture and ultimately in regulating plant availability of P and S. The uptake of P in the pasture was well correlated with the sum of P in the biomass and soil available pools. Thus, the simultaneous measurement of microbial biomass P and available P provide useful information on the potential plant availability of P. Received: 25 May 1996  相似文献   

11.
Organic farming is rapidly expanding worldwide. Plant growth in organic systems greatly depends on the functions performed by soil microbes, particularly in nutrient supply. However, the linkages between soil microbes and nutrient availability in organically managed soils are not well understood. We conducted a long-term field experiment to examine microbial biomass and activity, and nutrient availability under four management regimes with different organic inputs. The experiment was initiated in 1997 by employing different practices of organic farming in a coastal sandy soil in Clinton, NC, USA. Organic practices were designed by applying organic substrates with different C and N availability, either in the presence or absence of wheat-straw mulch. The organic substrates used included composted cotton gin trash (CGT), animal manure (AM) and rye/vetch green manure (RV). A commercial synthetic fertilizer (SF) was used as a conventional control. Results obtained in both 2001 and 2002 showed that microbial biomass and microbial activity were generally higher in organically than conventionally managed soils with CGT being most effective. The CGT additions increased soil microbial biomass C and activity by 103-151% and 88-170% over a period of two years, respectively, leading to a 182-285% increase in potentially mineralizable N, compared to the SF control. Straw mulching further enhanced microbial biomass, activity, and potential N availability by 42, 64, and 30%, respectively, relative to non-mulched soils, likely via improving C and water availability for soil microbes. The findings that microbial properties and N availability for plants differed under different organic input regimes suggest the need for effective residue managements in organic tomato farming systems.  相似文献   

12.
Drying and rewetting cycles are known to be important for the turnover of carbon (C) in soil, but less is known about the turnover of phosphorus (P) and its relation to C cycling. In this study the effects of repeated drying-rewetting (DRW) cycles on phosphorus (P) and carbon (C) pulses and microbial biomass were investigated. Soil (Chromic Luvisol) was amended with different C substrates (glucose, cellulose, starch; 2.5 g C kg−1) to manipulate the size and community composition of the microbial biomass, thereby altering P mineralisation and immobilisation and the forms and availability of P. Subsequently, soils were either subjected to three DRW cycles (1 week dry/1 week moist) or incubated at constant water content (70% water filled pore space). Rewetting dry soil always produced an immediate pulse in respiration, between 2 and 10 times the basal rates of the moist incubated controls, but respiration pulses decreased with consecutive DRW cycles. DRW increased total CO2 production in glucose and starch amended and non-amended soils, but decreased it in cellulose amended soil. Large differences between the soils persisted when respiration was expressed per unit of microbial biomass. In all soils, a large reduction in microbial biomass (C and P) occurred after the first DRW event, and microbial C and P remained lower than in the moist control. Pulses in extractable organic C (EOC) after rewetting were related to changes in microbial C only during the first DRW cycle; EOC concentrations were similar in all soils despite large differences in microbial C and respiration rates. Up to 7 mg kg−1 of resin extractable P (Presin) was released after rewetting, representing a 35-40% increase in P availability. However, the pulse in Presin had disappeared after 7 d of moist incubation. Unlike respiration and reductions in microbial P due to DRW, pulses in Presin increased during subsequent DRW cycles, indicating that the source of the P pulse was probably not the microbial biomass. Microbial community composition as indicated by fatty acid methyl ester (FAME) analysis showed that in amended soils, DRW resulted in a reduction in fungi and an increase in Gram-positive bacteria. In contrast, the microbial community in the non-amended soil was not altered by DRW. The non-selective reduction in the microbial community in the non-amended soil suggests that indigenous microbial communities may be more resilient to DRW. In conclusion, DRW cycles result in C and P pulses and alter the microbial community composition. Carbon pulses but not phosphorus pulses are related to changes in microbial biomass. The transient pulses in available P could be important for P availability in soils under Mediterranean climates.  相似文献   

