首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil microbial biomass P is usually determined through fumigation-extraction (FE), in which partially extractable P from lysed biomass is converted to biomass P using a conversion factor (Kp). Estimation of Kp has been usually based on cultured microorganisms, which may not adequately represent the soil microbial community in either nutrient-poor or in altered carbon and nutrient conditions following fertilisation. We report an alternative approach in which changes in microbial P storage are determined as the residual in a mass balance of extractable P before and after incubation. This approach was applied in three low-fertility sandy soils of southwestern Australia, to determine microbial P immobilisation during 5-day incubations in response to the amendment by 2.323 mg C g−1, 100 μg N g−1 and 20 μg P g−1. The net P immobilisation during the amended incubations determined to be 18.1, 14.1 and 16.3 μg P g−1 in the three soils, accounting for 70.6-90.5% of P added through amendment. Such estimates do not rely on fumigation and Kp values, but for comparison with the FE method we estimated ‘nominal’ Kp values to be 0.20-0.31 for the soils under the amended conditions. Our results showed that microbial P immobilisation was a dominant process regulating P concentration in soil water following the CNP amendment. The mass-balance approach provides information not only about changes in the microbial P compartment, but also about other major P-pools and their fluxes in regulating soil-water P concentrations under substrate- and nutrient-amended conditions.  相似文献   

2.
This paper reports the role of microbial biomass in the establishment of N pools in the substratum during primary succession (till 40-year age) in Blastfurnace Slag Dumps, an anthropogenically created land form in the tropics. Initially in the depressions in the slag dumps fine soil particles (silt+clay) accumulate, retaining moisture therein, and providing microsites for the accumulation of microbial biomass. In all sites microbial biomass showed distinct seasonality, with summer-peak and rainy season-low standing crops. During the summer season microbial biomass C ranged from 18.6 μg g−1 in the 1-year old site to ca. 235 μg g−1 in the 40-year old site; correspondingly, microbial biomass N ranged from 1.22 to 40 μg g−1. On sites 2.5-years of age and younger, the microbial biomass N content accounted for more than 50% of the organic N in the soil, whereas the proportion of microbial biomass N was ca. 7% of organic N in 40-year old site. The strong correlation between microbial biomass and total N in soil indicated a significant role of microbes in the build-up of nitrogen during the initial stages of succession in the slag dumps. Though the organic N pool in the soil was low (594 mg kg−1) even after 40 years of succession, the available N (NH4-N and NO3-N) contents in the soil were generally high through the entire age series (ca. 16-32 μg g−1) during the rainy season (which supports active growth of the herbaceous community). The high mineral-N status on the slag dump was related with high N-mineralization rates, particularly in the young sites (20.6 and 13.9 μg g−1 month−1 at 1 and 2.5-year age). We suggest that along with the abiotic factors having strong effect on ecosystem functioning, the microbial biomass, an important biotic factor, shows considerable influence on soil nutrient build-up during early stages of primary succession on the slag dumps. The microbial biomass dynamics initiates biotic control in developing slag dumps ecosystem through its effect on nitrogen pools and availability.  相似文献   

3.
Microbial biomass N dynamics were studied under field and laboratory conditions in soils of high yield (HY) and low yield (LY) areas in an agricultural field. The objective of the study was to determine the size and activity of soil microbial biomass in the soils of the different yield areas and to compare these data obtained under field and laboratory conditions. Soils were amended with 15N labelled mustard (Sinapis alba) residues (both experiments) and labelled nitrate (laboratory only) at 30 μg N g−1 dry soil. Soil microbial biomass (SMB) N, mineral N (Nmin) and total N content was monitored both in the field and in the laboratory. N2O efflux was additionally measured in laboratory treatments. Isotope ratios were determined for SMB in both experiments, for all other parameters only in the laboratory treatments. In the laboratory less amounts of added substrate N were immobilised by the SMB in HY soils compared to LY soils, whereas in the field immobilisation of added N by SMB was higher in HY soils initially and slightly lower after 40 days of incubation. Calculated turnover times in the laboratory nitrate, laboratory mustard and field mustard amendments were 0.18, 0.27 and 0.74 years (HY) and 0.22, 0.61 and 1.01 years (LY), respectively. The turnover times of added substrate N always showed the trend to be faster in HY soils compared to LY soils. A faster turnover of nutrients in the HY soils may involve a better nutrient supply of the plants, which coincides with the higher agricultural yield observed in these areas.  相似文献   

