首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of diverse agricultural land management practices on soil and on root colonizing fungal communities were determined through a PCR-based molecular method and a culture-dependent method, respectively, in a field location with uniform soil type. Initiated in July 2000, the management systems were: conventional tomato production, frequent tillage (disk fallow), undisturbed weed fallow, bahiagrass pasture (Paspalum notatum var. notatum ‘Argentine’), and an organically managed system including cover crops and annual applications of poultry manure and urban plant debris. Culture-dependent colony counting was used to identify and enumerate communities of root colonizing fungi and length heterogeneity polymerase chain reaction (LH-PCR) analysis of internal transcribed spacer-1 (ITS-1) profiles to characterize phylotypes in soil fungal communities. Three years after initiation of land management treatments and midway through tomato cultivation, both methods detected a high degree of similarity in fungal community composition between weed fallow and bahiagrass plots. Soil fungal communities in organically managed plots were similar to each other and distinct from communities in other land management systems while the composition of root colonizing fungal communities in organic plots was divergent. The results demonstrate that the soil fungal communities and root colonizing fungal communities were affected differently depending on land and crop management practices. Fusarium oxysporum was a dominant species in all soil and root colonizing fungal communities except those subjected to organic management practices.  相似文献   

2.
Land pressures and environmental degradation are driving forces behind shortened fallow periods in the tropics, often resulting in reduced crop yields and increased migration from rural areas. This paper describes contemporary fallow practices in the Western Highlands of Guatemala based on interdisciplinary data collected using participatory rural appraisal and qualitative research methods in combination with a quantitative evaluation of the impacts of fallow management decisions on soil fertility. Case studies of two communities in San Marcos department illustrate contemporary and traditional land use practices. Currently, over 70 per cent of families engage in a variety of fallow management practices, with combined cropping‐fallow cycles within a field averaging 3–6 years. Despite the reduction in length of fallow cycles, new fallow practices in the study area appear to improve some aspects of soil fertility while also providing fodder and fuelwood. Calcium and magnesium concentrations in fallow soil were twice that of cropped plots, indicating that weathering reactions and atmospheric deposition during fallow periods are able to restore base cation fertility that is taken up by potato crops during cropping cycles. Soil in cropped plots, however, showed 25 per cent higher soil organic matter and five times higher nitrate concentrations than soil in fallow plots, which resulted from additions of compost and inorganic fertilizer to cropped plots. Nevertheless, the 13C/12C isotopic ratio of soil organic carbon indicated that as soil organic matter content decreases in cropped plots, the remaining carbon is increasingly degraded. Potential improvements in fallow management practices proposed by farmers and researchers are also presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The influence of human activities on soil arthropods of vertisols was assessed in several plots characterized by different land uses in the south-eastern part of Martinique (French West Indies). Abundance and diversity of soil invertebrate groups and collembolan species were measured in a 40-year-old secondary forest, a 15-year-old fallow, a 4-year-old fallow, a 4-year-old pasture, a 15-year-old pasture and a 20-year-old market-garden. Agricultural practices modified abundance and species distribution of soil arthropods, compared to forest. Arthropod richness (number of taxa present) decreased from forest to market-garden, according to a gradient of intensification of agricultural use (pesticides, tillage, weed control). In the old pasture, the arthropod diversity was lower in spite of a high carbon content. Species richness of Collembola decreased together with plant diversity and water availability.  相似文献   

