首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of paranasal sinuses in cattle is difficult to understand due to its complexity, age-related changes, and insufficient published data. In this prospective, anatomic study, we described the anatomy of the paranasal sinuses in the Holstein cow using computed tomography (CT) and cross-sectional anatomic slices. Twelve healthy adult Holstein cow heads were used for this study. The heads were scanned using CT, and frozen anatomical sections were taken. The locations, borders, and relationships of the paranasal sinuses were defined on the anatomical sections and CT images. The paranasal sinuses on each side of the head consisted of conchal (dorsal, middle, and ventral), maxillary, lacrimal, palatine, frontal, sphenoid sinuses, and ethmoidal cells. The frontal sinus pneumatized all bones surrounding the cranial cavity, except for the ethmoidal and body of basisphenoid bones. The sphenoid and ventral conchal sinuses were the most asymmetrical, and the middle conchal sinus was the simplest. The ventral conchal sinus was detected in eleven animals, one of which was unilateral. This sinus communicated with the middle nasal meatus (13/21) and ventral nasal meatus (8/21). Findings can be used as background for interpreting CT studies of cattle with clinical signs of sinonasal region diseases. Future cross-sectional radiological and reconstructive anatomical studies and investigation of the postnatal development of related structures in cattle are needed.  相似文献   

2.
3.
Karen L.  Morrow  DVM  MS  Richard D.  Park  DVM  PhD  Thomas L.  Spurgeon  PhD  Ted S.  Stashak  DVM  MS  Billie  Arceneaux  RT 《Veterinary radiology & ultrasound》2000,41(6):491-497
The head from three horses euthanized due to diseases unrelated to the head and neck was imaged using computed tomography (CT). Gross cross-sectional slices of equine head #1 and skeleton of equine head #2 were compared with the CT images of the three equine heads to identify normal structures of the cranium, brain, paranasal sinuses, nasal cavity, and teeth. Labeled transverse CT images of the equine head are presented sequentially as a reference for normal anatomy.  相似文献   

4.
The present work aimed to describe the normal computed tomography (CT) and cross‐sectional anatomy of the nasal and paranasal sinuses in sheep and to correlate these features with the relevant clinical practices. Twenty apparent healthy heads of Egyptian native breed of sheep (Baladi sheep) of both sexes were used for studying these sinuses. CT images and their closely identical cross sections of the same head were selected and serially labelled in a progression from the rostral nasal region to the caudal aspect of the head using cheek teeth as landmarks. The current investigation reported seven sinuses in sheep, including maxillary, frontal, lacrimal and sphenoidal as paranasal, as well as dorsal and middle conchal and ethmoidal as nasal with unnoticeable palatine and ventral nasal conchal sinuses. The boundaries, extension, structure and communications of these sinuses were fully described. The current study provided anatomical guidelines for surgical interference in the frontal and maxillary sinuses during trephination, dehorning and sinuscopy. Also, an acceptable anatomical explanation was reported in this study for the high incidence of maxillary sinusitis than other sinuses. CT and cross‐sectional anatomy could be used as helpful database for diagnosis and clinical interference of the nasal and paranasal sinuses in sheep.  相似文献   

5.
The heads of three loggerhead sea turtles were disarticulated and imaged immediately to minimize postmortem changes and then frozen and sectioned. For computed tomography (CT) imaging, the heads were positioned in ventral recumbency. Transverse CT images with soft-tissue window were obtained from the olfactory sac region to the temporomandibular joint region. After CT imaging, the heads were sectioned and the gross sections were compared to CT images, to assist in the accurate identification of the anatomic structures. Different clinically relevant anatomic structures were identified and labelled in two series of photographs (CT images and anatomic cross-sections). CT images provided good differentiation between the bones and the soft tissues of the head. The information presented in this paper should serve as an initial reference to evaluate CT images of the head of the loggerhead sea turtle and to assist in the interpretation of lesions of this region.  相似文献   

6.
De Zani  D.  Borgonovo  S.  Biggi  M.  Vignati  S.  Scandella  M.  Lazzaretti  S.  Modina  S.  Zani  D. 《Veterinary research communications》2010,34(1):13-16
Clinical and radiographic investigations of paranasal sinuses in horses are difficult due to the complex anatomy of these regions, the lack of patognomonic symptoms, and the low sensitivity of conventional diagnostic techniques. The aim of this study was to produce an anatomical atlas to support computed tomography (CT) and sinuscopy of the paranasal sinuses of the adult horse. Transverse, sagittal, and dorsal CT images were acquired, and sinuscopy with both rigid and flexible endoscopes was performed. The heads were frozen and sectioned using a band saw, with the cuts aligned as close as possible with the CT transverse slices. Each CT image was compared with its corresponding anatomical section and sinuscopy image to assist in the accurate identification of specific structures.  相似文献   

