首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Production characteristics of channel catfish (Ictalurus punctatus) reared in cages and open ponds were compared. Fish reared in open ponds had significantly better growth and food conversion ratios than fish reared in cages. Cages and open ponds stocked with fish which were closely graded in size produced fish with less size variability at harvest compared to ponds and cages stocked with nongraded and coarsely graded fish. The decrease in size variability at harvest was reflected in a greater proportion of marketable fish.  相似文献   

2.
Abstract

Two studies were conducted to determine if temporary sequestration of fingerling channel catfish, Ictalurus punctatus, in cages improves production of multiple-crop ponds. In the first study, 0.04-ha ponds were stocked with 295 large (mean weight = 566 g) and 780 fingerling (mean weight = 21 g) catfish. Fingerlings were stocked into cages or open ponds. At 120 days after stocking, fish in cages were released. After an additional 40 days, ponds were clean-harvested to remove large (>500 g) and small (<500 g) fish. In the second study, ponds (0.08-ha) were stocked with 750 large (mean weight = 46 g) and 750 small (mean weight = 20 g) fingerling catfish. Small fingerlings were stocked into cages or open ponds. At 60 days after stocking, fish in cages were released. Market-ready fish were selectively harvested at five and nine months after stocking. Results from the first study indicated that individual weight, weight gain, and yield of both size classes of fish raised in sequestered ponds were significantly greater (P< 0.05) than that of fish raised in open ponds. In addition, total weight gain and yield of fish in sequestered ponds was significantly greater (P< 0.05) than those in non-sequestered ponds. Results from the second study indicated that a significantly greater (P< 0.05) number of market-ready fish were harvested from sequestered ponds than from non-sequestered ponds. Mean yield of sequestered ponds was 31% greater than that of non-sequestered ponds; however, differences were not significant (P> 0.05). Amount of feed fed to fish raised in sequestered ponds was significantly greater (P< 0.05) than amount of feed fed to fish raised in non-sequestered ponds in both studies. It is unclear which factor or factors were responsible for the enhanced production of sequestered ponds; however, temporary sequestration may reduce agonistic behavior and competition for feed between fish size groups.  相似文献   

3.
Abstract— Laboratory studies with pond water samples revealed that 5 mg/L active chlorine was needed to provide enough chlorine residual to reduce biological activity. Treatment of channel catfish ponds with repeated, 0.1-mg/L doses of active chlorine from calcium hypochlorite at 6- to 8-d intervals, as sometimes done by catfish farmers, had little influence on water quality. Dissolved oxygen, total ammonia-nitrogen, and chlorophyll a concentrations and pH were similar between treated and control ponds. Concentrations of chemical oxygen demand and particulate organic matter were seldom different between treated and control ponds. Channel catfish survival and net production were not improved by chlorine treatment. Thus, chlorination of production ponds during the grow-out period is not a useful technique. Treatment of sediment samples from ponds with up to 1,200-mg active chlorinelkg soil did not reduce bacterial abundance, so chlorination of bottoms of empty ponds may not he an effective disinfection procedure. Chlorination of pond waters with 30-mg/L active chlorine caused complete kill of bacteria 24 h after treatment, although heterotrophic bacteria quickly re-populated the water. Thus, chlorination can be an effective way to disinfect ponds before stocking.  相似文献   

4.
Profit-Maximizing Stocking Rates for Channel Catfish in Cages   总被引:1,自引:0,他引:1  
A production function for catfish in cages was estmated by combining data from a survey of producers in Alabama with data from experimental studies in Texas, South Carolina, and Alabama. Explanatory variables in the quadratic model included cage stocking density, fingerling size, length of growing season, feed conversion rate, squared and cross-product terms, and dummy variables for data sources. Model R 2 was 87%. Profit-maximizing stocking densities were calculated for varying levels of growing season duration, fingerling size, fingerling price and market price. Optimal stocking density was shown to be most sensitive to length of growing season.  相似文献   

5.
Water from 48 channel catfish Ictalurus punctatus ponds at Auburn and Greensboro, Alabama, USA, usually contained less than 1,000 total coliform and 200 fecal coliform bacteria per 100 mL. There were no sources of human fecal matter to ponds. Also, the fecal coliform: fecal streptococci ratio was less than 1.0 and typical of fecal contamination by warm-blooded animals other than humans. The abundance of coliforms was greater in spring and summer than in fall and winter in catfish ponds and sportfish ponds at Auburn, Alabama. In spite of high organic matter inputs in feed, catfish ponds had no greater abundance of coliforms than sportfish ponds.  相似文献   