13.
Accurate prediction of soil N availability requires a sound understanding of the effects of environmental conditions and management practices on the microbial activities involved in N mineralization. We determined the effects of soil temperature and moisture content and substrate type and quality (resulting from long-term pasture management) on soluble organic C content, microbial biomass C and N contents, and the gross and net rates of soil N mineralization and nitrification. Soil samples were collected at 0–10 cm from two radiata pine (Pinus radiata D. Don) silvopastoral treatments (with an understorey pasture of lucerne, Medicago sativa L., or ryegrass, Lolium perenne L.) and bare ground (control) in an agroforestry field experiment and were incubated under three moisture contents (100, 75, 50% field capacity) and three temperatures (5, 25, 40 °C) in the laboratory. The amount of soluble organic C released at 40 °C was 2.6- and 2.7-fold higher than the amounts released at 25 °C and 5 °C, respectively, indicating an enhanced substrate decomposition rate at elevated temperature. Microbial biomass C:N ratios varied from 4.6 to 13.0 and generally increased with decreasing water content. Gross N mineralization rates were significantly higher at 40 °C (12.9 g) than at 25 °C (3.9 g) and 5 °C (1.5 g g–1 soil day–1); and net N mineralization rates were also higher at 40 °C than at 25 °C and 5 °C. The former was 7.5-, 34-, and 29-fold higher than the latter at the corresponding temperature treatments. Gross nitrification rates among the temperature treatments were in the order 25 °C >40 °C >5 °C, whilst net nitrification rates were little affected by temperature. Temperature and substrate type appeared to be the most critical factors affecting the gross rates of N mineralization and nitrification, soluble organic C, and microbial biomass C and N contents. Soils from the lucerne and ryegrass plots mostly had significantly higher gross and net mineralization and nitrification rates, soluble organic C, and microbial biomass C and N contents than those from the bare ground, because of the higher soil C and N status in the pasture soils. Strong positive correlations were obtained between gross and net rates of N mineralization, between soluble organic C content and the net and gross N mineralization rates, and between microbial biomass N and C contents.  相似文献   

14.
In this study, gross nitrogen (N) mineralisation rates were determined in six pasture soils (Fleming, Kairanga, Karapoti, Lismore, Templeton and Waikoikoi) from three different regions of New Zealand. The soils were kept under controlled soil water potential (–10 to –30 kPa) and temperature (12–20°C) conditions in a glasshouse. The gross N mineralisation rates ranged from 0.76 to 5.87 g N g–1 soil day–1 in the six soils and were positively correlated with the amount of amino acid-N (AA-N), ammonia-N (NH3-N), total hydrolysable-N (TH-N), microbial biomass-carbon (MB-C), microbial biomass-N (MB-N), protease activity and organic C and N. A stepwise regression was used to generate equations that could best describe gross N mineralisation rates. Microbial biomass-carbon and AA-N were included in the equation that best described the gross N mineralisation rate:
The total amounts of N mineralised over the 1-year period were equivalent to between 492 and 1,351 kg N ha–1 year–1. Assuming mineralisation continues at a steady state throughout the year, this represents between 12 and 26% of the total organic N mineralised per year in these pasture soils.  相似文献   

15.
Abstract

Sustainable food production includes mitigating environmental pollution and avoiding unnecessary use of non-renewable mineral phosphate resources. Efficient phosphorus (P) utilization from organic wastes is crucial for alternative P sources to be adopted as fertilizers. There must be predictable plant responses in terms of P uptake and plant growth. An 18-week pot experiment was conducted to assess corn (Zea mays L.) plant growth, P uptake, soil test P and P fractionation in response to application of organic P fertilizer versus inorganic P fertilizer in five soils. Fertilizers were applied at a single P rate using: mono-ammonium phosphate, anaerobically digested dairy manure, composted chicken manure, vegetable compost and a no-P control. Five soils used varied in soil texture and pH. Corn biomass and tissue P concentrations were different among P fertilizers in two soils (Warden and Quincy), with greater shoot biomass for composted chicken manure and higher tissue P concentration for MAP. Plant dry biomass ranged from highest to lowest with fertilizer treatment as follows: composted chicken manure?>?AD dairy?=?MAP?=?no-P control?=?vegetable compost. Soil test P was higher in soils with any P fertilizer treatment versus the no-P control. The loosely bound and soluble P (2.7?mg P kg?1) accounted for the smallest pool of inorganic P fractions, followed by iron bound P (13.7?mg P kg?1), aluminum bound P (43.4?mg P kg?1) and reductant soluble P (67.9?mg P kg?1) while calcium bound P (584.6?mg P kg?1) represented the largest pool of inorganic P.  相似文献   