4.
Rangeland management can affect plant diversity and plant functional groups of native grassland communities. To improve pasture for livestock grazing from the existing poisonous and ruderal vegetation in the ‘black soil land’ grassland in the headwaters of the Yangtze and the Yellow Rivers (HAYYR) of the Qinghai‐Tibetan Plateau, three treatments (fencing‐FT, artificial seeding with local grasses‐ST and abandonment‐AT) were applied during a 5‐year period (2000–2005). Plant diversity and groups (sedges, grasses and dwarf shrubs) in the treated plots were compared with non‐treated control plots. Results showed that (1) FT promoted an increase in forbs species, but there was no change in the other plant functional groups; (2) with ST, species richness of forbs decreased but grass species increased indicating that sowing local grasses could change plant composition of black soil land in the short‐term, and increase the proportion of grasses and, thus, forage for grazing and (3) AT, after plowing, was similar to CK plots, with forbs being the dominant plant functional group for the 5 years. In conclusion, the goal to alter black soil land cover from poisonous and ruderal plants to more useful plants for livestock grazing by either fencing, artificial seeding or abandonment was not successful in the long term. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Land use practices alter the biomass and structure of soil microbial communities. However, the impact of land management intensity on soil microbial diversity (i.e. richness and evenness) and consequences for functioning is still poorly understood. Here, we addressed this question by coupling molecular characterization of microbial diversity with measurements of carbon (C) mineralization in soils obtained from three locations across Europe, each representing a gradient of land management intensity under different soil and environmental conditions. Bacterial and fungal diversity were characterized by high throughput sequencing of ribosomal genes. Carbon cycling activities (i.e., mineralization of autochthonous soil organic matter, mineralization of allochthonous plant residues) were measured by quantifying 12C- and 13C-CO2 release after soils had been amended, or not, with 13C-labelled wheat residues. Variation partitioning analysis was used to rank biological and physicochemical soil parameters according to their relative contribution to these activities. Across all three locations, microbial diversity was greatest at intermediate levels of land use intensity, indicating that optimal management of soil microbial diversity might not be achieved under the least intensive agriculture. Microbial richness was the best predictor of the C-cycling activities, with bacterial and fungal richness explaining 32.2 and 17% of the intensity of autochthonous soil organic matter mineralization; and fungal richness explaining 77% of the intensity of wheat residues mineralization. Altogether, our results provide evidence that there is scope for improvement in soil management to enhance microbial biodiversity and optimize C transformations mediated by microbial communities in soil.  相似文献   

6.
The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to quantify and characterise the labile and stable forms of SOM. Our objective in this study was to evaluate SOM under widely contrasting management regimes to determine whether the variation in chemical composition and resistance to pyrolysis observed for various constituent C fractions could be related to their resistance to decomposition. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were physically fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: <5 μm). Biodegradability of the SOM in size fractions and whole soils was assessed in a laboratory mineralization study. Thermal stability was determined by analytical pyrolysis using a Rock-Eval pyrolyser, and chemical composition was characterized by X-ray absorption near-edge structure (XANES) spectroscopy at the C and N K-edges. Relative to the pasture soil, SOM in the arable and fallow soils declined by 30% and 40%, respectively. The mineralization bioassay showed that SOM in whole soil and soil fractions under fallow was less susceptible to biodegradation than that in other management practices. The SOM in the sand fraction was significantly more biodegradable than that in the silt or clay fractions. Analysis by XANES showed a proportional increase in carboxylates and a reduction in amides (protein) and aromatics in the fallow whole soil compared to the pasture and arable soils. Moreover, protein depletion was greatest in the sand fraction of the fallow soil. Sand fractions in fallow and arable soils were, however, relatively enriched in plant-derived phenols, aromatics, and carboxylates compared to the sand fraction of pasture soils. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the whole soil and their size fractions; it also showed that the loss of SOM generally involved preferential degradation of H-rich compounds. The temperature at which half of the C was pyrolyzed was strongly correlated with mineralizable C, providing good evidence for a link between the biological and thermal stability of SOM.  相似文献   

