共查询到19条相似文献,搜索用时 62 毫秒
1.
介绍了FCM (Fuzzy C-Means)模糊聚类算法的原理,采用权重分配的方法对该算法进行了改进,通过建立模糊的相似矩阵,对目标对象的特征聚类图进行分析,并引入隶属度矩阵对FCM算法进行优化,以加快算法的迭代速度。实验结果表明:农业机器人采用该方法对农作物轮廓分割识别度较高,算法计算效率较快,验证了其可靠性,该方法可用于目标农作物的分割和目标识别。 相似文献
3.
基于轮廓分析的双串叠贴葡萄目标识别方法 总被引:4,自引:0,他引:4
为准确定位叠贴情况下的葡萄目标,提出了一种基于轮廓分析的双串叠贴葡萄目标识别方法。首先提取最能突显夏黑葡萄的HSV颜色空间中的H分量,通过改进K-means聚类方法对葡萄图像进行分割,运用形态学去噪等处理获取葡萄图像区域,再提取该区域边缘轮廓和左右轮廓的类圆中心。然后以该中心点为原点建立基于轮廓分析的叠贴葡萄串分界线几何求解与计算模型,分别在逆时针方向45°~135°和225°~315°区域内沿葡萄轮廓搜索距离原点最近的点,进而确立两叠贴葡萄轮廓拐点及其分界线,最终实现对叠贴葡萄目标的分别提取。对从果园采集的27幅双串叠贴葡萄图像进行试验,结果显示:24幅图像中的叠贴葡萄串被正确识别和提取,成功率达88.89%,目标像素区域的识别精准度为87.63%~96.12%,算法处理时间在0.59~0.68 s之间。将算法移植到自主研制的机器人上进行视觉定位试验,结果表明所提方法可很好地用于两叠贴葡萄目标的识别与定位。 相似文献
4.
介绍了K-means聚类算法的工作原理,研究了基于图像处理和K-means聚类算法的目标物体快速识别,设计了一套自动采摘目标图像快速识别算法,可以准确实现对苹果的快速精确识别,未来还可以扩展对其他水果的识别。实验结果表明:当采摘机器人的机械臂移动速度较高,能够准确对目标物体进行快速识别,证明了目标图像快速识别算法性能优良,具有较高的有效性和可行性。 相似文献
5.
6.
利用图像分析技术对农田对象进行分类,识别农田中不同植物和不同湿度土壤,为定点变量作业提供依据。首先,针对农田各类对象包含颜色信息的不同,采用不同因子实现农田图像的灰度化;然后,利用3种灰度图像对绿色植物、蓝色天空和褐色土壤的识别优势,分析比较阈值法和K均值聚类方法并实现了图像分割;最后,利用模糊聚类法对绿色植物和不同湿度的土壤进一步实现分类。实验结果表明,利用K均值聚类法对绿色植物的平均识别率可达92.5%,对不同湿度的3类土壤的平均识别率达95.6%。因此,本研究能够准确分割和识别不同类型的植物与土壤,为农田对象的识别提供了基础。 相似文献
7.
8.
融合多源图像信息的果实识别方法 总被引:7,自引:0,他引:7
光线变化与目标重叠是影响自然环境中果实正确识别的重要原因。为了降低两者的影响,研究了融合多源图像信息的果实识别方法。在图像配准的基础上,优选了H分量图与幅度图像作为待融合的源图像;由模糊推理系统(隶属度函数和模糊规则)决定权重,采用加权平均策略实现图像的像素级融合;根据融合图像中果实区域的分布规律,设计了一种基于直方图的首阈检测法以获得最佳的果实分割效果;利用深度图像的统计特性,设计了一种逐层分割图像的方法以解决重叠果实的分离问题。实验结果表明:多源融合图像用于果实识别与定位比单一图像具有更好的准确性与鲁棒性,对重叠果实的正确识别率在83.67%~94.22%之间。 相似文献
9.
10.
