首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the long-term influence of contrasting rural land use types on the level, plot-scale variation and horizontal spatial structure of decomposition activities and the bacterial community in soil. Experimental data were collected in the southern boreal zone from topsoil layers of adjacent spruce forest, unmanaged meadow (former field) and organically cultivated field that all shared the same soil origin. The forest soil was sampled separately for the organic and mineral layers. A geostatistical design comprising 50 sampling points per plot area of 10 × 10 m2 was used. The measured microbiological characteristics included eight different hydrolytic soil enzyme activities involved in C, P and S cycles, bacterial 16S rDNA length heterogeneity profiles (LH-PCR) and total DNA yield as a relative estimate of microbial biomass.Effects of land use were pronounced on both the bacterial community structure and soil enzyme activities. Soil organic matter (SOM) content predicted well the major differences in soil enzyme activities and microbial biomass. Highest enzyme activities were generally found in the forest organic soil whereas the underlying mineral soil showed significantly lower activities with a pattern similar to those of the other mineral soils, especially the cultivated field. Bacterial LH-PCR fingerprints were distinct but at the same time remarkably similar between field and meadow soils whereas the forest organic layer differed clearly from the mineral soils. Within-plot variation of soil microbiological characteristics was best explained by the variation of SOM. Relative standard deviations of soil microbiological characteristics typically decreased in the order: forest organic layer ≈ forest mineral layer > meadow > field. However, bacterial fingerprints showed lowest variation within the meadow. Most of the microbiological variables studied showed no or only weak spatial structure at the scale sampled.  相似文献   

2.
A comparative study of organic, low input, conventional vegetable greenhouse systems was conducted to assess the effect of management practices on the soil nematode community. Bacterivores were the most dominant trophic group in all three systems with a mean proportion of over 80%, followed by omnivore-carnivores. In general, organic management practices increased the abundance of total nematodes, bacterivores, fungivores, and omnivore-carnivores in comparison with low input and conventional management practices. Though inhibitory effects of plant feeders were found in organic and low input systems, these effects were more evident in organic systems. However, small differences were observed in the composition of trophic groups and fauna analysis. All three systems displayed enriched soil conditions and structured food webs. We inferred that the bottom-up effect resulting from organic input in the soil food web may play a more important role than the disruption effects under our high input greenhouse conditions. The Shannon index (H′) and genus dominance (λ) suggested that in greenhouse conditions, excessive manure input would cause a decrease in nematode diversity but increase the dominance, particularly for enrichment opportunists. We concluded that management practices under greenhouse conditions were more influential on nematode biomass (including trophic groups) than community structure.  相似文献   

3.
以往的研究表明有机管理有利于生物多样性保护,但在不同农业生境类型中是否都存在这个结论呢?基于此问题,本研究在一个多生境的有机管理农场与一个相邻的多生境常规集约化管理农区,采用陷阱法进行蜘蛛取样,对比有机和常规管理措施下大棚菜地、果园、稻田田埂、露天田块及农田边界等5种生境类型的农田蜘蛛多样性的差异,并分析土壤因子对蜘蛛多样性的影响。研究发现:1)有机管理与常规管理的蜘蛛物种数没有显著差异,但有机管理的果园中蜘蛛个体数比常规管理的果园中多139%,且差异显著。同一管理措施下,仅常规管理农田区的农田边界蜘蛛个体数和物种数分别显著高于其他生境均值104%和59%。2)有机管理农场比常规管理农田的蜘蛛物种组成差异略大,且在有机管理下不同生境间的蜘蛛群落组成差异更明显。3)土壤因子中有机质、全氮、全磷含量等对蜘蛛群落结构有显著影响,但对蜘蛛个体数和物种数没有显著影响,仅土壤Cu含量和蜘蛛个体数呈显著负相关。在本研究中虽然有机管理和土壤因子对蜘蛛多样性有一定影响,但不同生境间管理强度、植被结构等差异对蜘蛛多样性的影响更大。因此,发展多种农业生境类型的有机农业可提升物种β多样性。同时,在常规集约化管理农区,保留农田边界等半自然生境、适当减少化肥和农药等投入、降低农田内部的管理强度、防止土壤重金属污染等措施均有助于保护蜘蛛多样性。  相似文献   