6.
7.
Fingerling HS‐5 channel catfish, Ictalurus punctatus, NWAC 103 channel catfish, D&B blue catfish, Ictalurus furcatus, HS‐5 female channel × D&B male blue catfish F1 hybrids, and NWAC 103 female channel × D&B male blue catfish F1 hybrids were stocked into twenty‐five 0.04‐ha earthen ponds at 12,500 fish/ha and grown for 277 d. Fish were fed daily at rates from 1.0 to 3.0% biomass based on feeding activity and temperature and adjusted weekly assuming a feed conversion ratio (FCR) of 1.8 and 100% survival. At harvest, 40 fish from each pond were sampled, and all other counted and weighed. Mean survival, growth rate indexes (a), FCR, and skin‐on fillet percentages were not significantly different. Mean harvest weights and net production were higher for HS‐5 channel and its hybrid than for the NWAC 103 channel, NWAC 103 hybrid, and D&B blue catfish, partially because of their larger mean stocking weights. D&B blue catfish was more uniform in size than NWAC 103 channel and NWAC 103 hybrid. D&B blue catfish was the easiest to seine. HS‐5 hybrids and NWAC 103 hybrids had lower mean head percentage and a better processing yield than their parent channel catfish.  相似文献   

8.
We compared production variables between channel catfish, Ictalurus punctatus, nursery ponds fed according to industry standards, that is feeding immediately at stocking, to an alternative practice of delaying feeding for 6 wk after stocking in an effort to utilize natural pond productivity and reduce feed use. Twelve 0.04 ha ponds were fertilized and stocked with swim‐up fry (4–5 d posthatch) at a rate of 10,000/pond (250,000/ha). Ponds were then randomly assigned to either the standard feeding protocol (feeding daily starting immediately at stocking) or an alternative feeding protocol (no feeding until 6 wk post‐stocking). After 18 wk of production, there were no differences in water quality or zooplankton abundance between the two treatments. Fish length was not affected by treatment throughout the study, and survival and total weight harvested were similar. Total kg of feed fed was significantly reduced in the delayed feed treatment, averaging 26 kg/pond less feed fed. If proper fertilization practices are implemented, large numbers of desirable zooplankton for catfish fry culture are attained, and these zooplankton are able to sustain catfish fry stocked up to 250,000/ha. Therefore, no commercial diets are required during the first 6 wk of culture, saving over $95.55/ha in initial feed costs.  相似文献   

9.
Effects of a Bacterial Inoculum in Channel Catfish Ponds   总被引:9,自引:0,他引:9  
A commercial bacterial Inoculum cultured on site called Biostart was applied to three channel catfish Ictalurus punctatus ponds at Auburn, Alabama, USA, three times per week from May until October 1996. There were few significant differences (P × 0.1) in concentrations of water quality variables between ponds treated with bacteria and control ponds. In addition, bottom soil carbon and nitrogen did not differ between treated and control ponds. However, survival and net production of fish was significantly (P × 0.1) greater in ponds that received the bacterial inoculum than in controls. The mechanism by which the bacterial treatment influenced fish survival cannot be explained from data collected in this study. Further studies of probiotics are needed to define the potential benefits of these treatments to aquacultural production and to determine their mechanisms of action in pond ecosystems.  相似文献   

10.
Effects of feeding 17-α-methyltestosterone (MT) to channel catfish ( Icralurus punctatus ) grown to harvestable size in earthen ponds were examined. Channel catfish fingerlings (mean weight, 14.4 g), stocked in 0.04 ha ponds (7,410 fish/ha) were fed diets containing MT at concentrations of 0, 2.5, and 10 mg/kg for 123 days. Weight gain by fish fed the control diet (0 MT) was higher ( P < 0.05) than that of fish fed the treated diets. Increasing the dietary concentration of MT reduced weight gain further ( P < 0.05). Both male and female fish fed MT had enlarged and thickened heads, and their skins were dark. Their dorsal and pectoral spines were short and the tips, which are normally very sharp, were soft and blunt. Weight of the rib bones per unit of length decreased ( P < 0.05) as MT was added to the diet. Breaking strength of the ribs (force required to break the bone at its midpoint) measured by an Instron shear press, was less ( P < 0.05) for fish fed MT than for control fish. The ratio of calcium to phosphorus in bones was lower ( P < 0.05) in fish fed MT. These results indicate that feeding MT at these doses (2.5 mg/kg or above) to channel catfish suppresses growth rate and reduces size and strength of bones.  相似文献   