7.
Agricultural practices influence the community structure and functional diversity of soil microorganisms. In the present study, the impact of nutrient-management systems on the changes in the biological properties of Indian semi-arid Alfisol was assessed. The long-term organically managed (OGF) and inorganically fertilized (IGF) soils from century-old experimental plots were compared for eubacterial diversity using amplicon length heterogeneity PCR (LH-PCR) targeting three hypervariable domains (V1, V1_V2, and V3) of 16S rRNA gene. Of these domains, V1_V2 could discriminate the bacterial communities between the soil types. The relative ratios of amplicons differed between OGF and ICF soils, and eubacterial diversity was decreased substantially because of the inorganic chemical fertilizers, as compared to organic amendments. The Bray–Curtis similarity index and diversity indices of amplicons were greater in OGF soil than in ICF soil. This polyphasic approach revealed that the diversity and functionality of the soil eubacterial community were encouraged by long-term organic manures more than inorganic chemical fertilizers.  相似文献   

8.
A long‐term field experiment, conducted since 1962 in Gumpenstein (Austria) on a Dystric Cambisol, was used for the present investigation. We combined a physical fractionation procedure with the determination of natural abundance of 13C and FT‐IR spectroscopy to study the influence of fertilizer amendments (organic manure and mineral fertilizers) and management practices (fallow vs. cropped) on changes in organic carbon (OC) associated with different particle‐size fractions. The OC content in bulk soil decreased or was not affected by slurry+straw, PK, and NPK treatments in both fallow and cropped plots after 28 and 38 yr of treatment. However, OC in plots receiving organic manures increased depending on the quality of the organic manures applied. The ranking among the different treatments under both fallow and cropped plots was: animal manure (liquid) > animal manure (solid) > cattle slurry = slurry+straw = PK = NPK. Results showed that the two types of management practices, fallow (non‐tilled) vs. cropped (tilled) had effects on OC concentrations. Comparing the OC contribution of particle‐size fractions to the total OC amount revealed the following ranking: silt > clay > fine sand > coarse sand except in the plots receiving solid or liquid animal manure. Size fractions within treatments showed larger variations of 13C abundances than bulk samples between treatments. The natural abundances of 13C increased especially in cropped (and tilled) plots. It was shown by cluster analysis that FT‐IR spectra differentiated between the different treatments originating from different land management practices. The present study revealed that below‐ground C deposition by agricultural plants can hardly compensate the C losses due to tillage.  相似文献   

9.
Key physicochemical factors associated with microbial community composition and functions in Australian agricultural soils were identified. Soils from seven field sites, with varying long-term agricultural management regimes, were characterised physicochemically, on the basis of their bacterial and fungal community structures (using PCR-DGGE), and by assessing potential catabolic functions (MicroResp?). Soil type, rather than agricultural management practice, was the key determinant of microbial community structure and catabolic function (P<0.05). Following multivariate analysis, soil pH was identified as the key habitat-selective physicochemical soil property associated with variation in biological diversity and profiles of organic substrate utilisation. In particular, the capacity of soils to catabolise different C-substrates was closely correlated (ρ=0.604, P=0.001) to pH. With decreasing pH, the catabolism of common low molecular weight organic compounds (especially cysteine and aspartic acid) declined, however catabolism of two others (lysine and arginine) increased. Shifts in the capacity of soil microbiota to cycle common organic compounds have implications for overall geochemical cycling of C and N in acidifying soils. The genetic structure of the bacterial communities in soil strongly correlated with pH (ρ=0.722; P=0.001) and that of soil fungi with pH and % sand (ρ=0.323; P=0.006). Catabolic function was more closely associated with the structure of the bacterial than fungal communities. This work has shown that soil pH is a primary driver of microbial diversity and function in soil. Agricultural management practices thereby act to selectively shift populations and functions against this background.  相似文献   

