首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
We examined movements of North American elk (Cervus elaphus) in northeastern Oregon, USA. Movement vectors at 449 locations over a 7762 ha area were calculated based on 16,724 sequential observations of 94 female elk-year combinations during spring (15 April–14 May) 1993, 1995, 1996. We calculated movement vectors at the start of morning and evening feeding bouts (0500, 1900 h) and during periods of least activity (0100, 1500 h). Here, we measured characteristics of habitat patches (habitat type, mean patch size, coefficient of variation in patch size, edge density, mean shape index, and mean nearest neighbor) at two levels of habitat grain (eight habitat types, two habitat types) and at three spatial scales (250, 500, and 1000 m) around each movement vector. We also measured topographic features around each vector including distance to nearest stream, direction of drainage, elevation, slope, and convexity (a measure of ridge top vs. valley bottom land form). We used mixed models adjusted for positive spatial correlation among vectors to examine the relationship between vector length, or speed of movement, and habitat patch characteristics, and between vector direction and topographic features. Speed of movements by elk were not related to characteristics of habitat patches that we measured. The direction of movement, however, was dependent on topography. Elk were more likely to move parallel to major drainages than perpendicular to them. Furthermore, elk were less likely to move perpendicular to drainages when close to the nearest stream, in valley bottoms vs. ridge tops, and on steep slopes. The dendritic nature of movements by elk with respect to topography may help elucidate ecosystem processes such as nutrient flows, nutrient cycling, and successional trajectories of plant communities.  相似文献   

2.
We tested whether size of habitat patches and distance between patches are sufficient to predict the distribution of the mountain vizcacha Lagidium viscacia a large, rock-dwelling rodent of the Patagonian steppe Argentina, or whether information on other patch and landscape characteristics also is required. A logistic regression model including the distance between rock crevices and depth of crevices, distance between a patch and the nearest occupied patch, and whether or not there was a river separating it from the nearest occupied patch was a better predictor of patch occupancy by mountain vizcachas than was a model based only on patch size and distance between patches. Our results indicate that a simple metapopulation analysis based on size of habitat patches and distance between patches may not provide an accurate representation of regional population dynamics if patches vary in habitat quality independently of patch size and features in the matrix alter connectivity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Human modification of forest habitats is a major component of global environmental change. Even areas that remain predominantly forested may be changed considerably by human alteration of historical disturbance regimes. To better understand human influences on the abundance and pattern of forest habitats, we studied forest land cover change from 1936 to 1996 in a 25000 km2 landscape in the Oregon (USA) Coast Range. We integrated historical forest survey data and maps from 1936 with satellite imagery and GIS data from 1996 to quantify changes in major forest cover types. Change in the total area of closed-canopy forests was relatively minor, decreasing from 68% of the landscape in 1936 to 65% in 1996. In contrast, large-conifer forests decreased from 42% in 1936 to 17% in 1996, whereas small-conifer forests increased from 21% of the landscape in 1936 to 39% in 1996. Linear regression models were used to predict changes in the proportion of large conifer forest as a function of socioeconomic and environmental variables at scales of subbasins (mean size = 1964 km2, n=13), watersheds (mean size = 302 km2, n=83), and subwatersheds (mean size = 18 km2, n=1325). The proportion of land in private ownership was the strongest predictor at all three spatial scales (partial R2 values 0.57–0.76). The amounts of variation explained by other independent variables were comparatively minor. Results corroborate the hypothesis that differing management regimes on private and public ownerships have led to different pathways of landscape change. Furthermore, these distinctive trajectories are consistent over a broad domain of spatial scales.  相似文献   

4.
Landscapes resulting from human activity may be expected to present simpler shapes than more natural landscapes. In the case of forest landscapes, the boundaries of native forest patches may be more irregular than those of exotic forest plantations. There is however a lack of quantitative results to this respect, and it is not clear which shape indices are more adequate for such discrimination. In this study, we analysed the shape of a large number of forest classes in the region of Galicia (Spain) using the Spanish Forest Map at a scale 1:50000 as the spatial information source. We considered a set of fifteen shape irregularity indices including those that have been commonly used in landscape ecology studies. We found systematic differences in the shape of the analysed forest classes, with native forests presenting both more complex and elongated boundaries than exotic forests. We suggest that these differences are due to the combined effects of human action and other topographical and hydrological factors. The only index that perfectly discriminated both types of forest was the mean circumscribing circle index. Other six indices provided also a significantly good discrimination: density of shape characteristic points, area-weighted mean perimeter-area ratio, area-weighted mean contiguity index, mean shape index, perimeter-area fractal dimension and mean largest axis index. Comparisons of pure and mixed forests with the same dominant species indicated that an increase in tree species richness is in general associated with more irregular boundaries in the forest. Discarding indices on the basis of a high statistical correlation may not be an adequate procedure to retain the best-performing indices. Finally, we discussed several limitations of some frequently used indices that may be relevant to prevent an improper characterization of landscape shape.  相似文献   