7.
The purpose of this investigation was to define the anatomy of the cranioencephalic structures in horses using computed tomography (CT). Transverse images of two isolated equine cadaver heads were obtained using a Toshiba 600 HQ (third-generation equipment TCT). CT images were compared to corresponding frozen cross-sections of the cadaver head. Relevant anatomical structures were identified and labelled at each level. The resulting images provided excellent anatomic detail of the structures of the central nervous system and associated formations. Annotated CT images from this study are intended as a reference for clinical CT imaging studies of the equine head.  相似文献   

8.
9.
10.
Equine paranasal sinuses are susceptible to inflammation. Insufficient drainage through the nasal passages and meatus may lead to the accumulation of inspissated purulent discharge. Particularly in ponies, these anatomical structures are suspected to be relatively small. To date, there are no reports considering the morphology of nasal conchal bullae in small horse breeds such as Shetland ponies. The aim of the present study was to evaluate the size of the conchal bullae and the medial nasal conchae of Shetland ponies and their relation to the skull dimension using computed tomography. Reconstructed images of healthy adult heads of Shetland ponies were used. Linear skull measurements as well as two cranial indices of the head dimensions were taken. Length, width and height of the dorsal and ventral conchal bullae and the medial nasal conchae were measured in relation to the skull and compared with the data of skulls of large breed horses. The anatomical proportions of pony heads were characterized by a smaller cranial index and a greater nasal index than those of large breed horses. Shetland ponies showed a longer cranial length compared with the nasal length. Heads are consistently smaller, and the relationship of the bullae to the head length was also smaller than those measured in large breed horses. A negative correlation between the head and bullae size was found. In conclusion, this study suggests that Shetland ponies have distinguishing proportions of the head. These findings are relevant for clinical examination and surgical treatment of equine sinus disease in those breeds.  相似文献   

11.
COMPUTED TOMOGRAPHY OF THE NORMAL FELINE NASAL CAVITY AND PARANASAL SINUSES   总被引:1,自引:0,他引:1  
Computed tomography (CT) images of the feline nasal cavity and paranasal were acquiredfrom noraml adult cats. Good resolutin and amatomic detail were obtained from the CT images using soft tissue formatting. A desciption of normal feline nasal cavity and paranasal sinus anatomy using CT is presented.  相似文献   

12.
13.
Documentation of the psittacine paranasal sinuses has been limited. To provide more published detail, spiral computed tomography (CT) was used to scan the cephalic and cervical region from cadavers of 10 psittacine birds (Ara ararauna, Ara chloroptera, Ara macao, and Anodorhynchus hyacinthinus). Skeletal studies, histologic examinations, and evaluation of deep-frozen sections and anatomic preparations confirmed the results of the CT scans. New morphologic details of the paranasal sinus and some compartments were discovered. The paranasal sinuses of these macaws consist of two unpaired rostral compartments, followed caudally by eight paired compartments. Histologic examinations revealed that the walls of the paranasal sinuses consist of flat or cubic monolayer epithelium with underlying connective tissue. The described method of CT examination of these macaws, especially the positioning, scan orientation and parameters, and documentation of the normal paranasal sinus, provides a basis for future clinical use of CT.  相似文献   

14.
Alberto  Arencibia  DVM  PhD  Jose M.  Vázquez  DVM  PhD  Raduán  Jaber  DVM  Francisco  Gil  DVM  PhD  Juan A.  Ramiírez  MD  PhD  Miguel  Rivero  DVM  Nelson  González  DVM  PhD  Erik R.  Wisner  DVM 《Veterinary radiology & ultrasound》2000,41(4):313-319
The purpose of this investigation was to define the magnetic resonance imaging anatomy of the rostral part of the equine head. 10 mm-thick, T1-weighted images of two isolated equine cadaver heads were obtained using a 1.5 Tesla magnet and a body coil. MR images were compared to corresponding frozen cross-sections of the cadaver head. Relevant anatomic structures were identified and labeled at each level. The resulting images provided excellent anatomic detail of the oral and nasal cavities, paranasal sinuses and associated structures. Annotated MR images from this study are intended as a reference for clinical MR imaging studies of the equine head.  相似文献   

