首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scenarios of climate changes indicate longer and more frequent spells of mild weather during winter in northern latitudes. De-hardening in perennial grasses could increase the risk of frost kill. In this study, the resistance to de-hardening of different grass species and cultivars was examined, and whether the resistance changes during winter or between years, was tested. In Experiment 1, two cultivars of timothy ( Phleum pratense L.) and perennial ryegrass ( Lolium perenne L.) of contrasting winter hardiness were grown under ambient winter conditions, transferred from the field in January and April 2006 to the laboratory for 9 d with controlled de-hardening conditions of 3°C, 9°C and 15°C. The timothy cultivars were tested at 3°C, 6°C and 9°C in a similar experiment (Experiment 2) in January 2007. De-hardening, measured as decrease in frost tolerance (LT50), was less in timothy than in perennial ryegrass and increased with increasing temperatures. The northern winter-hardy cultivar Engmo of timothy de-hardened more rapidly than the less-hardy cultivar Grindstad, but had higher initial frost tolerance in both experiments, whereas there was less difference between cultivars of perennial ryegrass in Experiment 1. Cultivar Grindstad of timothy lost all hardiness in early spring at all temperatures, whereas cultivar Engmo maintained some hardiness at 3°C. Cultivar Engmo de-hardened at a lower rate in 2007 than in 2006, in spite of similar frost tolerance at the start of de-hardening treatment in both years. This indicates that the rate of de-hardening was controlled by factors additional to the initial frost tolerance and that autumn weather conditions might be important for the resistance to de-hardening.  相似文献   

2.
Three cultivars (two diploid and one tetraploid) in each of three maturity groups (early, intermediate and late) of perennial ryegrass were sown in 10 m2 plots, replicated four times, in Northern Ireland in June 1997 in a study of the effect of heading date on tiller development (including initiation to flower) and turnover of tillers produced at specific times in spring in 1998 and 1999. The plots were harvested seven times in each year. Annual dry‐matter production was similar for all groups in each year. In spring and early summer of both years, tiller density of the diploid cultivars was 1·5 times greater than that of the tetraploid cultivars and the mean tiller density over all swards in June was about 0·40 times greater than that in April. Maximum proportions of reproductive tillers in the early, intermediate and late maturity groups, determined from apical dissections, were found in early April, mid‐May and early June, respectively. Although a high proportion of tillers, which were present when annual observations commenced in spring, was decapitated at the first harvest in the early group, the previous population density was maintained by rapid production of new tillers during May, including those from suppressed tiller buds during reproduction. It is concluded that the relationship between heading date and rate of tiller turnover (including flowering) at specified times in spring is important in sward management throughout the early part of the growing season and should be taken into account in tiller‐based grass growth models.  相似文献   

3.
Eight perennial ryegrass cultivars (representing the variations in ploidy, heading date and water‐soluble carbohydrates concentration) were investigated for morphology and nutritive value at three phenological stages: pre‐heading vegetative, reproductive and post‐flowering vegetative stages. Chemical compositions and digestibility of morphological components (lamina, pseudostem and reproductive stem) from each perennial ryegrass cultivar were analysed in a split‐plot design. At the vegetative stages, perennial ryegrass cultivars differed significantly in the proportions of lamina and pseudostem. Tetraploid cultivars, Base and Bealey, always had the greatest lamina proportion (51.8% and 53.2% at the pre‐heading and post‐flowering vegetative stages respectively). At the reproductive stage, the emergence of seed heads diminished the differences in morphology among cultivars. Perennial ryegrass cultivars also had distinct nutritive value throughout three phenological stages. The high‐sugar cultivar, AberMagic, had high WSC concentrations (276, 227 and 90 g/kg DM at the pre‐heading vegetative, reproductive and post‐flowering vegetative stages respectively); the intermediate‐heading cultivars, Kamo and Commando, generally had a lower organic matter digestibility in dry matter than the late‐heading cultivars at the pre‐heading vegetative (70.7% vs. 74.4%) and reproductive stage (63.9% vs. 68.2%). However, although the morphological components were different in nutritive value consistently, the differences in morphology did not account for the variation in nutritive value among perennial ryegrass cultivars.  相似文献   