11.
Three channel catfish (Ictalurus punctatus) ponds were treated at two-week intervals with sodium nitrate at 2 mg NO3 ?-N/L per application and three ponds served as controls. Average concentration of nitrite-nitrogen measured midway between application dates never exceeded 1.2 mg/L in treated ponds, but on most sampling dates, nitrate concentrations were greater than those in control ponds (P < 0.1). Disappearance of nitrate-nitrogen from waters of treated ponds resulted primarily from nitrate reduction to free nitrogen gas. Soluble reactive and total phosphorus concentrations tended to be higher (P < 0.1) in treated ponds than in control ponds. There were no differences (P > 0.1) in pH and concentrations of total alkalinity, total ammonia nitrogen, and dissolved oxygen between treated and control ponds. The higher chlorophyll a concentration (P < 0.1) suggested that greater availability of nutrients in treated ponds resulted in more phytoplankton growth than in control ponds. Because of greater phytoplankton biomass, turbidity was higher and Secchi disk visibility less in treated ponds as compared to control ponds (P < 0.1). There were no obvious differences in phytoplankton community composition with respect to treatment—blue-green algae dominated the phytoplankton community in both treated and control ponds. Redox potential in sediment during crops was higher in ponds treated with sodium nitrate than in control ponds, indicating less anaerobic conditions. However, catfish survival, production, and feed conversion ratio did not differ (P > 0.1) between treatment and control.  相似文献   

12.
Channel catfish (lctalurus punctatus) fingerlings stocked at a rate of 450 fish/0.04 ha pond were simultaneously cultured with fingerlings stocked in 1.25 m3 cages (0, 250, 350, or 450 fishlcage; one cage/pond). The fish in the cages were cultured and harvested for a 90–330 g (whole fish) market. The fish in the open ponds were cultured and harvested for a 490–1,140 g market. Harvest weights of open pond fish in all treatments were similar indicating that the presence of the caged fish and the associated higher daily pond feeding rates did not affect open pond production. Ninety-five to 99% of the caged fish and 96 to 98% of the open pond fish were of marketable size at harvest. Survival and food conversion ratios were similar among treatments. Results of this study indicate that total pond production can be increased (in this case up to 19%) by using a combination of open pond and cage techniques and by simultaneously producing fish for two markets.  相似文献   

13.
Sediment oxygen demand (SOD) measured in 45 commercial channel catfish ponds in northwest Mississippi using in situ respirometry ( N = 167) ranged from 63 to 1,038 mg/m2 per h. Mean SOD in this study (359 mg/m2 per h) was greater than that reported previously for catfish ponds but was similar to SOD in semi-intensive marine shrimp ponds. Nine variables were selected and measured to assess their relative importance in accounting for variation in SOD. Six variables were included in multiple regression models that explained slightly more than half of the variation in SOD. These variables were: dissolved oxygen concentration at the beginning of respirometry incubation:, particulate organic matter concentration in water above the sediment surface: organic carbon concentration at the immediate sediment-water interface (flocculent or F-layer) combined with the upper 2 cm of sediment (S-layer); organic carbon concentration in the mature (M) underlying sediment layer: water temperature: and total depth of accumulated sediment. Sediment oxygen demand was most sensitive to changes in dissolved oxygen concentration in the overlying water, particulate organic matter concentration in the water, and the concentration of organic carbon in the combined flocculent and upper sediment (F+S) layer. Models for SOD in this research predict that the mass of sediment below the upper 2-cm surface layer on average contributes only ∼20% of total SOD. Stratification and normal daily fluctuation of dissolved oxygen concentration in eutrophic culture ponds likely limit expression of sediment oxygen demand. Maintaining aerobic conditions at the sediment-water interface will minimize accumulation of organic matter in pond sediment.  相似文献   

14.
Threadfin shad Dorosoma petenense are often stocked into commercial catfish ponds for biological control of algae. It is thought that the fish will alter the phytoplankton community, improve water quality, and enhance channel catfish production. Co-stocking of shad and catfish is a common practice, although there is limited information regarding the effects of threadfin shad on pond dynamics and catfish production. To evaluate the influence of shad in catfish ponds, this study was conducted in ten 0.04-ha experimental earthen ponds near Auburn, Alabama. All ponds were stocked in April with 600 fingerling channel catfish Ictal-urus punctatus (13,200/ha) with a mean length of 10.4 cm (4.1 in). Additionally, five of these ponds were randomly chosen and stocked with 70 adult threadfin shad (1,750/ha) weighing a total of 3.3 kg (16.5 kg/ha). At harvest in November, an average of 1,284 threadfin shad (32,100/ha), weighing a total of 55 kg (1,375 kg/ha) were collected from each shad pond. Water quality was improved with the addition of threadfin shad to channel catfish ponds. Mean total ammonia-nitrogen was significantly lower and less variable in the shad treatment. Observed mean nitrite concentrations, though not significant, were lower in the shad treatment. The phytoplankton community of the shad treatment had significantly higher density, more taxa, and smaller organisms. Pond water in the shad treatment had higher projected early morning dissolved oxygen levels requiring less aeration. Channel catfish had significantly higher survival in the shad treatment, furthermore, though not statistically significant, observed mean fish production was higher and feed conversion ratio was lower than in the no-shad treatment.  相似文献   