10.
Traditional fallow periods in the Bolivian highlands are being shortened in an effort to increase short-term crop yields, with potential long-term impacts on soil microbial communities and their functions. In addition, native vegetation, such as Parasthrephia sp. or Baccharis sp. (both locally known as ‘thola’) are often removed as a fuel for cooking. We evaluated the effects of fallow period and thola on soils in 29 farmers' fields in two municipalities in the Bolivian Altiplano (Umala and Ancoraimes). Soil fungal and bacterial community responses were characterized using 454-pyrosequencing. Soils in Ancoraimes had significantly higher levels of organic matter, nitrogen and other macronutrients compared to Umala. Ancoraimes soils also supported more diverse fungal communities, whereas Umala had more diverse bacterial communities. Unexpectedly, the longer fallow periods were associated with significantly lower fungal diversity in Umala and lower bacterial diversity in Ancoraimes. Fungi assigned to genera Bionectria, Didymella, and Alternaria, and bacteria assigned to genera Paenibacillus, Segetibacter, and Modestobacter decreased in frequency with longer fallow period. The presence of thola was not associated with significantly different overall soil fungal or bacterial diversity, but was associated with higher frequency of some genera, such as Fusarium and Bradyrhizobium. Our results indicate that fallow period has a range of effects on soil communities, and that the removal of thola may impact the dynamics of these communities.  相似文献   

11.
Loss of soil organic matter under cropping systems is often considered one of the most serious forms of agriculturally induced soil degradation. Therefore, understanding how to improve or maintain soil fertility is of importance for sustainable systems of agriculture. This study deals with the effects of succession fallow and fertilization combined with crop rotation on the chemical properties and microbial biomass of soil in the central Loess Plateau, China. In order to create a more uniform experimental environment and avoid the influence of different crop residues, wheat/potato (W/P) rotation was selected as a fertilization treatment. The results showed that with increasing fallow time organic carbon (Corg) and total nitrogen (TN) slightly increased, microbial biomass carbon (MBC) and MBC/Corg gradually decreased, and microbial biomass nitrogen (MBN) remained unchanged. However, only MBC/Corg among all the microbial parameters measured showed significant differences at various stages of fallow. Although there was a decrease in organic carbon and total nitrogen in the fertilized plots, MBC was not significantly different in the various fallow and fertilized plots except for one‐year‐old fallows, which had the highest MBC. MBN, MBC/Corg and MBN/TN in fertilized plots were higher than for plots at different stages of fallow. Fertilization can increase organic carbon, total nitrogen, MBC and MBN content (compared to the control). It was concluded that appropriate land management, such as fertilization combined with crop rotation and reducing one‐year‐old fallow, would be useful ways to improve or maintain soil fertility. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Microbial biomass in soils of Russia under long-term management practices   总被引:6,自引:0,他引:6  
 Non-tilled and tilled plots on a spodosol (Corg 0.65–1.70%; pH 4.1–4.5) and a mollisol (Corg 3.02–3.13%, pH 4.9–5.3), located in the European region of Russia, were investigated to determine variances in soil microbial biomass and microbial community composition. Continuous, long-term management practices, including tillage and treatment with inorganic fertilizers or manure, were used on the spodosol (39 years) and mollisol (22 years). Total microbial biomass (Cmic), estimated by the substrate-induced respiration (SIR) method, and total fungal hyphae length (membrane filter technique) were determined seasonally over a 3-year period. Long-term soil management practices (primarily tillage and fertilizer application) led to decreases in total microbial biomass (80–85% lower in spodosol and 20–55% lower in mollisol), decreases in the contribution of Cmic to Corg (2.3- to 3.5-fold lower in spodosol and 1.2- to 2.3-fold lower in mollisol), and 50–87% decreases in total fungal hyphae length compared to non-tilled control plots. The contribution of fungi to total SIR in virgin mollisol and fallow spodosol plots was approximately 30%. However, the contribution of fungi to SIR was approximately two times greater in tilled spodosol plots compared to a fallow plot. In contrast, the contribution of fungi to SIR in tilled plots of mollisol was less (1.4–4.7 times) than for a virgin plot. In summary, long-term soil management practices such as tillage and treatment with organic or inorganic fertilizers are important determinants of soil microbial biomass and the contribution of fungi to total SIR. Received: 28 April 1998  相似文献   