4.
The effects of five herbicides on seed yield and viability of perennial ryegrass cv. S24 were tested at two sites. Benzoylprop-ethyl, chlorfenpropmethyl, difenzoquat, ethofumesate and flam-prop-isopropyl were safe to use at doses recommended for use in other crops. When applied at three times the recommended dose, only difenzoquat reduced the yield and germination of seed and benzoylprop-ethyl reduced seed germination. The recommended doses of difenzoquat and ethofumesate were safe when applied on cv. Barlenna at different growth stages. Difenzoquat reduced seed yield only after three times the recommended dose was applied to tillered plants. Ethofumesate, even at three times the recommended dose, did not affect seed yield but plant numbers were reduced by early treatment. The results suggest that the herbicides tested may be safe to use in perennial ryegrass seed crops at the recommended doses but more work is needed on the safety of difenzoquat in relation to crop growth stage.  相似文献   

5.
There are potential advantages and disadvantages associated with grazing spring perennial ryegrass swards designated for first‐cut silage. These may differ for intermediate‐heading (0·50 ear emergence in the second half of May) and late‐heading (0·50 ear emergence in the first half of June) cultivars. The interactions between cultivar type, spring‐grazing frequency, silage‐harvest date and year were examined in an experiment with a randomized complete block (n = 4) design with a factorial arrangement of treatments, conducted in Ireland. The factors were (i) two perennial ryegrass mixtures: intermediate‐ vs. late‐heading cultivars, (ii) three spring‐grazing regimes: no grazing, grazing in mid‐March or grazing in both mid‐March and mid‐April, (iii) four first‐cut silage‐harvest dates that were at c. 10‐d intervals from 19 May and (iv) 2 years (1998 and 1999). The effects of cultivar mixture on herbage mass of the swards in spring were small and not statistically significant. The late‐heading cultivars provided lower amounts of herbage dry matter for harvesting for first‐cut silage but herbage with higher in vitro organic digestibility values compared with intermediate‐heading cultivars. To achieve the same amount of herbage for silage, the late‐heading cultivars needed to be harvested 8 d later than the intermediate‐heading cultivars. Even with this delay in harvest date, the late‐heading cultivars had higher in vitro organic digestibility values than the intermediate‐heading cultivars. The late‐heading cultivars could be harvested up to 30 d later and produce a higher amount of herbage for first‐cut silage with similar digestibility values compared with the intermediate‐heading cultivars.  相似文献   

6.
The photosynthetic characteristics of eleven commercial perennial ryegrass ( Lolium perenne L.) and nine red fescue ( Festuca rubra L.) turf-grass cultivars were evaluated. In general, perennial ryegrass had a faster growth, with higher net photosynthesis and quantum efficiency and lower dark respiration ( R d) than red fescue. Among the perennial ryegrass cultivars two major groups were observed: the first one with slow growth, high light compensation point ( I c) and low R d and the second one with fast growth, low I c and high R d. A similar ranking was evident for the red fescue cultivars tested. The chewings fescue ( F. rubra ssp. commutata ) cultivars belonged to the first group, whereas the strong creeping red fescue ( F. rubra ssp. rubra ) cultivars were classified into the second group. Slender creeping red fescues ( F. rubra ssp. trichophylla ) had intermediate features. These variations make it possible to use some of these characteristics in breeding programmes for turf-grasses.  相似文献   

7.
First‐year crops of diploid perennial ryegrass (cvs. Meridian, Bronsyn and Grasslands Impact) were sown on 1 April and 14 May 2008. Applications of trinexapac ethyl (TE) plant growth regulator at 0, 200 and 400 g a.i. ha?1 were used to shorten stems to examine the impact of seed growth. Seed filling followed a consistent sigmoidal growth pattern with a lag phase of 127°C days, and linear duration of 390°C days. Time to 95% of final seed weight was 517°C days. Seed yield increases from TE were from higher numbers of first‐grade seeds m?2, achieved by a higher rate of seed filling during the linear phase of 0·115 mg per °C day per spike. For all cultivars, the maximum stem dry weight occurred at 310–400°C days post‐anthesis, which suggest the stem was a strong sink. As seeds developed, their demand for assimilate increased and they drew more from the stem. At harvest, stem weights from TE treatments were 25% heavier than at anthesis, while untreated ‘Bronsyn’ and ‘Grasslands Impact’ stems were similar to those at anthesis. Thus, stems treated with TE contributed assimilates to increase seed yield but were still a net sink with assimilates in the stem at harvest. Trinexapac ethyl rate induced an inverse relationship between seed yield and stem height. This showed that competition for assimilate between stems and growing seeds limited the seed yield. Management or genetic factors that reduce stem height are likely to increase seed yields of perennial ryegrass.  相似文献   

