首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The reliability of specific gravity as a measure of total solids was studied statistically. Studies on an expanded number of currently popular American potato samples indicated that differences were great enough that the accepted Von Scheele regression curve now borders on the obsolete. Variations in the relationship caused by lack of uniformity in analytical techniques, as well as inherent variations in the potatoes themselves indicated that a linear regression curve based on American potato varieties is sorely needed. It is suggested that such a curve be obtained through cooperative effort sponsored by the American Potato Association.  相似文献   

3.
4.
5.
6.
7.
8.
9.
At each of two locations in two years, five varieties of potatoes were examined for specific gravity—intercellular space relationships. At harvest intercellular space differred consistently among varieties and decreased during two months' storage at 40 F. Changes in weight, volume, and intercellular space were used to explain that changes in tuber specific gravity may or may not reflect changes in dry matter content and that differences and changes in intercellular space are of sufficient magnitude to account for most of the discrepancies between recently published regressions of dry matter on specific gravity developed without correction for intercellular space. A coordinated study is proposed to establish the correctness of this postulation. Estimation of dry matter content of white potatoes from specific gravity determinations is a widely accepted practice. The accuracy of the estimation has been questioned because of the relatively large error of estimation (±1.5 to 2%) usually encountered (24), the wide divergence of regressions (1, 6, 15, 16, 18, 19, 23), and the frequency with which discrepancies have been noted between specific gravity and quality (14). Recent recommendations call for “Improved accuracy in the quick estimation of solids either by specific gravity or other means” and clarification of the “effect of temperature and period of storage on changes in ... specific gravity” (25). The tests reported here were undertaken to obtain corroborating evidence for the estimation of dry matter content of sweet potatoes from root specific gravity after correction for intercellular space (IS), (8, 12). Sweet potatoes, as well as several other commodities, contain relatively large amounts of IS (8, 11) but when this is accounted for, a reasonably consistent relationship exists that appears to be nearly identical to the regression for the specific gravity of sucrose solutions (8). The work with sweet potatoes showed that 1 ml of IS produced a buoyancy equivalent to the weight in water of 2.38 g of dry matter (12). Although white potatoes contain relatively small amounts of IS on the average, amounts of 1% (1ml/100ml) and more have been reported (2, 8, 15, 16). Nissen, in Denmark, reported that varieties differed in IS and that for greatest accuracy the IS should be accounted for (15, 16). Most workers in the United States, however, have ignored the influence of IS upon the accuracy of the methol of estimating dry matter content from tuber specific gravity, although several have speculated that IS contributed to variation in this relationship (1, 18). The tests reported here indicate that varieties may differ with reasonable consistency in IS at harvest in much the same manner as sweet potatoes (17), and that these differences and changes in IS during storage may be large enough to account for most of the discrepancies observed in the relationship between tuber specific gravity and dry matter content.  相似文献   