苹果采摘机器人目标果实快速跟踪识别方法 总被引:10,自引:0,他引:10
为了减少苹果采摘机器人采摘过程处理时间,对苹果采摘机器人目标果实的快速跟踪识别方法进行了研究。对基于R-G颜色特征的OTSU动态阈值分割方法进行首帧采集图像分割,采用图像中心原则确定要采摘的目标果实;利用所采集图像之间的信息关联性,在不断缩小图像处理区域的同时,采用经过加速优化改进的去均值归一化积相关模板匹配算法来跟踪识别后帧图像的目标果实,并进行不同阈值分割方法实现效果,不同灰度、亮度和对比度的匹配识别以及新旧方法识别时间对比试验,从而验证了所采用和设计方法的有效性;其中所设计跟踪识别方法的识别时间相比于原方法,减少36%。 相似文献
11.
12.
针对林区自动对靶施药过程中,当立木生长密集时,获取的点云数据聚类准确率低、效率低的问题,提出优化后的K-均值聚类算法,数据获取方式基于2D激光扫描。针对立木点云信息聚类前需对相关数据进行滤波,提出窗口滤波算法,选取产生混合像素点的树干边缘,提取3次连续扫描的混合像素及其近邻点组成滤波窗口,进行最大阈值滤波,结果显示50次试验中仅有2个混合像素点未被滤除,混合噪声的滤除率高。在K-均值算法优化方面,针对算法需预先确定聚类数和初始聚类中心的不足,提出利用斜率变化确定聚类数的方法,试验对5个不同距离下5组立木分别进行100次测量,结果显示错误测量次数仅为3次,并可在试验前期通过人工方式去除,算法合理有效;对哈夫曼树法确定立木扫描点聚类中心的性能进行了试验分析,3种不同树干分布类型下分别运用随机抽样法和哈夫曼树法进行K-均值聚类,前者平均正确率仅为76.4%,后者则为95.5%;同时分析了Ⅰ型分布下2种算法聚类的迭代次数和耗时,5个不同距离下,随机抽样法的平均迭代次数明显高于哈夫曼树法,平均运行耗时上,哈夫曼树法则高于随机抽样法,前者变化范围为120~220 ms,后者为50~85 ms,该范围为林区测绘的可接受范围。试验证明,基于斜率变化确定聚类数和基于哈夫曼树法确定聚类中心的K-均值算法是林区立木点云聚类的有效算法,可应用于林区的立木检测。 相似文献
13.
川中丘陵区农业水资源高效利用综合分区 总被引:1,自引:0,他引:1
基于"水-水文循环-生态环境变化"这一关键性农业生态系统环境要素,结合水的资源属性和水资源的高效利用内涵以及生产力水平、土地利用方式、种植结构、种植模式等几方面,选取构建川中丘陵区农业水资源高效利用综合分区指标体系(16个定量指标、4个定性指标),采用主成分分析和模糊C-均值聚类算法为区划方法,对川中丘陵区进行量化分区... 相似文献
14.
搅龙叶片属于复杂的曲面机械零部件,其机械加工是一个复杂多元素作用的复合过程。为了提高搅龙叶片机械加工的精度,提出了一种基于CAD和PRO/E软件的叶片加工走刀轨迹的仿真优化方法。该方法利用CAD提取搅龙叶片型面的关键点。在搅龙叶片型面数据点提取的过程中,会产生大量的加工控制点,为了对控制点进行优化筛选,提出了一种模糊多准则算法,实现了叶片的机械加工决策和优化由经验型向理论指导型的转变。在PRO/E软件中,对提取得到的关键点进行了建模,得到了叶片的型面,将型面进行合并得到了搅龙叶片的曲面实体,最后对实体进行走刀轨迹仿真,得到了搅龙叶片的机械加工精度,并将模糊多准则算法和非模糊多准则算法控制下的机械加工精度进行了对比。对比结果表明:模糊多准则算法可以有效地提高收割机搅龙叶片的机械加工精度。 相似文献
15.
16.
为改善草莓采摘机器视觉系统中果实图像的分割效果,对普通均值聚类的分割方法理论进行分析,针对草莓果实图像的特点将模糊-均值聚类算法引入分割算法,大大改善草莓果实图像的分割效果。 相似文献
17.
18.