8.
This experiment quantified the effects of: (i) heading date of perennial ryegrass, (ii) grazing frequency in spring and (iii) date of silage harvest, on the ensilability of herbages harvested for silage, and on the conservation and estimated nutritive value of the resultant silages. Replicated field plots with two perennial ryegrass mixtures (intermediate‐ and late‐heading cultivars) were subjected to three spring‐grazing regimes (no grazing, grazing in late March and grazing in both late March and late April) and were harvested on four first‐cut harvest dates between 20 May and 21 June. Herbage from each of the four replicates of these 24 treatments was precision‐chopped and ensiled unwilted and with no additive in laboratory silos. Herbage from the sward with the intermediate‐heading cultivar had a higher (P < 0·001) dry‐matter (DM) content and buffering capacity than that from the late‐heading cultivar, whereas water‐soluble carbohydrate concentrations increased (P < 0·001) with more frequent grazing in spring. Later harvesting enhanced herbage ensilability through an increased (P < 0·001) DM content and reduced (P < 0·001) buffering capacity and pH. Fermentation profiles of the silage were not markedly influenced by the cultivar mixture used but grazing in both late March and late April resulted in a more extensive fermentation with the acids produced increasingly dominated by lactic acid. The concentrations of acetic acid, and to a lesser extent, ethanol declined as silage harvest date was delayed. Overall, the relative effects of grass cultivar mixture were smaller than those of spring‐grazing treatment or silage‐harvesting date although on any given harvest date the herbage from the intermediate‐heading cultivar mixture was easier to preserve as silage than herbage from the late‐heading cultivar mixture. Delaying the harvesting of the late‐heading swards by 8 d removed the differences related to growth stage in buffering capacity, pH and DM content.  相似文献   

9.
A field investigation was carried out over 3 years to determine if there was a synergistic effect on total or seasonal yield when cultivars of perennial ryegrass were grown in combination. The three cultivars used were Stormont Zephyr, Hora and Perma, representing respectively early, medium late and late maturing groups. Each cultivar was grown as a pure stand and also as a 50:50 mixture with each of the other two cultivars. Each of these swards was maintained under two rates of nitrogen fertilization (300 and 600 kg per ha per annum) and under two harvesting treatments (4 and 8 harvests per annum). Mixture yield did not exceed significantly the pure sward yieid of the highest yielding component. Occasional yield improvements were detected for the mixtures averaged as a group over monocultures averaged as a group. There was a tendency, especially under frequent cutting, for the yield response to nitrogen to be greater from mixed than from pure swards.  相似文献   

10.
11.
In an experiment of four years duration, the competitive relationships between three cultivars of white clover ( Trifolium repens L.) and ten cultivars of perennial ryegrass ( Lolium perenne L.) were studied under a N fertilizer regime of 200–240 kg ha-1 a-1. The clover cultivars were selected to embrace the various leaf sizes from medium large to small and the ryegrasses included early, mid-season and late cultivars with a known range of persistence.
During the experiment there was a progressive decline in the contribution of clover, though the different characteristics of each of the clover and ryegrass cultivars produced substantial deviations from the average trend. The clover cultivar Kersey was significantly more aggressive towards the companion grass cultivars than either S100 or S184. It produced consistently greater clover contribution to total yield than the other two cultivars and significantly depressed the yields of some of the companion grass cultivars. There was evidence that compatibility of the ryegrass cultivars with clover was inversely related to persistence; the non-persistent ryegrass cultivars S321 and Presto consistently produced lower grass yields than the more persistent cultivars and consequently permitted greater clover contribution. In the second and third years yield substitution effects between clover and grass components substantially reduced differences in the total grass-clover yield.
The interactions revealed in the experiment showed that both ryegrass and clover cultivars have the potential to influence each other when in association although, with minor exceptions, total annual yields were similar for all grass and clover mixtures at the moderately high level of N applied.  相似文献   