13.
As part of the restoration of biodiversity on former agricultural land there has been focused on methods to enhance the rate of transition from agricultural land towards natural grasslands or forest ecosystems. Management practices such as sowing seed mixtures and inoculating soil of later successional stages have been used. The aim of this study was to determine the effects of a managed plant community on the diversity of soil fungi in a newly abandoned agricultural land. A field site was set up consisting of 20 plots where the plant diversity was managed by either sowing 15 plant species, or natural colonization was allowed to occur. The plant mixture contained five species each of grasses, legumes and forbs that all were expected to occur at the site. A subset of the plots (five from each treatment) was inoculated with soil cores from a late successional stage. The plant community composition was subject to a principal component analysis based on the coverage of each species. Five years after abandonment, soil samples were taken from the plots, DNA was extracted and the ITS region of the rDNA gene was amplified using fluorescently labelled fungal specific primers (ITS 1F/ITS 4). The PCR products were digested using HinfI and TaqI and sequenced. Results from both restriction enzymes were combined and a principal component analysis performed on the presence/absence of fragments. Also the fungal diversity expressed as number of restriction fragments were analysed. There was significantly higher fungal species richness in the experimental plots compared to the forest and field soils, but no differences between sown and naturally colonized plots. The different plant treatments did not influence the below ground fungal community composition. Soil water content on the other hand had an impact on the fungal community composition.  相似文献   

14.
The elemental composition and structure of humic acids were studied in heavy loamy soddy-podzolic soils of the Cis-Urals region under different land management practices. The humic acids in the soil of the long-term clean fallow, overgrown fallow (abandoned plot), and crop rotation plots differed in their composition and properties. The humic acids in the soils of the crop rotation with the regular application of manure and of the overgrown fallow were enriched in the components of both their central (nuclear) and peripheral parts. Such a structure ensured the active participation of humic acids in the carbon cycle with the simultaneous preservation of the soil’s fertility.  相似文献   

15.
Soil micro-organisms play a vital role in grassland ecosystem functioning but little is known about the effects of grassland management on spatial patterns of soil microbial communities. We compared plant species composition with terminal restriction fragment length polymorphism (T-RFLP) fingerprints of soil bacterial and fungal communities in unimproved, restored and improved wet grasslands. We assessed community composition of soil micro-organisms at distances ranging from 0.01 m to 100 m and determined taxa–area relationships from field- to landscape level. We show that land management type influenced bacterial but not fungal community composition. However, extensive grassland management to restore aboveground diversity affected spatial patterns of soil fungi. We found distinct distance–decay and small-scale aggregation of fungal populations in extensively managed grasslands restored from former arable use. There were no clear spatial patterns in bacterial communities at the field-scale. However, at the landscape level there was a moderate increase in bacterial taxa and a strong increase in fungal taxa with the number of sites sampled. Our results suggest that grassland management affects soil microbial communities at multiple scales; the observed small-scale variation may facilitate plant species coexistence and should be taken into account in field studies of soil microbial communities.  相似文献   

16.
Soil particulate organic carbon under different land use and management   总被引:11,自引:0,他引:11  
Abstract. Changes in particulate organic carbon (POC) relative to total organic carbon (TOC) were measured in soils from five agronomic trial sites in New South Wales, Australia. These sites covered a wide range of different land use and management practices. POC made up 42–74% of TOC and tended to be greater under pasture and more conservative management than traditional cropping regimes. It was the form of organic carbon preferentially lost when soils under long-term pasture were brought under cultivation. It was also the dominant form of organic carbon accumulating under more conservative management practices (direct drilling, stubble retained and organic farming). Across all sites, changes in POC accounted for 81.2% (range 69–94%) of the changes in total organic carbon caused by differences in land use and management. Significant differences were found between pasture and cropped soils in the carbon content in the <53 μm fraction, particularly for hardsetting soils. However, even with these, POC was a more sensitive indicator of change caused by land use and management practices than TOC. The current method for measuring POC involves dispersion using sodium hexametaphosphate. The dispersing agent was found to extract 4–19 % of the TOC, leading to a significant under-estimation of POC.  相似文献   

