首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 578 毫秒
1.
果园移动机器人曲线路径导航控制   总被引:4,自引:0,他引:4  
陈军  蒋浩然  刘沛  张勤 《农业机械学报》2012,43(4):179-182,187
为实现移动机器人在果园非结构化环境下的自动行走,对果园移动机器人在复杂环境中的导航控制进行了研究。利用激光扫描获取果树位置信息,提出了一种果园环境下曲线导航路径的拟合算法;构建了以横向偏差和航向偏差为输入的模糊控制器;实现了移动机器人在曲线路径中的自动行走。机器人以0.54 m/s的速度沿正弦曲线行走,最大横向偏差为0.40 m,平均偏差为0.12 m。试验结果表明该系统路径拟合和导航控制算法性能良好。  相似文献   

2.
为实现农业机械全田块高效自主作业,提出一种增益系数自适应的Stanley模型路径跟踪算法。以横向偏差和航向偏差为输入变量构建隶属度函数,设计模糊推理和解模糊化过程实时确定控制模型增益系数,提高Stanley模型对不同曲率路径的自适应能力。为验证所提算法有效性,以移动小车为平台开展联合收获机回字形全田块自主作业路径跟踪试验,结果表明所提算法显著改善Stanley模型路径跟踪精度,直线作业速度2.5m/s、转弯速度1m/s时,直线段和曲线段最大跟踪误差均小于3cm。大初始横向偏差路径跟踪试验表明,模糊Stanley模型较Stanley模型大幅度减小路径跟踪上线距离,满足农业机械全田块高效自动导航作业要求。  相似文献   

3.
基于自校准变结构Kalman的农机导航BDS失锁续航方法   总被引:2,自引:0,他引:2  
针对农机自动导航作业过程中存在的BDS信号失锁导致系统突然失控的问题,提出了一种适用于轮式农机的基于自校准变结构Kalman滤波器的农机导航BDS失锁续航方法。依据4自由度农机运动学模型,设计了BDS/INS信息融合Kalman滤波器;进行INS导航定位误差不确定度分析,并设计了基于自回归模型的航向校准方法、INS传感器角速率测量零偏实时校准方法,结合上述方法设计了自校准变结构滤波器,进行位姿信息处理,结合导航跟踪控制方法实现失锁续航功能。根据分米级精度要求,进行了机器人直线、矩形路径失锁续航试验和农机田间直线续航试验。机器人续航试验结果表明:行驶速度为1 m/s时,与运用未校准滤波器的续航系统相比,该方法实际平均横向偏差减小34%,横向偏差达到20 cm时机器人在路径上的平均行驶距离提高80%。农机田间续航试验结果表明:行驶速度为1 m/s时,在实际偏差小于20 cm的条件下,农机在路径上的行驶平均距离达到16. 65 m。  相似文献   

4.
基于最优控制的导航拖拉机速度与航向联合控制方法   总被引:3,自引:0,他引:3  
为提高自动导航拖拉机工作效率和作业质量,以自动变速系统和自动转向系统为硬件支撑,结合最优控制理论,设计了基于速度和转向角的双参数最优控制算法.针对耙地作业要求,设计了直线路径跟踪与地头转弯路径跟踪控制器,运用Matlab软件对所设计的控制器进行了仿真分析,通过田间试验对所设计的控制器进行了验证.试验结果表明:控制器的横向偏差小于0.12m,航向偏差小于1.1°,速度偏差小于0.2 m/s,满足自动导航作业要求.  相似文献   

5.
基于激光雷达的农业机器人导航控制研究   总被引:6,自引:0,他引:6  
以农业机器人为平台,利用激光雷达研究农业机器人在有行株距的果树与有行无株距的树木行中,特别是一侧存在行缺失情况下的导航性能。根据激光雷达获得的树行信息,机器人控制系统进行导航路径计算,确定机器人的横向偏差与方向偏角。利用模糊控制算法实现机器人的导航控制。在无株距且一侧存在4 m距离缺失的冬青树行间及在有行株距且一侧存在6.2 m距离缺失的梨树行间,分别进行3次重复的导航性能试验。试验结果表明,在整个试验距离内冬青树行距与梨树行距都不均等的试验条件下,在冬青树间的最大横向偏差为17.5 cm,在梨树间的最大横向偏差为28 cm。在一侧冬青树出现缺失时对机器人的导航性能影响较小,而在一侧梨树缺失时对机器人的导航性能影响较大。根据横向偏差的统计值与机器人行驶轨迹,表明控制算法能够控制机器人沿着中心线行驶。  相似文献   