5.
Landscape metrics are widely applied in landscape ecology to quantify landscape structure. However, many are poorly tested and require rigorous validation if they are to serve as reliable indicators of habitat loss and frag-mentation, such as Montreal Process Indicator 1.1e. We apply a landscape ecology theory, supported by explor-atory and confirmatory statistical techniques, to empirically test landscape metrics for reporting Montreal Process Indicator 1.1e in continuous dry eucalypt forests of sub-tropical Queensland, Australia. Target biota examined included: the Yellow-bellied Glider (Petaurus australis); the diversity of nectar and sap feeding glider species including P. australis, the Sugar Glider P. breviceps, the Squirrel Glider P. norfolcensis, and the Feathertail GliderAcrobates pygmaeus; six diurnal forest birds species; total diurnal bird species diversity; and the density of nec-tar-feeding diurnal bird species. Two scales of influence were considered: the stand-scale (2 ha), and a series of radial landscape extents (500 m –2 km;78–1250 ha) surrounding each fauna transect. For all biota, stand-scale structural and compositional attributes were found to be more influential than landscape metrics. For the Yellow-belliedGlider, the proportion of trace habitats with a residual element of old spotted-gum/ironbark eucalypt trees was a significant landscape metric at the 2 km landscape extent. This is a measure of habitat loss rather than habitat fragmentation. For the diversity of nectar and sap feeding glider species, the proportion of trace habitats with a high coefficient of variation in patch size at the 750 m extent was a significant landscape metric. None of the landscape metrics tested was important for diurnal forest birds. We conclude that no single landscape metricadequately captures the response of the regions forest biota per se. This poses a major challenge to regional reporting of Montreal Process Indicator 1.1e, fragmentation of forest types.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

6.
A computer simulation model was used to derive estimates of the probability of extinction of populations of the endangered species, Leadbeater's Possum (Gymnobelideus leadbeateri), inhabiting ensembles of habitat patches within two wood production forest blocks in central Victoria, south-eastern Australia. Data on the habitat patches were extracted from forest inventory information that had been captured in the database of a Geographic Information System (GIS). Our analyses focussed on a range of issues associated with the size, number and spatial configuration of patches of potentially suitable habitat that occur within the Ada and Steavenson Forest Blocks. The sensitivity of extinction risks in these two areas to variations in the movement capability ofG. leadbeateri was also examined.Our analyses highlighted major differences in the likelihood of persistence of populations ofG. leadbeateri between the Ada and Steavenson Forest Blocks. These were attributed to differences in the spatial distribution and size of remnant old growth habitat patches as well as the impacts of wildfires. In addition, simulation modelling revealed a different relative contribution of various individual patches, and ensembles of patches, to metapopulation persistence in the two study areas. In those scenarios for the Ada Forest Block in which the impacts of wild-fires were not modelled, our analyses indicated that a few relatively large, linked patches were crucial for the persistence of the species and their loss elevated estimates of the probability of extinction to almost 100%. A different outcome was recorded from simulations of the Steavenson Forest Block which, in comparison with the Ada Forest Block, is characterized by larger and more numerous areas of well connected patches of old growth forest and where we included the impacts of wildfires in the analysis. In this case, metapopulation persistence was not reliant on any single patch, or small set of patches, of old growth forest. We found that in some circumstances the probability that a patch is occupied whilst the metapopulation is extant may be a good measure of its value for metapopulation viability. Another important outcome from our analyses was that estimates of extinction probability were influenced both by the size and the spatial arrangement of habitat patches. This result emphasizes the importance for modelling metapopulation dynamics of accurate spatial information on habitat patchiness, such as the data used in this study which were derived from a GIS.The values for the predicted probability of extinction were significantly influenced by a range of complex inter-acting factors including: (1) the occurrence and extent of wildfires, (2) the addition of logging exclusion areas such as forest on steep and rocky terrain to create a larger and more complex patch structure, (3) estimates of the quality of the habitat within the logging exclusion areas, and (4) the movement capability ofG. leadbeateri. Very high values for the probability of extinction of populations ofG. leadbeateri were recorded from many of the simulations of the Ada and Steavenson Forest Blocks. This finding is the result of the limited areas of suitable old growth forest habitat for the species in the two areas that were targeted for analysis. Hence, there appears to be insufficient old growth forest in either of the two forest blocks to be confident that they will support populations ofG. leadbeateri in the long-term, particularly if a wildfire were to occur in the next 150 years.The results of sensitivity analyses indicated that estimates of the probability of extinction ofG. leadbeateri varied considerably in response to differences in the values for movement capability modelled. This highlighted the need for data on the dispersal behaviour of the species.  相似文献   