4.
Soil amendment with manures from intensive animal industries is nowadays a common practice that may favorably or adversely affect several soil properties, including soil microbial activity. In this work, the effect of consecutive annual additions of pig slurry (PS) at rates of 30, 60, 90, 120 and 150 m3 ha−1 y−1 over a 4-year period on soil chemical properties and microbial activity was investigated and compared to that of an inorganic fertilization and a control (without amendment). Field plot experiment conducted under a continuous barley monoculture and semiarid conditions were used. Eight months after the fourth yearly PS and mineral fertilizer application (i.e. soon after the fourth barley harvest), surface soil samples (Ap horizon, 0-15 cm depth) from control and amended soils were collected and analysed for pH, electrical conductivity (EC), contents of total organic C, total N, available P and K, microbial biomass C, basal respiration and different enzymatic activities. The control soil had a slightly acidic pH (6.0), a small EC (0.07 dS m−1), adequate levels of total N (1.2 g kg−1) and available K (483 mg kg−1) for barley growth, and small contents of total organic C (13.2 g kg−1) and available P (52 mg kg−1). With respect to the control and mineral fertilized soils, the PS-amended soils had greater pH values (around neutrality or slightly alkaline), electrical conductivities (still low) and contents of available P and K, and slightly larger total N contents. A significant decrease of total organic C was observed in soils amended at high slurry rate (12.3 g kg−1). Compared with the control and mineral treatments, which produced almost similar results, the PS-amended soils were characterized by a higher microbial biomass C content (from 311 to 442 g kg−1), microbial biomass C/total organic C ratio (from 2.3 to 3.6%) and dehydrogenase (from 35 to 173 μg INTF g−1), catalase (from 5 to 24 μmol O2 g−1 min−1), BAA-protease (from 0.7 to 1.9 μmol  g−1 h−1) and β-glucosidase (from 117 to 269 μmol PNP g−1 h−1) activities, similar basal respirations (from 48 to 77 μg C-CO2 g−1 d−1) and urease activities (from 1.5 to 2.2 μmol  g−1 h−1), and smaller metabolic quotients (from 6.4 to 7.7 ng C-CO2 μg−1 biomass C h−1) and phosphatese activities (from 374 to 159 μmol PNP g−1 h−1). For example, statistical analysis of experimental data showed that, with the exception of metabolic quotient and total organic C content, these effects generally increased with increasing cumulative amount of PS. In conclusion, cumulative PS application to soil over time under semiarid conditions may produce not only beneficial effects but also adverse effects on soil properties, such us the partial mineralization of soil organic C through extended microbial oxidation. Thus, PS should not be considered as a mature organic amendment and should be treated appropriately before it is applied to soil, so as to enhance its potential as a soil organic fertilizer.  相似文献   

5.
An incubation experiment with organic soil amendments was carried out with the aim to determine whether formation and use of microbial tissue (biomass and residues) could be monitored by measuring glucosamine and muramic acid. Living fungal tissue was additionally determined by the cell-membrane component ergosterol. The organic amendments were fibrous maize cellulose and sugarcane sucrose adjusted to the same C/N ratio of 15. In a subsequent step, spherical cellulose was added without N to determine whether the microbial residues formed initially were preferentially decomposed. In the non-amended control treatment, ergosterol remained constant at 0.44 μg g−1 soil throughout the 67-day incubation. It increased to a highest value of 1.9 μg g−1 soil at day 5 in the sucrose treatment and to 5.0 μg g−1 soil at day 33 in the fibrous cellulose treatment. Then, the ergosterol content declined again. The addition of spherical cellulose had no further significant effects on the ergosterol content in these two treatments. The non-amended control treatment contained 48 μg muramic acid and 650 μg glucosamine g−1 soil at day 5. During incubation, these contents decreased by 17% and 19%, respectively. A 33% increase in muramic acid and an 8% increase in glucosamine were observed after adding sucrose. Consequently, the ratio of fungal C to bacterial C based on bacterial muramic acid and fungal glucosamine was lowered in comparison with the other two treatments. No effect on the two amino sugars was observed after adding cellulose initially or subsequently during the second incubation period. This indicates that the differences in quality between sucrose and cellulose had a strong impact on the formation of microbial residues. However, the amino sugars did not indicate a preferential decomposition of microbial residues as N sources.  相似文献   