12.
A comparison was made of the fatty acid composition and nutritive value of twelve cultivars of perennial ryegrass ( Lolium perenne L.) differing in heading date and ploidy level. The cultivars were sown in triplicate plots and three sequential cuts of herbage were taken at 20-d intervals during the late spring and early summer to describe the fatty acid composition and other measurements of nutritive value. Differences between cultivars were recorded for DM content ( P  <   0·01) and concentrations of gross energy, neutral-detergent fibre (NDF) and ash ( P  <   0·05). Diploid cultivars had a higher DM content and concentration of NDF ( P  <   0·01) than tetraploid cultivars whilst late-heading date cultivars had the lower NDF ( P  <   0·05), ADF and ash ( P  <   0·01) concentrations. There was variation between cultivars in fatty acid composition. Diploid cultivars had a higher concentration of C18:0 ( P  <   0·01) and C18:1 ( P  <   0·05) than tetraploid cultivars and late-heading date cultivars had the highest concentrations of total fatty acids, C16:0, C18:2 and C18:3 ( P  <   0·05). This was predominantly due to the cultivar Tyrella which is a diploid, late-heading cultivar. The study showed that some variation exists between perennial ryegrass cultivars in concentrations of polyunsaturated fatty acids, which may present opportunities to select for this trait, but further research on the developmental stages and degree of leafiness of cultivars is first required.  相似文献   

13.
Interactions between perennial ryegrass (grass) and white clover (clover) cultivars were investigated at the seedling stage in two experiments: (a) a field experiment in which two clovers, AberHerald and Grasslands Huia, were grown in binary mixture with two grasses, Preference and Ba 10761; (b) a glasshouse experiment in which the same clover/grass combinations were grown in low-N soil either with (+ N) or without (-N) added N. In the field experiment both clovers produced larger and more complex seedlings with Preference, and this was particularly evident in Huia. In the glasshouse experiment grass dry-matter yield was greater in the +N treatment, and this effect increased with time. Clover seedling density and development were suppressed in the +N treatment, and the development of AberHerald was affected more than Huia. Morphological measurements of the clovers showed interactions between clover, grass and N level. In the -N treatment Huia plants were larger and more complex than those of AberHerald, but in +N conditions there was little difference between them. Grass cultivar had an effect on clover via N-level interactions: in +N plants there was no grass effect, but -N plants were significantly larger with Preference. Comparison of the root and shoot morphology of the two grasses revealed no obvious differences that would account for these effects.  相似文献   

14.
Ice encasement causes major winter damage in grasslands in coastal areas of Northern Scandinavia and may also affect grass performance in a future changing climate. Changes in ice‐encasement tolerance (LD50), frost tolerance (LT50) and water‐soluble carbohydrate (WSC) content were investigated in different cultivars of timothy and perennial ryegrass sampled at three sites with contrasting conditions. Timothy endured ice encasement for 40 d more than ryegrass (maximum LD50 63 vs. 20 d), and a cultivar originating from 69°N tolerated significantly longer periods in ice than a cultivar from 59°N. A similar relationship between cultivar origin and tolerance was observed for ryegrass. The higher LD50 in timothy compared with ryegrass seemed to be associated with a lower rate of change in WSC content during ice encasement, but no apparent relationship was found between WSC content at the start of encasement and plant survival in ice. A significant linear relationship was found between LD50 and LT50 of plants sampled in the field. A differing decline in frost tolerance during ice encasement for the species indicated that timothy is more resistant to dehardening under ice than ryegrass. This study contributes data and functional relationships needed to develop models of grass performance during winter.  相似文献   