16.
Quantifying microbial biomass phosphorus in acid soils   总被引:10,自引:0,他引:10  
 This study aimed to validate the fumigation-extraction method for measuring microbial biomass P in acid soils. Extractions with the Olsen (0.5 M NaHCO3, pH 8.5) and Bray-1 (0.03 M NH4F–0.025 M HCl) extractants at two soil:solution ratios (1 : 20 and 1 : 4, w/v) were compared using eight acid soils (pH 3.6–5.9). The data indicated that the flushes (increases following CHCl3-fumigation) of total P (Pt) and inorganic P (Pi) determined by Olsen extraction provided little useful information for estimating the amount of microbial biomass P in the soils. Using the Bray-1 extractant at a soil:solution ratio of 1 : 4, and analysing Pi instead of Pt, improves the reproducibility (statistical significance and CV) of the P flush in these soils. In all the approaches studied, the Pi flush determined using the Bray-1 extractant at 1 : 4 provided the best estimate of soil microbial biomass P. Furthermore, the recovery of cultured bacterial and fungal biomass P added to the soils and extracted using the Bray-1 extractant at 1 : 4 was relatively constant (24.1–36.7% and 15.7–25.7%, respectively) with only one exception, and showed no relationship with soil pH, indicating that it behaved differently from added Pi (recovery decreased from 86% at pH 4.6 to 13% at pH 3.6). Thus, correcting for the incomplete recovery of biomass P using added Pi is inappropriate for acid soils. Although microbial biomass P in soil is generally estimated using the Pi flush and a conversion factor (k P) of 0.4, more reliable estimates require that k P values are best determined independently for each soil. Received: 3 February 2000  相似文献   

17.
Phosphorus fractions in Brazilian Cerrado soils as affected by tillage   总被引:3,自引:0,他引:3  
No-tillage systems lead to physical, chemical and biological changes in soil. Soil fertility is responsive to changes in tillage as it depends on nutrient status, soil water content and biological characteristics. This work aimed to determine long term changes in phosphorus forms and availability in the profile of two tropical soils under conventional and no-till systems, and to discuss the significance of these changes on plant growth and demand for P fertilizers. Undisturbed soil cores with 20 cm in diameter were collected to a depth of 40 cm, accommodated in PVC tubes and taken to a greenhouse, where the experiment was conducted. Two soils were collected in Central Brazil, in areas under Cerrado. Both soils had been cropped for at least 10 years under conventional tillage and no-till. In the greenhouse, pots received phosphorus fertilization or not at 43.7 kg ha−1, and soybean was grown for 60 days, when soil P fractions were determined. Labile P fractions in the soil profile were not affected by management systems, and there was no accumulation of available P under no-till. A large amount of P added as fertilizer was adsorbed in soil and remained in moderately labile fractions, mainly on uppermost soil layers. Therefore, the phosphate fertilizer has promoted P accumulation on less available fractions in soil, remaining P on the soil after crop harvest. Eventually this phosphorus could migrate to more labile fractions and be available for crops grown in succession.  相似文献   