6.
Forests naturally maintained by stand-replacing wildfires are often managed with clearcut harvesting, yet we know little about how replacing wildfire with clearcutting affects soil processes and properties. We compared the initial recovery of carbon (C) and nitrogen (N) pools and dynamics following disturbance in jack pine (Pinus banksiana) stands in northern Lower Michigan, USA, by sampling soils (Oa+A horizons) from three “treatments”: 3-6-year-old harvest-regenerated stands, 3-6-year-old wildfire-regenerated stands and 40-55-year-old intact, mature stands (n=4 stands per treatment). We measured total C and N; microbial biomass and potentially mineralizable C and N; net nitrification; and gross rates of N mineralization and nitrification. Burned stands exhibited reduced soil N but not C, whereas clearcut and mature stands had similar quantities of soil organic matter. Both disturbance types reduced microbial biomass C compared to mature stands; however, microbial biomass N was reduced in burned stands but not in clearcut stands. The experimental C and N mineralization values were fit to a first-order rate equation to estimate potentially mineralizable pool size (C0 and N0) and rate parameters. Values for C0 in burned and clearcut stands were approximately half that of the mature treatment, with no difference between disturbance types. In contrast, N0 was lowest in the wildfire stands (170.2 μg N g−1), intermediate in the clearcuts (215.4 μg N g−1) and highest in the mature stands (244.6 μg N g−1). The most pronounced difference between disturbance types was for net nitrification. These data were fit to a sigmoidal growth equation to estimate potential NO3 accumulation (Nitmax) and kinetic parameters. Values of Nitmax in clearcut soils exceeded that of wildfire and mature soils (149.2 vs. 83.5 vs. 96.5 μg NO3-N g−1, respectively). Moreover, the clearcut treatment exhibited no lag period for net NO3 production, whereas the burned and mature treatments exhibited an approximate 8-week lag period before producing appreciable quantities of NO3. There were no differences between disturbances in gross rates of mineralization or nitrification; rather, lower NO3 immobilization rates in the clearcut soils, 0.20 μg NO3 g−1 d−1 compared to 0.65 in the burned soils, explained the difference in net nitrification. Because the mobility of NO3 and NH4+ differs markedly in soil, our results suggest that differences in nitrification between wildfire and clearcutting could have important consequences for plant nutrition and leaching losses following disturbance.  相似文献   

7.
A 49-day incubation experiment was carried out with the addition of field-grown maize stem and leaf residues to soil at three different temperatures (5, 15, and 25 °C). The aim was to study the effects of two transgenic Bt-maize varieties in comparison to their two parental non-Bt varieties on the mineralization of the residues, on their incorporation into the microbial biomass and on changes in the microbial community structure. The stem and leaf residues of Novelis-Bt contained 3.9 μg g−1 dry weight of the Bt toxin Cry1Ab and those of Valmont-Bt only 0.8 μg g−1. The residues of the two parental non-Bt varieties Nobilis and Prelude contained higher concentrations of ergosterol (+220%) and glucosamine (+190%) and had a larger fungal C-to-bacterial C ratio (+240%) than the two Bt varieties. After adding the Bt residues, an initial peak in respiration of an extra 700 μg CO2-C g−1 soil or 4% of the added amount was observed in comparison to the two non-Bt varieties at all three temperatures. On average of the four varieties, 19-38% of the maize C added was mineralized during the 49-day incubation at the three different temperatures. The overall mean increase in total maize-derived CO2 evolution corresponded to a Q10 value of 1.4 for both temperature steps, i.e. from 5 to 15 °C and from 15 to 25 °C. The addition of maize residues led to a strong increase in all microbial properties analyzed. The highest contents were always measured at 5 °C and the lowest at 25 °C. The variety-specific contents of microbial biomass C, biomass N, ATP and adenylates increased in the order Novelis-Bt ? Prelude<Valmont-Bt ? Nobilis. The mineralization of Novelis-Bt residues with the highest Bt concentration and lowest N concentration and their incorporation into the microbial biomass was significantly reduced compared to the parental non-Bt variety Nobilis. These negative effects increased considerably from 5 to 25 °C. The transgenic Bt variety Valmont did not show further significant effects except for the initial peak in respiration at any temperature.  相似文献   