6.
为解决果园苹果采后运输设备自主导航模式单一、无法在任意点起步或停车等问题,设计了一种双导航模式小型果园运输机器人,可根据需求选择行人引领导航或定点导航。根据选择的导航模式,采用基于OpenPose人体姿态识别的目标跟踪控制方法或基于RTK-GNSS(Real time kinematic-global navigation satellite system)的距离-方向控制方法,实现果园环境下的行人引领导航和定点导航。该运输机器人以额定负载为200 kg、速度为0.5 m/s的条件参数在果园自主作业时,行人引领导航模式下目标跟踪误差平均值小于9 cm,其标准差小于4 cm;定点导航模式下到达目标点的相对误差小于13 cm,其标准差小于1.5 cm,绝对误差小于7 cm,其标准差小于0.5 cm;定点导航模式下机器人急停避障的行驶路径与理想行驶路径间的横向偏差小于56 cm,航向偏差小于8°。试验结果表明,该机器人能满足果园自主运输和安全避障的需求。  相似文献   

7.
研究开发了一种自动导航果园用履带式移动机器人,作为果园精细化作业的移动平台.机器人采用基于曲柄滑块机构原理的导航方式,以导航机构检测的姿态角和位置角作为输入量设计了模糊PID控制器.试验表明,机器人以0.15m/s的速度直线行走时,最大跟踪误差小于0.02m;机器人转弯半径为2m时,最大跟踪误差小于0.05m.  相似文献   

8.
基于改进粒子群优化模糊控制的农业车辆导航系统   总被引:9,自引:0,他引:9  
以采用机器视觉导航的农业车辆为研究对象,提出了一种基于改进粒子群优化自适应模糊控制的农机导航控制方法。建立了车辆2自由度转向模型和视觉预瞄模型,对车辆横向控制进行状态描述。对粒子群算法进行了改进,提高了粒子群算法的收敛速度,降低了算法计算时间。构建了自适应模糊控制器,在模糊控制器中引入加权因子,以横向偏差和航向偏差时间误差绝对值积分(ITAE)之和作为系统目标函数,通过粒子群算法计算得到最优加权因子,进而调整控制规则实现导航车辆的自适应控制。仿真和导航试验结果表明,提出的控制方法可以迅速消除横向误差,具有超调量小、响应速度快等特点,既保留了模糊控制算法的优点,又提高了系统控制品质。在相同参数条件下,与常规模糊控制相比,改进模糊控制算法导航精度显著提高。当车速为0.8/s时,直线路径跟踪最大横向偏差不超过4.2 cm,曲线路径跟踪最大横向偏差不超过5.9 cm,能够较好地满足农业车辆导航作业要求。  相似文献   

9.
基于虚拟雷达模型的履带拖拉机导航路径跟踪控制算法   总被引:1,自引:0,他引:1  
为提高传统果园广泛使用的小型履带式拖拉机导航路径跟踪控制精度和行驶稳定性,提出了一种基于虚拟雷达模型的导航路径跟踪控制算法。该算法借鉴人对车辆的驾驶经验,参考雷达扫描原理和图像识别原理,构建了虚拟雷达模型,生成虚拟雷达图,使用该图描述车辆与路径的位置关系;经深度神经网络分类生成对应的履带拖拉机行驶操作指令;以果园作业典型的U形路径为例进行了仿真验证试验和实车试验。仿真结果表明:本文提出的算法能够精准实现导航路径跟踪控制。果园实车试验表明:当车速为0.36、0.75m/s时,该算法路径跟踪的最大横向偏差分别为0.150、0.191m,平均横向偏差分别为0.031、0.051m,标准差分别为0.025、0.036m;与模糊控制算法相比,最大横向偏差分别减小了15.73%、36.33%,平均横向偏差分别减小了27.91%、19.05%,标准差分别减少了21.88%、28.00%。研究表明,基于虚拟雷达模型的导航路径跟踪控制算法具有更高的路径跟踪精度和行驶稳定性,满足果园实际作业需求。  相似文献   

10.
农机导航自校正模型控制方法研究   总被引:8,自引:0,他引:8  
针对运动学模型中的近似条件对模型控制方法曲线路径跟踪精度的影响,提出了一种农机导航自校正模型控制方法。该方法采用模型控制方法设计控制律,并采用模糊控制方法自适应地在线调节模型控制律的控制量。农业机械的路径跟踪实验结果表明,该方法既保留了模型控制方法在直线路径跟踪方面的优点,又弥补了模型控制方法在曲线路径跟踪方面的缺陷。当速度为1.0 m/s时,直线路径跟踪最大横向偏差小于0.064 9 m,曲线路径跟踪的最大横向偏差小于0.185 7 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号