10.
11.
Summary Experiments with planting depths of 10 cm below the top of the ridge and just on top of the unloosened soil, revealed that a deep soil cover of the parent tuber, accomplished by deep planting in a large ridge, increased the yield, increased the size of the tubers, decreased dispersion of the tubers in the ridge, and decreased the number of green potatoes. These effects may be explained by a lower temperature or reduced temperature variation and a generally higher moisture content from the top to the bottom of the ridge and a higher average moisture content in a large ridge. From these results it is possible to make suggestions about the optimum ridge size, form and planting depth.
Zusammenfassung Es wurde ein dreij?hriger Versuch mit drei verschiedenen Dammgr?ssen (Abb. 1) und fünf verschiedenen Pflanztiefen, 10 cm unterhalb der Dammkrone (Abb. 1, 1–3) und gerade über dem ungelockerten Boden (Abb. 1, 3–5), durchgeführt. Der Zweck dieses Versuches war, die optimale Gr?sse und Form des Kartoffeldammes herauszufinden, d.h. jene Werte, mit denen der h?chste Ertrag an vermarktungsf?higer Ware erzielt werden kann. Die zu beurteilenden Faktoren—im Hinblick auf die Konstruktion neuer Erntemaschinen—umfassten die Anzahl grüner sowie kranker Knollen, ferner solche in Unter- oder übergr?ssen sowie die Leichtigkeit der Ernte mit Berücksichtigung von Erdbesatz und m?glichst niedrigen Verlusten. Die Lage der Knollen und der Ertrag (Knollengr?sse, grüne Knollen usw.) wurden festgehalten, ebenso das Auflaufen und die Entwicklung w?hrend der Wachstumsperiode. Der Einfluss der Sorte und die Tagesl?nge wurden nicht beachtet; als haupts?chlichste Umweltfaktoren wurden die Temperaturen und der Feuchtigkeitsgehalt des Bodens ermittelt. Diese Ergebnisse sind in Abb. 2 dargestellt. Die Umschreibung für die Lage der Saatknolle wechselte von warm und trocken (Pflanztiefe 1) zu kalt und nass (Pflanztiefe 5). Die Reihenfolge des Auflaufens (Tabelle 1) zeigt die Wichtigkeit einer genügenden Wasserversorgung für die Keimung. Die Entwicklung war am schnellsten bei der Pflanztiefe 3 eine bestimmte Zeit w?hrend der Wachstumsperiode andauerte (Tabelle 2, Abb. 3), aber dies ?nderte sich sp?ter, wie anhand der L?nge der Stengel bei der Ernte festgestellt wurde (Tabelle 2). Dieser Wechsel dürfte zur Zeit der Erreichung des vollen Blattwerkes stattgefunden haben. Die Ergebnisse bei der Ernte sind in Tabelle 4 aufgeführt (Bintje 1966–1968) und weisen —fortschreitend von Pflanztiefe 1 bis 5—einen h?heren Ertrag, mehr gr?ssere Knollen, einen kleineren Anteil an grünen Knollen usw. auf. Abb. 6 stellt die Verteilung von 94% der Knollen innerhalb einer gegebenen Ellipse dar. Abb. 7 zeigt eine st?ndig abnehmende Streuung der Knollenlage in der Furchenrichtung von Pflanztiefe 1 zu Pflanztiefe 5 und eine progressiv zunehmende Streuung in der vertikalen Verteilung der Knollen von Pflanztiefe 4 zu Pflanztiefe 5. Die sp?te SorteAlpha wurde vor 1968 nicht verwendet,Bintje wurde in allen Versuchen gebraucht. Die horizontale Verteilung vonAlpha war bei flacher Pflanzung ausgepr?gter (Abb. 8, Pflanztiefen 1 und 2). Die Bedeutung dieser Unterschiede und der Achsenl?ngen in Verbindung zur Schwerpunktlage aller Knollen von 10 Pflanzen wird in Abb. 5 aufgezeigt. Die Verteilung der Knollen, leicht beeinflusst durch die Dammform, bildet ungef?hr ein Ellipsoid, und die Stellen, an denen Knollen am meisten zum Grünwerden neigen, finden sich an den Dammflanken (siehe auch Abb. 6, 10B, E und F). Die Position der Saatknolle beeinflusst die Lage der neuen Knollen und infolgedessen den von der Erntemaschine erfassten Anteil Boden (Abb. 9). Aus den Ergebnissen in Tabelle 3 (Breite) kann geschlossen werden, dass ein e lipsenf?rmiges Erntemaschinenschar von 40 cm Breite genügen wird. Anh?ufeln der D?mme in die Endform und-gr?sse vor der Pflanzung befriedigte auf allen B?den. Der Damm sollte breit und abgerundet sein (Abb. 10C und Abb. 11), mit einem Querschnitt von mindestens 500–600 cm2, verbunden mit ziemlich tiefer Pflanzung. Dammgr?sse, Form und Pflanztiefe k?nnen bis zu einem gewissen Umfang angepasst werden an die Sorte, die Pflanzzeit, den Verwertungszweck der Ernte sowie an die Struktur und die Art des Bodens.

Résumé On a effectué une expérience pendant trois ans sur trois volumes différents de butte (Fig. 1) et cinq positions différentes de plantation: 10 cm du sommet de la butte (Fig. 1, 1–3) et juste sur le sol non ameuble (Fig. 1, 3–5). Le but de l'essai était de trouver le volume et la forme optimal de la butte de pomme de terre de manière à obtenir la production la plus élevée de marchandise vendable. Les facteurs à considérer comprennent le nombre de tubercules verdis, malades, difformes, la facilité de la récolte, le minimum de tare et de pertes, le dessein de nouvelles récolteuses à fabriquer. La disposition des tubercules et la production (grosseur, tubercules verdis, etc.) ont été notées, de même que la levée et le développement pendant la saison de croissance. L'influence de la variété et de la longueur des jours n'a pas été prise en consedération et les principaux facteurs du milieu étudiés ont été la température et la teneur en humidité du sol. Les résultats sont montrés dans Fig. 2. Les positions du plant de pomme de terre varient de chaud et sec (position de plantation 1), à froid et humide (position de plantation 5). L'ordre des levées (Tableau 1) montre l'importance d'un apport suffisant d'eau pour la germination. On observe la vitesse la plus grande de développement dans la position 3; celle-ci persiste pendant un certain temps durant la période de croissance (Tableau 2; Fig. 3) mais se modifie plus tard comme le montre la longueur des tiges à la récolte (Tableau 2). Ce changement peut se produire au moment de la pleine couverture du sol. Fig. 4 (Bintje 1966–68) donne les résultats à la récolte; il appara?t une augmentation de la production et de l'irrégularité de la forme, de même qu'une diminution de l'importance des tubercules verdis, etc., progressivement des positions de plantation 1 à 5. Fig. 6 montre la dispersion de 94% des tubercules, qui constitue une ellipse. Fig. 7 révèle une diminution progressive de la dispersion de la position de plantation 1 à la position 5 et une augmentation progressive de la disperson verticale de la position 4 à la position 5. La variété tardiveAlpha n'a pas été utilisée avant 1968,Bintje étant employée dans tous les essais. La dispersion horizontale chezAlpha est plus prononcée lors d'une plantation superficielle (Fig. 8 position de plantation 1 et 2). La signification de ces différences et la longueur des axes par rapport au centre de gravité de l'ensemble des tubercules, déterminées sur dix plantes, sont montrées dans Fig. 5. La disposition des tubercules, légèrement influencée par la forme de la butte, est grossièrement une ellipso?de et les points les plus exposés au verdissement sont les bords de la butte (voir aussi Fig. 6, 10B, E et F). La position du plant influence la position des nouveaux tubercules et conséquemment l'importance du travail de l'arracheuse (Fig. 9). Des résultats du Tableau 3 (largeur des axes), on peut conclure qu'un soc d'arracheuse de 40 cm de largeur donnera satisfaction, s'il est modelé sur une ellipse. La réalisation de la butte dans la forme et la grosseur finales avant la plantation a donné satisfaction dans tous les sols. La butte pourrait être large et arrondie (Fig. 10C et 11) avec une section transversale d'au moins 500–600 cm2, combinée avec une plantation plut?t profonde. Le volume de la butte, la forme et la profondeur de plantation peuvent être adaptées dans une certaine mesure à la variété, le moment de la plantation, la fin de l'utilisation de la récolte, la structure et le type de sol.
  相似文献   