8.
Fifteen plants species were grown in the greenhouse on the same soil and sampled at flowering to obtain rhizosphere soil and root material. In both fractions, the data on fungal and bacterial tissue obtained by amino sugar analysis were compared with the total microbial biomass based on fumigation-extraction and ergosterol data. The available literature on glucosamine concentrations in fungi and on muramic acid concentrations in bacteria was reviewed to prove the possibility of generating conversion values for general use in root material. All microbial properties analysed revealed strong species-specific differences in microbial colonisation of plant roots. The root material contained considerable amounts of microbial biomass C and biomass N, reaching mean levels of 10.9 and 1.4 mg g−1 dry weight, respectively. However, the majority of CHCl3 labile C and N, i.e. 89 and 55% was root derived. The average amount of ergosterol was 13 μg g−1 dry weight and varied between 0.0 for Phacelia roots and 45.5 μg g−1 dry weight for Vicia roots. The ergosterol content in root material of mycorrhizal and non-mycorrhizal plant species did not differ significantly. Fungal glucosamine was converted to fungal C by multiplication by 9 giving a range of 7.1-25.9 mg g−1 dry weight in the root material. Fungal C and ergosterol were significantly correlated. Bacterial C was calculated by multiplying muramic acid by 45 giving a range from 1.7 to 21.6 mg g−1 dry weight in the root material. In the root material of the 15 plant species, the ratio of fungal C-to-bacterial C ranged from 1.0 in mycorrhizal Trifolium roots to 9.5 in non-mycorrhizal Lupinus roots and it was on average 3.1. These figures mean that the microbial tissue in the root material consists on average of 76% fungal C and 24% bacterial C. The differences in microbial colonisation of the roots were reflected by differences in microbial indices found in the rhizosphere soil, most strongly for microbial biomass C and ergosterol, but to some extent also for glucosamine and muramic acid.  相似文献   

9.
Five soils from temperate sites (Germany; 2 arable and 3 grassland) were incubated aerobically at 5, 10, 15, 20, 25, 35, and 40 °C for 8 days. Soils were analysed for soil microbial biomass C, biomass N, AMP, ADP, and ATP to determine whether the increase in the ATP-to-microbial biomass C ratio with increasing temperature was either due to an increase in the adenylate energy charge (AEC) or de novo synthesis of ATP, or both. Around 80% of the variance in microbial biomass C and biomass N was explained by differences in soil properties, only 7% by the temperature treatments. Averaging the data of all 5 soils for each incubation temperature, the microbial biomass C content decreased with increasing temperature from 15 to 40 °C continuously by 2.5 μg g−1 soil °C−1 after 8-days' incubation. However, this decrease was not accompanied by a similar decrease in microbial biomass N. The average microbial biomass C/N ratio was 6.8. Between 54 and 76% of the variance in AMP, ADP, ATP and the sum of adenylates was explained by differences in soil properties and between 14 (ADP) and 27% (ATP) by the temperature treatments. However, temperature effects on AMP and ADP were variable and inconsistent. In contrast, ATP and consequently also the sum of adenylates increased continuously from 5 to 30 °C followed by a decline to 40 °C. The AEC showed similarly a small, but significant increase with increasing temperature from 0.73 to 0.85 at 30 °C. Consequently, the majority of the variance, i.e. roughly 60% in AEC values, but also in ATP-to-microbial biomass C ratios was explained by the incubation temperature. The mean ATP-to-microbial biomass C ratio increased from 4.7 μmol g−1 at 5 °C to a 2.5 fold maximum of 12.0 μmol g−1 at 35 °C. This increase was linear with a rate of 0.26 μmol ATP g−1 microbial biomass C °C−1. The energy for the extra ATP produced during temperature increase is probably derived from an accelerated turnover of endocellular C reserves in the microbial biomass.  相似文献   

10.
We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28 d laboratory incubation. Soil water potentials were initially adjusted to −100 kPa and monitored as soils dried. We estimated N mineralization by measuring changes in amounts of nitrate (NO3-N) and ammonium (NH4+-N) over time and with change in soil water potential. Microbial activity was assessed by amounts of CO2 respired. Phospholipid fatty acid (PLFA) analyses were used to characterize shifts in microbial community composition during soil drying. Net N mineralized under hummocks was twice that of open spaces between hummocks and mineralization rates followed first-order kinetics. An initial N mineralization flush following re-wetting accounted for more than 90% of the total amount of N mineralized during the incubation. Initial microbial biomass under hummocks was twice that of open areas between hummocks, but after 28 d microbial biomass was<2 μ g−1 ninhydrin N regardless of position. Respiration of CO2 from soils under hummocks was more than double that of soils from between hummocks. N mineralization, microbial biomass and microbial activity were negligible once soils had dried to −1000 kPa. Microbial community composition was also significantly different between 0 and 28 d of the incubation but was not influenced by burning treatment or position. Regression analysis showed that soil water potential, microbial biomass N, NO3-N, % C and δ15N all explained significant proportions of the variance in microbial community composition when modelled individually. However, sequential multiple regression analysis determined only microbial biomass was significant in explaining variance of microbial community compositions. Nitrogen mineralization rates and microbial biomass did not differ between burned and unburned sites suggesting that any effects of fire are mostly short-lived. We conclude that the highly labile nature of much of soil organic N in these semi-arid grasslands provides a ready substrate for N mineralization. However, process rates are likely to be primarily limited by the amount of substrate available as well as water availability and less so by substrate quality or microbial community composition.  相似文献   