18.
In forest soils where a large fraction of total phosphorus (P) is in organic forms, soil micro-organisms play a major role in the P cycle and plant availability since they mediate organic P transformations. However, the correct assessment of organic P mineralization is usually a challenging task because mineralized P is rapidly sorbed and most mineralization fluxes are very weak. The objectives of the present work were to quantify in five forest Spodosols at soil depths of 0-15 cm net mineralization of total organic P and the resulting increase in plant available inorganic P and to verify whether net or gross P mineralization could be estimated using the C or N mineralization rates. Net mineralization of total organic P was derived from the net changes in microbial P and gross mineralization of P in dead soil organic matter. We studied very low P-sorbing soils enabling us to use lower extractants to assess the change in total inorganic P as a result of gross mineralization of P in dead soil organic matter. In addition, to enable detection of gross mineralization of P in dead soil organic matter, a long-term incubation (517 days) experiment was carried out. At the beginning of the experiment, total P contents of the soils were very low (19-51 μg g−1) and were essentially present as organic P (17-44 μg g−1, 85-91%) or microbial P (6-14 μg g−1; 24-39%). Conversely, the initial contents of inorganic P were low (2-7 μg g−1; 9-15%). The net changes in the pool size of microbial P during the 517 days of incubation (4-8 μg g−1) and the amounts of P resulting from gross mineralization of dead soil organic matter (0.001-0.018 μg g−1 day−1; 0.4-9.5 μg g−1 for the entire incubation period) were considerable compared to the initial amounts of organic P and also when compared to the initial diffusive iP fraction (<0.3 μg g−1). Diffusive iP corresponds to the phosphate ions that can be transferred from the solid constituents to the soil solution under a gradient of concentration. Net mineralization of organic P induced an important increase in iP in soil solution (0.6-10 μg g−1; 600-5000% increase) and lower increases in diffusive iP fractions (0.3-5 μg g−1; 300-2000% increase), soil solid constituents having an extremely low reactivity relative to iP. Therefore, soil micro-organisms and organic P transformations play a major role in the bioavailability of P in these forest soils. In our study, the dead soil organic matter was defined as a recalcitrant organic fraction. Probably because gross mineralization of P from this recalcitrant organic fraction was mainly driven by the micro-organisms’ needs for energy, the rates of gross mineralization of C, N and P in the recalcitrant organic fraction were similar. Indirect estimation of gross mineralization of P in dead soil organic matter using the gross C mineralization rate seems thus an alternative method for the studied soils. However, additional studies are needed to verify this alternative method in other soils. No relationships were found between microbial P release and microbial C and N releases.  相似文献   

19.
 Two newly introduced extraction techniques for determining total organic P (P0) were compared with the standard high-temperature ignition method in selected savanna soils of Nigeria. The two extraction techniques were: (1) concentrated H2SO4 and dilute base sequential extraction (18 N H2SO4 and 0.5 N NaOH) and (2) basic EDTA method (0.25 M NaOH plus 0.05 M Na2EDTA). The concentrated H2SO4 and dilute base method extracted significantly higher total P0 than the high-temperature ignition method and the basic EDTA extraction. The high-temperature ignition and the basic EDTA extraction gave similar total P0 values (mean=91 mg kg–1 for ignition and 90 mg kg–1 for basic EDTA). The precision of the methods, determined by coefficients of variation (CV, %) associated with each P0 determination method in the soils, was better for the concentrated H2SO4 and dilute base extraction method (CV=13%) than the ignition method (CV=18%) and the basic EDTA method (CV=15%). The high C : P0 ratios determined for the high-temperature ignition and basic EDTA extraction indicated that the two methods underestimated total P0 in the soils. The concentrated H2SO4 and dilute base sequential extraction appears to be suitable for the rapid determination of P0 in savanna soils because the method can be simplified to a single-step analysis. Received: 14 November 1997  相似文献   

20.
Soil microbial biomass P is usually determined through fumigation-extraction (FE), in which partially extractable P from lysed biomass is converted to biomass P using a conversion factor (Kp). Estimation of Kp has been usually based on cultured microorganisms, which may not adequately represent the soil microbial community in either nutrient-poor or in altered carbon and nutrient conditions following fertilisation. We report an alternative approach in which changes in microbial P storage are determined as the residual in a mass balance of extractable P before and after incubation. This approach was applied in three low-fertility sandy soils of southwestern Australia, to determine microbial P immobilisation during 5-day incubations in response to the amendment by 2.323 mg C g−1, 100 μg N g−1 and 20 μg P g−1. The net P immobilisation during the amended incubations determined to be 18.1, 14.1 and 16.3 μg P g−1 in the three soils, accounting for 70.6-90.5% of P added through amendment. Such estimates do not rely on fumigation and Kp values, but for comparison with the FE method we estimated ‘nominal’ Kp values to be 0.20-0.31 for the soils under the amended conditions. Our results showed that microbial P immobilisation was a dominant process regulating P concentration in soil water following the CNP amendment. The mass-balance approach provides information not only about changes in the microbial P compartment, but also about other major P-pools and their fluxes in regulating soil-water P concentrations under substrate- and nutrient-amended conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号