15.
Many fish culturists are interested in applying copper sulfate pentahydrate (CSP) to channel catfish, Ictalurus punctatus, nursery ponds as a prophylactic treatment for trematode infection and proliferative gill disease by killing snails and Dero sp., respectively, before stocking fry. However, copper is an algaecide and may adversely affect phytoplankton and zooplankton populations. We evaluated the effects of prophylactic use of copper sulfate in catfish nursery ponds on water quality and phytoplankton and zooplankton populations. In 2006, treatments of 0 mg/L CSP, 3 mg/L CSP (0.77 mg/L Cu), and 6 mg/L CSP (1.54 mg/L Cu) were randomly assigned to 0.04‐ha ponds. In 2007, only treatments of 0 and 3 mg/L CSP were randomly assigned to the 16 ponds. Ponds treated with CSP had significantly higher pH and significantly lower total ammonia concentrations. Treatment of both CSP rates increased total algal concentrations but reduced desirable zooplankton groups for catfish culture. CSP has been shown to be effective in reducing snail populations at the rate used in this study. CSP treatment also appears to be beneficial to the algal bloom, shifting the algal population to green algae and increasing total algal biomass within 1 wk after CSP treatment. Although zooplankton populations were adversely affected, populations of important zooplankton to catfish fry began rebounding 6–12 d after CSP treatment. Therefore, if CSP is used to treat catfish fry ponds of similar water composition used in this study, fry should not be stocked for about 2 wk after CSP application to allow time for the desirable zooplankton densities to begin increasing.  相似文献   

16.
A 2 × 3 factorial experiment was conducted using satiate and restricted feeding with 32% crude protein diets containing low, medium, and high quality protein. Protein quality in the experimental diets was varied primarily by substituting peanut meal and cottonseed meal for soybean meal. Percentages of lysine, the first-limiting amino acid, were 1.14, 1.33, and 1.61 in the low, medium, and high quality protein diets respectively. Digestible energy concentration of the diets was 2.9 kcal/g. Channel catfish were grown from an average weight of 47 g to marketable size over a 15 wk period at a stocking density of 13,750 fish/ha in 400 m2 earthen ponds. Each treatment was replicated in three ponds. Fish in the satiation group were fed as much as they would consume each day for the 15 wk experimental period. Fish in the restricted group were fed as much as they would consume until the daily feed allowance reached 65 kg/ha, which was reached at approximately week 5 of the experiment, and thereafter, there was no further increase in feed allowance. There was no significant interaction between feeding regimen and dietary protein quality for weight gain or feed conversion. Weight gain and feed efficiency under both satiation and restricted feeding increased linearly as protein quality increased. Protein quality had no influence on protein efficiency ratio (PER) under satiate feeding but had a positive effect on PER under restricted feeding. Protein quality had a positive linear effect on dressing percentage under restricted feeding, but in those fish fed to satiation, dressing percentage only increased between the low and high quality protein treatments. Protein quality had a negative linear effect on muscle fat but had no effect on visceral fat under satiate or restricted feeding. These results indicate that channel catfish are sensitive to protein quality differences in practical feeds at both satiate and restricted feeding rates, and that reduction in protein quality reduces dressing yield and increases muscle fat in food size fish.  相似文献   

17.
Mosquitofish, Gambusia sp., have been spread throughout the world to biologically control mosquitoes. However, the fish has gained a reputation as an invasive species and has been implicated in displacing native aquatic species. Gambusia affinis are native to the southeastern United States and commonly occur in commercial channel catfish, Ictalurus punctatus, production ponds. We investigated effects of mosquitofish presence on zooplankton populations, water quality, disease occurrence, and fish production in experimental ponds. There were no differences between ponds with or without mosquitofish in numbers of calanoid copepods, cyclopoid copepods, total copepods, Bosmina sp., Ceriodaphnia sp., Moina sp., Daphnia sp., or total cladocerans. There were also no differences in copepod and cladoceran sizes. Copepod nauplii were more numerous during the summer months in ponds with mosquitofish. There were no differences in water quality variables (soluble reactive phosphorus, nitrate, nitrite, ammonia, total nitrogen, total phosphorus, pH) or phytoplankton density between ponds stocked with and without mosquitofish. Catfish production and disease occurrence were also similar between ponds with and without mosquitofish. Although mosquitofish may cause problems when stocked outside their native range, there does not appear to be any adverse effects of mosquitofish presence in catfish production ponds.  相似文献   