11.
《Soil biology & biochemistry》2004,36(10):1569-1576
Three Bohemian Forest catchments, Plešné, ?erné and ?ertovo, were studied. These catchments have similar climatic conditions, relief and vegetation, but differ in their bedrock composition. The granitic bedrock in the Plešné catchment was more susceptible to phosphorus (P) leaching under acid conditions than was the mica schist bedrock in the other catchments. The goal of this study was to determine if higher P leaching from the Plešné catchment was associated with differences in microbial P transformations and enzymatic P hydrolysis. Phosphorus and nitrogen contents in soil microbial biomass (PMB, NMB; chloroform fumigation), C mineralisation rate (Cmin; CO2 production by GC) and phosphatase activity (MUF-phosphate), were measured in three successive years. Phosphatase activity, PMB, and Cmin were used to characterise the enzymatic hydrolysis of organic P, microbial P accumulation, and microbial mineralisation rates of organic compounds, respectively. Soil chemical properties were characterised by C, N and P content, pH, and by oxalate-extractable P, Fe and Al. Spatial variability in NMB, PMB, Cmin and phosphatase activity within the catchment was higher (coefficient of variation, CV<50%) than their temporal variability (CV<30%). Multivariate analysis revealed a significant soil layer effect but not that of catchment. When soil layers were evaluated separately, a difference between the Plešné and ?erné or ?ertovo catchments was found in litter and mineral layers, even though the variability within one catchment was high. Within soil profile, phosphatase activity was positively correlated with Ctot, NMB and Cmin (r2=0.89-0.92) being very correlated with PMB (r2=0.99). Phosphatase activity was higher in the litter (14.0 nmol g−1 h−1) and humus (8.65 nmol g−1 h−1) layers of Plešné than in the same layers of the ?erné (9.65 and 6.40 nmol g−1 h−1) and ?ertovo (12.8 and 6.0 nmol g−1 h−1) soils. Similarly, PMB in the litter and humus layers of Plešné soil (161 and 93 μg g−1) was higher than PMB of the same layers of the ?erné (120 and 66 μg g−1) and ?ertovo (148 and 89 μg g−1) soils. High MUFP hydrolysis rate: Cmin molar ratio (0.16-1.17 M of P per 1 M of respired C) indicated that potential enzymatic P hydrolysis exceeded estimated microbial P demand (0.034 M of P per 1 M of respired C) in all catchments. The results suggest that higher microbial P transformations and enzymatic P hydrolysis could contribute to enhanced P leaching from the Plešné catchment, which could be enhanced by the lower Fe content in the soil of this catchment as compared to the ?erné and ?ertovo catchments.  相似文献   

12.
A study was carried out in order to establish the relationship between the water extractable organic carbon (WEOC) content of soils and soil microbial activity, and to determine how variations in the extraction procedure might influence the quantity of WEOC recovered. Concentrations of WEOC were determined in soils taken from 12 different sites in the south east of Scotland, using a procedure in which samples were shaken with distilled water, centrifuged at 5000g and then filtered through 0.45 μm Millipore filters. Filtration resulted in between 30 and 400 μg C g−1 being extracted using this procedure and the concentration of WEOC in the resultant extracts correlated with soil microbial production of CO2 and dehydrogenase activity (P<0.001). Without filtration, although more WEOC was extracted (between 31 and 716 μg C g−1), there was no significant correlation with biological activity. There was also no correlation between WEOC and nitrous oxide release during the incubations. Centrifugation at 20,000g for at least 10 min prior to filtration was required to remove particulate organic materials. Storage of samples at 4 °C or for up to 1 week or freezing for up to 3 months was not found to have a large influence on the concentration of WEOC in extracts, although amounts increased with soil:extractant ratio and increasing extraction time (from 15 to 60 min).  相似文献   