7.
Historical and future projected landscape patterns and changes caused by harvesting and silviculture were evaluated for a 189,000 ha, intensively managed forest in New Brunswick, Canada. We compared changes in species composition, age classes, and patch characteristics (area, size, density, edge, shape, and core area) between 1945, 2002, and projections to 2027 (based on the landowner's spatial forest management plan). In 1945, the landbase was 40% softwood, 37% mixed hardwood–softwood, 10% hardwood, and 9% softwood–cedar. From 1945 to 2002 and 2027, respectively, softwood forest area increased by 2 and 11%, mixedwood decreased by 19 and 20%, and hardwood area increased by 15 and 14%, and softwood–cedar increased by 6% and then decreased by 7%. In 1945, forest >70 years old comprised 85% of the landscape, but declined to 44% in 2002 and was projected to encompass 41% in 2027. Increased area harvested, decreasing harvest patch size, and protection against natural disturbances resulted in progressively smaller mean and less variable patch sizes from 1945 to 2002. Based upon the 25-year forest management plan, this trend was projected to continue, with the exception of nine patches >1000 ha created by 2027, eight of which were softwood plantations. Stand type successional dynamics were highly variable in both harvested and non-harvested areas, and in some cases were unexpected. Few of the 1945 stand types remained static by 2002, with 42 and 35% of mixedwood shifting to softwood as a result of harvesting, and to hardwood as a result of both harvesting and spruce budworm (Choristoneura fumiferana Clem.) outbreaks in the 1950s and 1970s. This study demonstrates the strong cumulative effect of forest management on landscape patterns, especially the socially mandated drive for smaller clearcuts resulting in the loss of large patches.  相似文献   

8.
We compared three kinds of habitats: small remnants of native forests, recent hedges and barley crops, in order to investigate their respective roles in the maintenance of carabid-beetle diversity in a 950-ha area of an intensive agricultural landscape. Carabid faunas in remnants differed weakly from these found in hedges and crops. In particular, small remnants had few typical forest carabid species and a large number of open-area or ubiquitous species. Different approaches in the measurement of and -diversity (classical indices, and additive partitioning of Simpson's index) showed similar results: hedges supported a high -diversity but habitat types were quite similar overall, with weak differences between open and closed or disturbed and undisturbed habitats.A comparison of species dispersal powers in the various habitat types showed that species with a low dispersal power were rare in all habitats. However, wing development measured on two dimorphic species revealed, surprisingly, that brachypterous individuals were mainly present in hedges, which were expected a priori to be more disturbed, than remnants hence less suitable for the establishment of populations with a low dispersal power.These results suggest that small remnants do not behave as 'climax' habitats in this intensive agricultural landscape, probably because of their small size and strong isolation. We discuss the interest of new undisturbed habitats, such as recent hedges, for the maintenance of carabid diversity at both the local and landscape scale.  相似文献   

9.
Spatial ecology is becoming an increasingly important component of resource management, and the general monitoring of how human activities affect the distribution and abundance of wildlife. Yet most work on the reliability of sampling strategies is based on a non-spatial analysis of variance paradigm, and little work has been done assessing the power of alternative spatial methods for creating reliable maps of animal abundance. Such a map forms a critical response variable for multiple scale studies relating landscape structure to biotic function. The power to reconstruct patterns of distribution and abundance is influenced by sample placement strategy and density, the nature of spatial auto-correlation among points, and by the technique used to extrapolate points into an animal abundance map. Faced with uncertainty concerning the influence of these factors, we chose to first synthesize a model reference system of known properties and then evaluate the relative performance of alternative sampling and mapping procedures using it. We used published habitat associations of tree nesting boreal neo-tropical birds, a classified habitat map from the Manitou Lakes area of northwestern Ontario, and point count means and variances determined from field studies in boreal Canada to create 4 simulated models of avian abundance to function as reference maps. Four point sampling strategies were evaluated by 4 spatial mapping methods. We found mixed-cluster sampling to be an effective point sampling strategy, particularly when high habitat fragmentation was avoided by restricting samples to habitat patches >10 ha in size. We also found that of the 4 mapping methods, only stratified ordinary point kriging (OPK) was able to generate maps that reproduced an embedded landscape-scale spatial effect that reduced nesting bird abundance in areas of higher forest age-class fragmentation. Global OPK was effective only for detecting broader, regional-scale differences. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Little information is available regarding the landscape ecology of woodland invertebrate species with limited dispersal ability. An investigation was therefore conducted within woodland fragments in an agricultural landscape for the flightless wood cricket (Nemobius sylvestris) on the Isle of Wight, UK. The current pattern of distribution of the species, established during a field survey, was related to measures of habitat availability and habitat isolation/fragmentation. Results revealed that wood cricket populations were patchily distributed and mainly found in relatively large mature woodland fragments situated closely (<50 m) to another occupied site. Although the occurrence of wood cricket was related to fragment area, isolation, habitat availability and woodland age, a logistic regression model revealed that presence of the species was most accurately predicted by fragment isolation and area alone. These results highlight the vulnerability of relatively immobile woodland invertebrate species, such as wood cricket, to the impacts of habitat loss and fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号