17.
The effects of land use and management practice on soil physical, chemical and microbiological properties may provide essential information for assessing sustainability and environmental impact. This study compared the effects of 41 years of no-tillage (NT) with continuous apple orchard, with those of conventional tillage (CT) with wheat–soybean rotation and another of puddling (PD) with continuous rice on the characteristics of a pumice Andisol in a temperate region of northern Japan. Higher values for bulk density, penetration resistance, pH, C/N ratio, exchangeable Na (X-Na), Fe, and Mn were observed for PD than NT and CT. On the other hand, organic matter, EC, N, exchangeable K (X-K), exchangeable Ca (X-Ca) and Cu were significantly higher for NT than CT and PD. Highest content of Zn was found in CT compared to other practices. The three-phase composition at pF 2.0 was significantly affected by land use and tillage practices. The solid phase and liquid phase were greater under PD than under NT and CT, while air phase was greater under CT than under NT and PD. Significantly higher values for saturated hydraulic conductivity was found in CT than NT and PD. Total phospholipid fatty acid (PLFA) and PLFA for bacteria, aerobes and cyanobacteria were remarkably higher in NT than CT and PD, regardless of depth. On the other hand, PLFA for methane-oxidizing bacteria, sulfate-reducing bacteria and mycorrhizae were significantly higher in CT than NT and PD. PLFA for fungi was significantly higher in surface (0–10 cm) soils than subsurface (10–20 cm) soils regardless of treatments. Highest bacterial and fungal diversity evaluated by DNA band number in DGGE analysis based on PCR amplification of 16S rDNA and 18S rDNA fragments, respectively, were observed in surface soil of PD. The result suggests a linkage between microbial community and tillage practices in temperate Andisol. This study also justifies the need of measuring soil characteristics based on soil microbial communities.  相似文献   

18.
Agricultural practices have strong impacts on soil microbes including both the indices related to biomass and activity as well as those related to community composition. In a grassland restoration project in California, where native perennial bunchgrasses were introduced into non-native annual grassland after a period of intensive tillage, weeding, and herbicide use to reduce the annual seed bank, microbial community composition was investigated. Three treatments were compared: annual grassland, bare soil fallow, and restored perennial grassland. Soil profiles down to 80 cm in depth were investigated in four separate layers (0-15, 15-30, 30-60, and 60-80 cm) using both phospholipid ester-linked fatty acid (PLFAs) and ergosterol as biomarkers in addition to microbial biomass C by fumigation extraction. PLFA fingerprinting showed much stronger differences between the tilled bare fallow treatment vs. grasslands, compared to fewer differences between restored perennial grassland and annual grassland. The presence or absence of plants over several years clearly distinguished microbial communities. Microbial communities in lower soil layers were little affected by management practices. Regardless of treatment, soil depth caused a strong gradient of changing habitat conditions, which was reflected in Canonical Correspondence Analysis of PLFAs. Fungal organisms were associated with the presence of plants and/or litter since the total amount and the relative proportion of fungal markers were reduced in the tilled bare fallow and in lower layers of the grassland treatments. Total PLFA and soil microbial biomass were highly correlated, and fungal PLFA biomarkers showed strong correlations to ergosterol content. In conclusion, microbial communities are resilient to the grassland restoration process, but do not reflect the change in plant species composition that occurred after planting native bunchgrasses.  相似文献   