13.
The need to identify microbial community parameters that predict microbial activity is becoming more urgent, due to the desire to manage microbial communities for ecosystem services as well as the desire to incorporate microbial community parameters within ecosystem models. In dryland agroecosystems, microbial biomass C (MBC) can be increased by adopting alternative management strategies that increase crop residue retention, nutrient reserves, improve soil structure and result in greater water retention. Changes in MBC could subsequently affect microbial activities related to decomposition, C stabilization and sequestration. We hypothesized that MBC and potential microbial activities that broadly relate to decomposition (basal and substrate-induced respiration, N mineralization, and β-glucosidase and arylsulfatase enzyme activities) would be similarly affected by no-till, dryland winter wheat rotations distributed along a potential evapotranspiration (PET) gradient in eastern Colorado. Microbial biomass was smaller in March 2004 than in November 2003 (417 vs. 231 μg g−1 soil), and consistently smaller in soils from the high PET soil (191 μg g−1) than in the medium and low PET soils (379 and 398 μg g−1, respectively). Among treatments, MBC was largest under perennial grass (398 μg g−1). Potential microbial activities did not consistently follow the same trends as MBC, and the only activities significantly correlated with MBC were β-glucosidase (r = 0.61) and substrate-induced respiration (r = 0.27). In contrast to MBC, specific microbial activities (expressed on a per MBC basis) were greatest in the high PET soils. Specific but not total activities were correlated with microbial community structure, which was determined in a previous study. High specific activity in low biomass, high PET soils may be due to higher microbial maintenance requirements, as well as to the unique microbial community structure (lower bacterial-to-fungal fatty acid ratio and lower 17:0 cy-to-16:1ω7c stress ratio) associated with these soils. In conclusion, microbial biomass should not be utilized as the sole predictor of microbial activity when comparing soils with different community structures and levels of physiological stress, due to the influence of these factors on specific activity.  相似文献   

14.
Afforestation and reforestation of pastures are key land-use changes in New Zealand that help sequester carbon (C) to offset its carbon dioxide (CO2) emissions under the Kyoto Protocol. However, relatively little attention has been given so far to associated changes in trace gas fluxes. Here, we measure methane (CH4) fluxes and CO2 production, as well as microbial C, nitrogen (N) and mineral-N, in intact, gradually dried (ca. 2 months at 20 °C) cores of a volcanic soil and a heavier textured, non-volcanic soil collected within plantations of Pinus radiata D. Don (pine) and adjacent permanent pastures. CH4 fluxes and CO2 production were also measured in cores of another volcanic soil under reverting shrubland (mainly Kunzea var. ericoides (A. Rich) J. Thompson) and an adjacent pasture. CH4 uptake in the pine and shrubland cores of the volcanic soils at field capacity averaged about 35 and 14 μg CH4-C m−2 h−1, respectively, and was significantly higher than in the pasture cores (about 21 and 6 μg CH4-C m−2 h−1, respectively). In the non-volcanic soil, however, CH4-C uptake was similar in most cores of the pine and pasture soils, averaging about 7-9 μg m−2 h−1, except in very wet samples. In contrast, rates of CO2 production and microbial C and N concentrations were significantly lower under pine than under pasture. In the air-dry cores, microbial C and N had declined in the volcanic soil, but not in the non-volcanic soil; ammonium-N, and especially nitrate-N, had increased significantly in all samples. CH4 uptake was, with few exceptions, not significantly influenced by initial concentrations of ammonium-N or nitrate-N, nor by their changes on air-drying. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of only the pine and pasture soils showed that different methanotrophic communities were probably active in soils under the different vegetations. The C18 PLFAs (type II methanotrophs) predominated under pine and C16 PLFAs (type I methanotrophs) predominated under pasture. Overall, vegetation, soil texture, and water-filled pore space influenced CH4-C uptake more than did soil mineral-N concentrations.  相似文献   

15.
The accumulation and transformation of organic matter during soil development is rarely investigated although such processes are relevant when discussing about carbon sequestration in soil. Here, we investigated soils under grassland and forest close to the North Sea that began its genesis under terrestrial conditions 30 years ago after dikes were closed. Organic C contents of up to 99 mg g−1 soil were found until 6 cm soil depth. The humus consisted mainly of the fraction lighter than 1.6 g cm−3 which refers to poorly degraded organic carbon. High microbial respiratory activity was determined with values between 1.57 and 1.17 μg CO2-C g−1 soil h−1 at 22 °C and 40 to 70% water-holding capacity for the grassland and forest topsoils, respectively. The microbial C to organic C ratio showed values up to 20 mg Cmic g−1 Corg. Although up to 2.69 kg C m−2 were estimated to be sequestered during 30 years, the microbial indicators showed intensive colonisation and high transformation rates under both forest and grassland which were higher than those determined in agricultural and forest topsoils in Northern Germany.  相似文献   