15.
Non‐pregnant, non‐lactating ewes grazed adjacent monocultures of white clover and perennial ryegrass with three sward surface height (SSH) combinations [6 cm white clover: 6 cm perennial ryegrass (c6g6), 3 cm white clover: 6 cm perennial ryegrass (c3g6), 3 cm white clover: 9 cm perennial ryegrass (c3g9)] at two stocking densities (21·3 or 29·8 ewes ha–1). Immediately prior to the experiment, all ewes grazed a c6g6 sward. Grazing time on each plant species was recorded during daylight over two 48 h‐test periods. Subsequently, herbage intake rates for each species at each SSH were measured allowing intakes of each species to be calculated. For the first 24 h of both test periods (D1), ewes on treatment c3g6 spent less time grazing white clover than those on treatment c6g6 (228 vs. 362 min) and more time grazing perennial ryegrass (360 vs. 182 min). Total grazing time on treatment c3g6 was more than on treatment c6g6 (587 vs. 544 min) but the difference was not significant. Perennial ryegrass intake was higher (895 vs. 452 g), and white clover intake (814 vs. 1687 g), total intake (1719 vs. 2140 g) and proportion of white clover in the diet (0·460 vs. 0·794) were lower for treatment c3g6 than treatment c6g6. There were no significant differences in total grazing time, grazing time on either species, proportion of grazing time on white clover or proportion of white clover in the diet between treatment c3g6 and treatment c3g9. However, the higher intake rate of perennial ryegrass in treatment c3g9 led to higher perennial ryegrass and total intakes. For the second 24 h of both test periods (D2), ewes on treatment c3g6 again spent more time grazing perennial ryegrass than on treatment c6g6 (270 vs. 161 min) but time spent grazing white clover was similar (318 vs. 308 min). Total grazing time was significantly higher on treatment c3g6 than on treatment c6g6 (588 vs. 469 min) but proportion of grazing time on white clover was similar (0·554 vs. 0·668). Perennial ryegrass intake was significantly higher for treatment c3g6 than for treatment c6g6 (672 vs. 402 g) while white clover intake was significantly lower (1140 vs. 1435 g) but total intake was similar (1812 vs. 1836 g). The proportion of white clover in the diet was significantly lower for treatment c3g6 (0.628 vs. 0.785) than for treatment c6g6. The only significant differences between treatments c3g6 and c3g9 were in perennial ryegrass intake (672 vs. 906 g) and in total intake (1812 vs. 2287 g). Intake of perennial ryegrass on treatment c3g9 was also significantly greater than on treatment c6g6 (906 vs. 402 g) and total intake was higher (2287 vs. 1836 g). At the higher stocking density, time spent grazing perennial ryegrass and perennial ryegrass intake were significantly lower on D1 and D2 while total grazing time was also significantly lower and proportion of time grazing white clover and proportion of white clover in the diet were significantly higher at the higher stocking rate on D2. The results indicate that behaviour changed over the 48 h observation period for treatments c3g6 and c3g9 but behaviour remained relatively constant for animals on treatment c6g6. Ewes traded off dietary preference against total intake by altering grazing times on perennial ryegrass and white clover to achieve maximum net benefit.  相似文献   

16.
Botanical analyses were carried out on the herbage from plots of twelve early cultivars of perennial ryegrass (Lolium perenne) cut in their fourth year and the results related to visual persistence assessments carried out on the cultivars at the end of the second and third harvest years. Persistence assessments were found to be highly and positively correlated with the yields of sown cultivars (r=+0.96***,r=+0.99***) and to be highly and negatively correlated with the yields of unsown herbage species (r =+0.98***, r =?094***). The plots of the less persistent cultivars were invaded by unsown grass species and docks which contributed in varying degrees to total DM yield, reducing the correlation of total yield with persistence. Assessments of botanical composition of swards made at the end of the second year provided reliable predictions of the relative persistence of the cultivars. The results of the investigations indicated that assessment of persistence, as well as yield potential, is fundamentally important in cultivar evaluation.  相似文献   

17.
Leaf sheaths of two cultivars of perennial ryegrass were prepared by chemical oxidation so that the silica bodies in the tissues could be studied. The cultivar Fortis, which is relatively resistant to stem-borer attack, contained many-intercostal silica bodies in the leaf sheath but the more susceptible cultivar S24 contained few. If the pattern of silica bodies affects levels of stem-borer infestation, it may be possible to breed for this characteristic.  相似文献   