4.
Background, aim, and scope  As the second most important greenhouse gas, methane (CH4) is produced from many sources such as paddy fields. Methane-oxidizing bacteria (methanotrophs) consume CH4 in paddy soil and, therefore, reduce CH4 emission to the atmosphere. In order to estimate the contribution of paddy fields as a source of CH4, it is important to monitor the effects of fertilizer applications on the shifts of soil methanotrophs, which are targets in strategies to combat global climate change. In this study, real-time polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) based on 16S rRNA and pmoA genes, respectively, were used to analyze the soil methanotrophic abundance and community diversity under four fertilization treatments: urea (N), urea and potassium chloride (NK), urea, superphosphate, and potassium chloride (NPK), and urea, superphosphate, potassium chloride, and crop residues (NPK+C), compared to an untreated control (CON). The objective of this study was to examine whether soil methanotrophs responded to the long-term, different fertilizer regimes by using a combination of quantitative and qualitative molecular approaches. Materials and methods  Soil samples were collected from the Taoyuan Experimental Station of Agro-ecosystem Observation at Changde (28°55′ N, 111°26′ E), central Hunan Province of China, in July 2006. Soil DNAs were extracted from the samples, then the 16S rRNA genes were quantified by real-time PCR and the pmoA genes were amplified via general PCR followed by DGGE, cloning, sequencing, and phylogenetic analysis. The community diversity indices were assessed through the DGGE profile. Results  Except for NPK, other treatments of N, NK, and NPK+C showed significantly higher copy numbers of type I methanotrophs (7.0–9.6 × 107) than CON (5.1 × 107). The copy numbers of type II methanotrophs were significantly higher in NPK+C (2.8 × 108) and NK (2.5 × 108) treatments than in CON (1.4 × 108). Moreover, the ratio of type II to type I methanotrophic copy numbers ranged from 1.88 to 3.32, indicating that the type II methanotrophs dominated in all treatments. Cluster analyses based on the DGGE profile showed that the methanotrophic community in NPK+C might respond more sensitively to the environmental variation. Phylogenetic analysis showed that 81% of the obtained pmoA sequences were classified as type I methanotrophs. Furthermore, the type I-affiliated sequences were related to Methylobacter, Methylomicrobium, Methylomonas, and some uncultured methanotrophic clones, and those type II-like sequences were affiliated with Methylocystis and Methylosinus genera. Discussion  There was an inhibitory effect on the methanotrophic abundance in the N and a stimulating effect in the NK and NPK+C treatments, respectively. During the rice-growing season, the type II methanotrophs might be more profited from such a coexistence of low O2 and high CH4 concentration environment than the type I methanotrophs. However, type I methanotrophs seemed to be more frequently detected. The relatively complex diversity pattern in the NPK+C treatment might result from the strong CH4 production. Conclusions  Long-term fertilization regimes can both affect the abundance and the composition of the type I and type II methanotrophs. The inhibited effects on methanotrophic abundance were found in the N treatment, compared to the stimulated effects from the NK and NPK+C treatments. The fertilizers of nitrogen, potassium, and the crop residues could be important factors controlling the abundance and community composition of the methanotrophs in the paddy soil. Recommendations and perspectives  Methanotrophs are a fascinating group of microorganisms playing an important role in the biogeochemical carbon cycle and in the control of global climate change. However, it is still a challenge for the cultivation of the methanotrophs, although three isolates were obtained in the extreme environments very recently. Therefore, future studies will be undoubtedly conducted via molecular techniques just like the applications in this study.  相似文献   

5.
Denitrification is one of the major processes causing nitrogen loss from arable soils.This study aimed to investigate the responses of nir S-type denitrifier communities to different chronic fertilization regimes across the black soil region of Northeast China.Soil samples were collected from sites located in the north(NB),middle(MB),and south(SB)of the black soil region of Northeast China,each with four chronic fertilization regimes:no fertilizer(No F),chemical fertilizer(CF),manure(M),and chemical fertilizer plus manure(CFM).Methods of quantitative polymerase chain reaction(q PCR)and Illumina Mi Seq sequencing were applied to assess the abundance and composition of denitrifier communities by targeting the nir S gene.The results showed that the M and CFM regimes significantly increased the abundances of nir S-type denitrifiers compared with No F at the three locations.The majority of nir S sequences were grouped as unclassified denitrifiers,and the different fertilizers induced little variation in the relative abundance of known nir S-type denitrifier taxa.Over 90%of the sequences were shared among the four fertilization regimes at each location,but none of the abundant operational taxonomic units(OTUs)were shared among the three locations.Principal coordinate analysis(PCo A)revealed that the communities of nir S-type denitrifier were separated into three groups that corresponded with their locations.Although similar fertilization regimes did not induce consistent changes in the nir S-type denitrifier communities,soil p H and NO-3-N content simultaneously and significantly influenced the structure of nir S-type denitrifier communities at the three locations.Our results highlight that geographical separation rather than chronic fertilization was the dominant factor determining the nir S-type denitrifier community structures,and similar chronic fertilization regimes did not induce consistent shifts of nir S-type denitrifier communities in the black soils.  相似文献   

6.
We sought to detect the temporal change (1958–1999) in land use patterns and its relationship to physical landscape parameters in a small catchment in the semi-arid hilly area of the Chinese Loess Plateau. Degree of slope and soil type were selected as stable discriminating parameters that might constrain land use. With the help of GIS and canonical correspondence analysis, the relationship between rural land use distribution or transformation and the selected physical parameters was examined. The land use had undergone a general shift from farmland to woodland or grassland. Canonical correspondence analyses (CCA) indicated that a relationship between land use and the selected physical parameters was evident, farmland coincided with favorable conditions of fertile soil and gentle slope, while grassland and woodland were associated with conditions of poorer soil and steep slope. In the more favorable conditions the main land use change process was the intensification of farming, while in the less favourable conditions it was the abandonment of farmland. A thorough understanding of the relationship between land use temporal or spatial patterns and landscape physical parameters in the Loess Plateau of China, like degree of slope and soil type, will enhance our capability to predict landscape dynamics and lead to more sound and effective land use management strategies.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号