16.
Soil organic carbon (SOC), microbial biomass carbon (MBC), their ratio (MBC/SOC) which is also known as microbial quotient, soil respiration, dehydrogenase and phosphatase activities were evaluated in a long-term (31 years) field experiment involving fertility treatments (manure and inorganic fertilizers) and a maize (Zea mays L.)-wheat (Triticum aestivum L.)-cowpea (Vigna unguiculata L.) rotation at the Indian Agricultural Research Institute near New Delhi, India. Applying farmyard manure (FYM) plus NPK fertilizer significantly increased SOC (4.5-7.5 g kg−1), microbial biomass (124-291 mg kg−1) and microbial quotient from 2.88 to 3.87. Soil respiration, dehydrogenase and phosphatase activities were also increased by FYM applications. The MBC response to FYM+100% NPK compared to 100% NPK (193 vs. 291 mg kg−1) was much greater than that for soil respiration (6.24 vs. 6.93 μl O2 g−1 h−1) indicating a considerable portion of MBC in FYM plots was inactive. Dehydrogenase activity increased slightly as NPK rates were increased from 50% to 100%, but excessive fertilization (150% NPK) decreased it. Acid phosphatase activity (31.1 vs. 51.8 μg PNP g−1 h−1) was much lower than alkali phosphatase activity (289 vs. 366 μg PNP g−1 h−1) in all treatments. Phosphatase activity was influenced more by season or crop (e.g. tilling wheat residue) than fertilizer treatment, although both MBC and phosphatase activity were increased with optimum or balanced fertilization. SOC, MBC, soil respiration and acid phosphatase activity in control (no NPK, no manure) treatment was lower than uncultivated reference soil, and soil respiration was limiting at N alone or NP alone treatments.  相似文献   

17.
In forest soils where a large fraction of total phosphorus (P) is in organic forms, soil micro-organisms play a major role in the P cycle and plant availability since they mediate organic P transformations. However, the correct assessment of organic P mineralization is usually a challenging task because mineralized P is rapidly sorbed and most mineralization fluxes are very weak. The objectives of the present work were to quantify in five forest Spodosols at soil depths of 0-15 cm net mineralization of total organic P and the resulting increase in plant available inorganic P and to verify whether net or gross P mineralization could be estimated using the C or N mineralization rates. Net mineralization of total organic P was derived from the net changes in microbial P and gross mineralization of P in dead soil organic matter. We studied very low P-sorbing soils enabling us to use lower extractants to assess the change in total inorganic P as a result of gross mineralization of P in dead soil organic matter. In addition, to enable detection of gross mineralization of P in dead soil organic matter, a long-term incubation (517 days) experiment was carried out. At the beginning of the experiment, total P contents of the soils were very low (19-51 μg g−1) and were essentially present as organic P (17-44 μg g−1, 85-91%) or microbial P (6-14 μg g−1; 24-39%). Conversely, the initial contents of inorganic P were low (2-7 μg g−1; 9-15%). The net changes in the pool size of microbial P during the 517 days of incubation (4-8 μg g−1) and the amounts of P resulting from gross mineralization of dead soil organic matter (0.001-0.018 μg g−1 day−1; 0.4-9.5 μg g−1 for the entire incubation period) were considerable compared to the initial amounts of organic P and also when compared to the initial diffusive iP fraction (<0.3 μg g−1). Diffusive iP corresponds to the phosphate ions that can be transferred from the solid constituents to the soil solution under a gradient of concentration. Net mineralization of organic P induced an important increase in iP in soil solution (0.6-10 μg g−1; 600-5000% increase) and lower increases in diffusive iP fractions (0.3-5 μg g−1; 300-2000% increase), soil solid constituents having an extremely low reactivity relative to iP. Therefore, soil micro-organisms and organic P transformations play a major role in the bioavailability of P in these forest soils. In our study, the dead soil organic matter was defined as a recalcitrant organic fraction. Probably because gross mineralization of P from this recalcitrant organic fraction was mainly driven by the micro-organisms’ needs for energy, the rates of gross mineralization of C, N and P in the recalcitrant organic fraction were similar. Indirect estimation of gross mineralization of P in dead soil organic matter using the gross C mineralization rate seems thus an alternative method for the studied soils. However, additional studies are needed to verify this alternative method in other soils. No relationships were found between microbial P release and microbial C and N releases.  相似文献   