18.
Bolbophorus damnificus was recognized as a threat to channel catfish, Ictalurus punctatus, production in Louisiana and Mississippi in 1997 and 1999, respectively. Severe to moderate outbreaks (≥34% prevalence) are correlated to heavy losses, but impact of mild outbreaks with low prevalence (<33%) was unknown. Laboratory and field studies were conducted to evaluate sublethal acute (early stage) and chronic (late stage) trematode infection impacts on catfish production. Fish raised in ponds seeded with ram's horn snails from ponds harboring active B. damnificus outbreaks resulted in infection prevalence ranging from 1.6 to 20.4%. Compared to fish raised in ponds not seeded with infected snails (0% prevalence), fish biomass, number harvested, and total feed fed were significantly lower. These data agree with previous studies where mild infections reduced feed consumption, fish production, and economic returns. Infected fish were collected from ponds and used in a laboratory growth study. Once removed from the infection source, weight gain, growth rate, feed consumption, and feed efficiency were equal to or greater than trematode‐free fish. This suggests that although early B. damnificus infection (premetacercarial development) can severely impact production, infection has little impact on performance once metacercarial cysts are fully developed, and the infection source is removed.  相似文献   

19.
Selected water quality variables were measured at monthly intervals for 1 yr in 10 commercial channel catfish ponds in northwest Mississippi. Temporal changes in most variables appeared to be related to seasonal periodicity of phytoplankton abundance. Phytoplankton standing crops and total organic matter were highest in summer months when primary production was favored by warm water temperatures, high solar irradiance, and large inputs of nutrients resulting from high summer fish feed allowances. As day length, water temperature, and feed inputs decreased in autumn and winter, phytoplankton abundance and organic matter concentrations decreased. Seasonal changes in total nitrogen and total phosphorus concentrations were similar to phytoplankton abundance because much of the total nitrogen and phosphorus was contained within phytoplankton cells. Contrasting to the seasonal trend for total nitrogen, concentrations of dissolved inorganic nitrogen were lowest in the summer and highest in the cooler months. Rapid assimilation by phytoplankton served to maintain relatively low concentrations of dissolved inorganic nitrogen during the summer despite highest nitrogen loading rates during that period. Low water temperatures and generally less favorable conditions for phytoplankton growth decreased rates of nitrogen assimilation in the winter and ammonia, nitrite, and nitrate accumulated. Soluble reactive phosphorus concentrations were low throughout the year because physico-chemical processes, such as precipitation and adsorption to bottom muds acted to continually remove inorganic phosphorus from the water column.  相似文献   

20.
Copper sulfate (CuSO45H2O) is used to reduce the abundance of blue-green algae and combat off-flavor in channel catfish culture. Copper sulfate usually is applied at a concentration of one-one hundredth of the total alkalinity. A study was performed at the Auburn University Fisheries Research Unit to determine the duration of elevated copper (Cu) concentration following copper sulfate applications. Two alkalinity treatments, 20-40 mg/L and 110-130 mg/L (as CaCO3), were examined. Copper sulfate was applied biweekly for 14 wk at 03 mg/L for the low alkalinity treatment and 1.2 mg/L for the high alkalinity treatment. Total copper concentrations in pond waters declined to the background level by 48-h post treatment. In addition, total copper concentrations were determined in waters of 38 catfish production ponds located in west central Alabama. The mean and standard deviation were 0.0092 ± 0.0087 mg Cu/L. Copper quickly precipitates from the water or is absorbed by sediments following copper sulfate treatment. Although concentrations of copper in pond waters increase immediately following copper sulfate treatment, they rapidly decrease and seldom exceed the United States Environmental Protection Agency's National Recommended Water Quality Criteria for Priority Toxic Pollutants of 0.013-mg Cu/L. Findings of this study suggest that copper sulfate treatment will not contaminate effluent from catfish ponds because of the short time that applied copper remains in the water column. Furthermore, the most frequent applications of copper sulfate occur in late summer months when rainfall is minimal and pond overflow is rare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号