18.
The effect of three spring management treatments on the vertical distribution of dry‐matter (DM) yield and morphology of four cultivars of perennial ryegrass (Fennema, Corbet, Foxtrot, Melle) in mid‐season was investigated. The management treatments commenced with cuts on 15 February (Early), 1 March (Medium) and 29 March (Late), each followed by a 28‐day re‐growth period until the next cut and then further 21‐day re‐growth periods after each subsequent cut. This created four mid‐season measurement periods across the management treatments at cut 3 (5 April–17 May), cut 5 (17 May–28 June), cut 6 (7 June–19 July) and cut 7 (28 June–9 August). Tiller and sheath height and their ratio, and leaf lamina length, were measured prior to the four mid‐season cuts (cuts 3, 5, 6 and 7) when measurements of DM yield and proportions of leaf, stem and dead material in three herbage horizons (Lower, 0–8 cm; Middle, 8–15 cm; Upper, >15 cm) were made. There were significant responses in mid‐season to the management treatments involved complex interactions between management treatment and cutting date, which modified seasonal patterns in DM yield and leaf:stem ratio. There were significantly greater tiller heights, tiller:sheath ratios and leaf lamina lengths but lower sheath heights from the Early to Late management treatments. The greatest responses in morphological characteristics occurred in the Middle horizon compared with either the Lower (predominately stem and pseudo‐stem), or the Upper (predominately leafy) horizons. Distribution of DM yield between Middle and Lower horizons but not overall DM yields was significantly affected by management treatment. Morphological differences between cultivars were mostly in the Middle horizon and ranking of the cultivars was similar across the management treatments. The different responses of cultivars Fennema and Melle showed that genotype had a significant effect regardless of management. The leafiest mid‐season swards were achieved by delaying initial spring defoliation in the cultivar which had the lowest stem production.  相似文献   

19.
Perennial ryegrass (Lolium perenne L.) infected with a novel endophyte (AR37 or AR1), Wild‐type endophyte or no endophyte (Nil) was sown with white clover (Trifolium repens L.) in autumn 2005. The pastures were rotationally grazed by dairy cows from 2005–2009. Annual dry matter (DM) yield did not differ but AR37 pastures had a higher ryegrass tiller density, especially after the 2008 summer drought (+130%), and less white clover than did AR1 pastures. Concentrations of alkaloids produced by the Wild‐type association (lolitrem B, ergovaline) followed the same seasonal trends as did the AR37 alkaloids (epoxy‐janthitrems) but summer drought reduced concentrations of lolitrem B and epoxy‐janthitrems to less than half the mid‐summer (February) peak concentrations in the other years. Insect pests were monitored annually between 2006 and 2009. Tiller damage by Argentine stem weevil (Listronotus bonariensis (Kuschel)) was significantly reduced by all endophyte treatments. African black beetle (Heteronychus arator (F.)) populations in soil samples increased during the experiment with Nil > AR1 > Wild‐type = AR37. Root aphid (Aploneura lentisci (Pass.)) infestations followed the pattern AR1 > Nil > Wild‐type = AR37. A lower pest pressure from all insect pests in AR37 pastures is likely to have contributed to this treatment having the highest ryegrass tiller densities.  相似文献   

20.
The effect of sowing date (SD) and sowing rate of perennial ryegrass (PRG) on the establishment of Caucasian and white clovers in New Zealand was assessed. Clovers were sown in spring on 24 September (SD1) and 9 November (SD2) 1999, and in autumn on 4 February (SD3) and 31 March (SD4) 2000. On each date, clovers were sown with 0, 3, 6 or 12 kg ha?1 of PRG. Total herbage dry matter (DM) production up to 6 November 2000 was 13–16 t DM ha?1 for SD1 and SD2 when sown with 3–12 kg ha?1 of PRG, and 7–10 t DM ha?1 for sown clover monocultures. For SD3 and SD4, total herbage production was 6–9 t DM ha?1 with PRG, while total herbage production of clover monocultures was 5·4 t DM ha?1 for SD3 and 2·6 t DM ha?1 for SD4. By 6 November 2000, white clover contributed proportionately more than 0·15 of herbage mass when sown with 3–12 kg ha?1 of PRG on SD1, SD2 or SD3, but less than 0·09 when sown on SD4. The proportion of Caucasian clover never exceeded 0·09 of herbage mass in any of the swards. White clover was successfully established in spring and in autumn with 3–12 kg ha?1 of PRG provided the 15‐mm soil temperature was above 14 °C. None of the combinations of Caucasian clover and PRG provided an adequate proportion of legumes during the establishment year. This unsuccessful establishment of Caucasian clover with PRG was attributed to its inability to compete for available light as a seedling due to slow leaf area expansion from secondary shoot development and a high root:shoot ratio. Alternative establishment strategies for Caucasian clover may include the use of slow establishing grasses, cover crops and temporal species separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号