12.
13.
Weight losses of potatoes during storage were closely related to the product of average water vapor pressure deficit of the air between the tubers and the duration of storage in weeks. Shortly after harvest, the water loss per cm2 skin area per hour per mm Hg VPD was five to seven times as high as later in the storage period. Temperature, through its influence on respiration did not appreciably affect weight loss, but had in several cases a clear effect on specific gravity. In those cases the relations between specific gravity and either weight loss or the product of storage duration and VPD were close only if the influence of storage temperature was eliminated.  相似文献   

14.
15.
Studies were made on the influence of growing season and low fertility on reducing sugar accumulation in storage of the stem and bud portions of Russet Burbank and Norgold Russet potatoes separated into different specific gravity groups. The stem portion of Russet Burbank had a significantly different intercept and slope of regression line (between specific gravity and reducing sugar accumulation) than the bud portions of the same tubers indicating higher reducing sugar accumulation in the stem portion as well as differences in behavior as to amount accumulated at the different specific gravity levels. No significant difference in sugar content or behavior at the different specific gravity levels was obtained between stem and bud portions of Norgold Russet. Growing season did not cause significant differences in total sugar content or slope of the regression lines within the stem or bud portions of Russet Burbank. Low fertility level resulted in significantly higher sugar accumulation in the stem portion of Russet Burbank as compared to adequate fertility and there was also a trend toward less influence of specific gravity on sugar accumulation at the lower fertility level. Low specific gravity Russet Burbank potatoes tended to be more variable in sugar accumulation from year to year and also had wider differences in sugar accumulation between stem and bud portions than high specific gravity potatoes.  相似文献   

16.
17.
American Journal of Potato Research - Specific gravity measurments were obtained for samples of potatoes from 37 fertilizer experiments in the Red River Valley of Minnesota and on sandy soils near...  相似文献   

18.
Summary Published relations between specific gravity, dry matter content and starch content are summarized in the form of regression equations and a diagram. It is suggested that, for the potato literature, uniformity of presentation of results and of conversion equations used would be desirable.  相似文献   

19.
20.
Potassium and N fertilization is often required for maximum potato (Solanum tuberosum L.) production. Nitrogen, K, and K-sources (KCl, K2SO4 are known to affect yield and quality of potatoes but N and K interactions as affected by K-source have not been defined. This study evaluated the N*K and K-source interactions on Russet Burbank tuber yields and specific gravity (SG) in two irrigated field experiments. Nitrogen rates of 0, 112, 224 or 336 kg ha-1 were combined with selected K rates of 0,112, 224 or 448 kg ha-1 as either KC1 or K2SO4 in an incomplete factorial. A multiple linear regression model was fit to the data and used to predict yield and SG for a complete factorial for each K-source. Both N and K applications increased yields independent of K-source. Nitrogen decreased yields at the 336 kg ha-1 rate. Potassium increased yields up to 448 kg K ha-1. Both K-sources decreased SG a similar amount with N application; without N, KC1 decreased SG but K2SO4 did not. Nitrogen also decreased SG. Petiole NO3-N and K concentrations were positively related to yields and negatively to specific gravities. The petiole K concentration 100 days after planting should be above 4.5 for highest tuber yields. The N*K*K-source interaction was important for yields at low available N and for SG at adequate N availabilities. This study showed that N or K fertilizers can be applied according to their respective soil test concentration and the crop’s requirement, generally without consideration of K-source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号