15.
The aim of this study was to identify the anatomical structures in the head region of the giant anteater (Myrmecophaga tridactyla) using computed tomography. For this, three giant anteater corpses, adult and female, were used. The tomographic analysis was performed in sequential order in rostrocaudal direction. Subsequently, the heads of these animals were sectioned in cross sections of approximately 1.5 cm each. Tomographic images were compared with anatomical sections. The association between computed tomography and anatomical sections allowed the visualization of anatomical structures found in the nasal, oral, cranial, pharyngeal and ear cavities. An elongated oral cavity delimited by the elongated mandible was observed. The oral cavity was mainly occupied by a thin and elongated tongue formed mainly by the union of the sternoglossal muscles. The nasopharynx and oropharynx extended up to the neck at the level of the fifth cervical vertebra. The findings of this study suggest that the giant anteater has a head with structures morphologically adapted to its feeding habits, such as an elongated skull, tongue, styloid bones and mandible. In addition, based on the results of this study, it is possible to suggest that computed tomography is a pivotal tool for the veterinary routine of wild animals, since it allowed the identification of anatomical structures found in the head of the giant anteater.  相似文献   

16.
The purpose of this study was to produce an anatomic reference for computed tomography (CT) of the head of the foal for use by radiologists, clinicians, and veterinary students. The head from each of 2 foals, euthanized for reasons unrelated to head pathology, was removed and prepared for CT scanning. Using a third-generation CT scanner, 5-mm contiguous transverse images were acquired. The heads were then frozen and sectioned using a band saw, with the cuts matched as closely as possible to the CT slices. The anatomic sections were photographed and radiographed. The radiographs and anatomic photographs were digitized and matched with the corresponding CT image. Each CT image was compared with its corresponding radiographic and anatomic section to assist in the accurate identification of specific structures. Clinically relevant structures were identified and labeled in corresponding images (CT, anatomic slice, and radiograph of slice). Only structures identified in the CT image were labeled in 1 of the other 2 images. Sagittal (reference) images of the horse's head were reconstructed from the transverse CT scans, and were used to indicate the level from which each of the transverse images was obtained. Corresponding labeled images were then formatted together with a legend for identification of specific anatomic structures.  相似文献   

17.
A 1-year-old Thoroughbred filly with left bony facial distortion was diagnosed with a multilobar expansile mass within the caudal maxillary and frontal sinuses on computed tomography (CT). Typical findings associated with a sinus cyst, including expression of amber fluid from the mass and a thick lining that could be peeled from the sinus walls, were found on surgical exploration of the sinus under general anaesthesia. Histological examination of firm structures within the fluid-filled cyst contained all components of embryologically normal dental tissue. The filly recovered well and entered training to race as a 2-year-old, as remodelling of the bony distortion and narrowing of the nasal passage was sufficient for airflow. Previous reports of paranasal cystic lesions in horses suggest developmental abnormalities as a causative factor, especially in young horses. Furthermore, heterotopic polydontia is reported as the underlying aetiology in some human paranasal sinus cysts. While polydontia has been reported in the paranasal sinuses and nasal passages of horses, this is the first case report that finds them associated with a cystic lesion within the paranasal sinus.  相似文献   

18.
19.
The system of the paranasal sinuses morphologically represents one of the most complex parts of the equine body. A clear understanding of spatial relationships is needed for correct diagnosis and treatment. The purpose of this study was to describe the anatomy and volume of equine paranasal sinuses using three‐dimensional (3D) reformatted renderings of computed tomography (CT) slices. Heads of 18 cadaver horses, aged 2–25 years, were analyzed by the use of separate semi‐automated segmentation of the following bilateral paranasal sinus compartments: rostral maxillary sinus (Sinus maxillaris rostralis), ventral conchal sinus (Sinus conchae ventralis), caudal maxillary sinus (Sinus maxillaris caudalis), dorsal conchal sinus (Sinus conchae dorsalis), frontal sinus (Sinus frontalis), sphenopalatine sinus (Sinus sphenopalatinus), and middle conchal sinus (Sinus conchae mediae). Reconstructed structures were displayed separately, grouped, or altogether as transparent or solid elements to visualize individual paranasal sinus morphology. The paranasal sinuses appeared to be divided into two systems by the maxillary septum (Septum sinuum maxillarium). The first or rostral system included the rostral maxillary and ventral conchal sinus. The second or caudal system included the caudal maxillary, dorsal conchal, frontal, sphenopalatine, and middle conchal sinuses. These two systems overlapped and were interlocked due to the oblique orientation of the maxillary septum. Total volumes of the paranasal sinuses ranged from 911.50 to 1502.00 ml (mean ± SD, 1151.00 ± 186.30 ml). 3D renderings of equine paranasal sinuses by use of semi‐automated segmentation of CT‐datasets improved understanding of this anatomically challenging region.  相似文献   

20.
The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号