18.
The effects of salinity and Mg2+ alkalinity on the size and activity of the soil microbial communities were investigated. The study was conducted along the border area of the alluvial fan of the Taolai River. Thirty soil samples were taken which had an electrical conductivity (EC) gradient of 0.93-29.60 mS cm−1. Soil pH ranged from 8.60 to 9.33 and correlated positively with Mg2+/Ca2+ ratio, exchangeable Mg2+ percentage and HCO3+CO32−. Mg2+/Ca2+ varied considerably from 3.04 to 61.31, with an average of 23.03. Exchangeable Mg2+ percentage generally exceeded 60% and had a positive correlation with Mg2+/Ca2+. HCO3+CO32− averaged 1.63 cmol kg−1 and usually did not exceed 2.0 cmol kg−1.Microbial biomass, indices of microbial activity and the activities of the hydrolases negatively correlated with Mg2+/Ca2+ or exchangeable Mg2+ percentage. Biomass C, biomass N, microbial quotient (the percentage of soil organic C present as biomass C), biomass N as a percentage of total N, potentially mineralizable N, FDA hydrolysis rate and arginine ammonification rate decreased exponentially with increasing EC. The biomass C/N tended to be lower in soils with higher salinity and Mg2+ alkalinity, probably reflecting the bacterial dominance in microbial biomass in alkalized magnesic soils. The metabolic quotient (qCO2) positively correlated with salinity and Mg2+ alkalinity, and showed a quadratic relationship with EC, indicating that increasing salinity and Mg2+ alkalinity resulted in a progressively smaller, more stressed microbial communities which was less metabolically efficient. Consequently, our data suggest that salinity and Mg2+ alkalinity are stressful environments for soil microorganisms.  相似文献   

19.
Microbial biomass C immobilisation and turnover were studied under field and laboratory conditions in soils of high yield (HY) and low yield (LY) areas within an agricultural field. We compared the size and activity of soil microbial biomass (SMB) in the soils of the different yield areas under field and laboratory conditions. Soils were amended with 13C labelled mustard (Sinapis alba) residues (both experiments) and labelled glucose (laboratory only) at 500 μg C g−1 dry soil. SMB-C, dissolved organic carbon (DOC) and total C content were monitored in the field and the laboratory. CO2-efflux was also measured in laboratory treatments. Isotope ratios were determined for SMB in both experiments, but other variables only in the laboratory treatments. A positive priming effect was measured in three of four laboratory treatments. Priming was induced after a significant increase of soil derived C in the microbial biomass. Thereafter, the total C loss through priming was always smaller than or equal to the decline in microbial biomass C. In field and laboratory experiments SMB in the HY soil immobilised less of the added substrate C than LY soil SMB. Calculated turnover times in the laboratory glucose amendment were 0.24 (HY) and 0.31 y (LY), in the laboratory mustard treatment 0.58 (HY) and 0.44 y (LY) and in the field mustard amendments 1.09 (HY) and 1.25 y (LY). In both the field mustard and laboratory glucose treatments turnover in the HY soil tended to exceed that in the LY soil. These turnover times as well as the reaction of SMB-C to drying-rewetting and substrate addition, indicated that the HY soil possessed a more active microbial community with a more rapid C turnover than the LY soil. As C turnover is considered to be closely linked to nutrient cycles, faster turnover in the HY soil may involve a better nutrient supply for crops resulting in higher agricultural yield.  相似文献   

20.
Heterotrophic and autotrophic nitrification in two acid pasture soils   总被引:1,自引:0,他引:1  
Laboratory incubation experiments, using 15N-labeling techniques and simple analytical models, were conducted to measure heterotrophic and autotrophic nitrification rates in two acid soils (pH 4.8-5.3; 1/5 in H2O) with high organic carbon contents (6.2-6.8% in top 5 cm soil). The soils were from pastures located near Maindample and Ruffy in the Northeast Victoria, Australia. Gross rates of N mineralization, nitrification and immobilization were measured. The gross rates of autotrophic nitrification were 0.157 and 0.119 μg N g−1 h−1 and heterotrophic nitrification rates were 0.036 and 0.009 μg N g−1 h−1 for the Maindample and Ruffy soils, respectively. Heterotrophic nitrification accounted for 19% and 7% of the total nitrification in the Maindample and Ruffy soils, respectively. The heterotrophic nitrifiers used organic N compounds and no as the substrate for nitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号