19.
《Applied soil ecology》2007,35(1):94-106
In degraded agricultural soils, organic C levels can be increased and conserved by adopting alternative management strategies such as no-tillage and increased cropping intensity. However, soil microbial community responses to increased soil organic C (SOC) may be constrained due to water limitations in semi-arid dryland agroecosystems. The purpose of this study was to assess SOC, microbial biomass C (MBC) and community ester-linked fatty acid methyl ester (EL-FAME) composition under winter wheat (Triticum aestivum L.) in no-till systems of wheat–corn (Zea mays L.)–fallow (WCF), wheat–wheat–corn–millet (Panicum miliaceum L.) (WWCM), wheat–corn–millet (WCM), opportunity cropping (OPP), and perennial grass across a potential evapotranspiration gradient in eastern Colorado. Rotations of WWCM and OPP, in which crops are chosen based on available soil water at the time of planting rather than according to a predetermined rotation schedule, increased levels of SOC to those measured under perennial grass. However, MBC under OPP cropping accounted for the smallest fraction (2.0–3.6%) of SOC compared to other systems, in which MBC ranged from 2.4 to 6.3% of SOC. Microbial community structure was most divergent between OPP-cropped and perennial grass soils, whereas few differences were observed among microbial communities of the WCF, WCM, and WWCM rotations. Compared to perennial grass and other cropping systems, microbial biomass in OPP-cropped soil was low and contained less of the arbuscular mycorrhizal fungal biomarker 16:1ω5c. Microbial stress, as indicated by the ratio of 17:0 cy to 16:1ω7c, was greatest under OPP and WCF cropping. In contrast, soils under perennial grass contained lower ratios of bacterial:fungal EL-FAMEs and higher levels of MBC, ratios of MBC:SOC, and relative abundances of 16:1ω5c. Across locations, SOC and moisture content increased as soil texture became finer, whereas trends in MBC and community structure followed the potential evapotranspiration gradient. Soil from the high potential evapotranspiration site contained the lowest level of MBC but greater relative amounts of 16:1ω5c and lower ratios of stress indicator and bacterial:fungal EL-FAMEs compared to soil located at the moderate and low potential evapotranspiration sites. Indistinct microbial communities under WCF, WCM, and WWCM could be explained by EL-FAME limitations to detecting slight differences in microbial community structure or to the overwhelming response of microbial communities to environmental rather than management conditions. Further research is needed to assess potential legacy effects of long-term agricultural management that may mask microbial responses to recent management change, as well as to identify conditions that lead to high microbial community resiliency in response to management so that communities are similar under a given crop despite different preceding crops.  相似文献   

20.
Communities of arbuscular mycorrhizal fungi (AMF) are strongly affected by land use intensity and soil type. The impact of tillage practices on AMF communities is still poorly understood, especially in organic farming systems. Our objective was to investigate the impact of soil cultivation on AMF communities in organically managed clay soils of a long-term field experiment located in the Sissle valley (Frick, Switzerland) where two different tillage (reduced and conventional mouldboard plough tillage) and two different types of fertilization (farmyard manure & slurry, or slurry only) have been applied since 2002. In addition, a permanent grassland and two conventionally managed croplands situated in the neighborhood of the experiment were analyzed as controls. Four different soil depths were studied including top-soils (0–10 and 10–20 cm) of different cultivation regimes and undisturbed sub-soils (20–30 and 30–40 cm). The fungi were directly isolated from field soil samples, and additionally spores were periodically collected from long-term trap culture (microcosm) systems. In total, >50,000 AMF spores were identified on the species level, and 53 AMF species were found, with 38 species in the permanent grassland, 33 each in the two reduced till organic farming systems, 28–33 in the regularly plowed organic farming systems, and 28–33 in the non-organic conventional farming systems. AMF spore density and species richness increased in the top-soils under reduced tillage as compared to the ploughed plots. In 10–20 cm also the Shannon–Weaver AMF diversity index was higher under reduced tillage than in the ploughed plots. Our study demonstrates that AMF communities in clay soils were affected by land use type, farming system, tillage as well as fertilization strategy and varying with soil depth. Several AMF indicator species especially for different land use types and tillage strategies were identified from the large data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号