首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The forest floor represents the major source of dissolved organic carbon (DOC) and nitrogen (DON) in forest soils. The release mechanisms of DOC and DON from forest floors and their environmental controls as well as the dynamics of concentrations and fluxes are still poorly understood. We investigated the effect of drying and rewetting on the release of DOC and DON from a Norway spruce forest floor. Undisturbed soil columns of 17 cm diameter and 15—20 cm height were taken with 7 replicates from the forest floor of a mature Norway spruce (Picea abies [L.] Karst.) site and established at 10°C in the laboratory. Columns were exposed to different periods of drying (3, 5, 10, 20 days). Each drying period was followed by a rewetting for 5 days at an irrigation rate of 10 mm d—1 with a natural throughfall solution. The percolates from the forest floor were collected daily and analyzed for DOC, total N, NH4, NO3, pH, electrical conductivity and major ions. Drying for 10 and 20 days decreased the water content of the Oi horizon from 280% dry weight to about 30%. The water content of the Oe and the Oa horizon only changed from about 300% to 200%. The fluxes of DOC from the forest floor were moderately effected by drying and rewetting with an increase after 3 and 5 days of drying, but a decrease after 10 and 20 days. On the contrary, the drying for 10 and 20 days resulted in a drastic increase of the DON fluxes and a subsequent decrease of the DOC/DON ratios in the forest floor percolates from about 50 to 3.3. These results suggest that the mechanisms for DOC release in forest floors differ from those for DON and that drying and rewetting cause temporal variations in the DOC/DON ratios in forest floor percolates.  相似文献   

2.
The forest floor was shown to be an effective sink of atmospherically deposited methylmercury (MeHg) but less for total mercury (Hgtotal). We studied factors controlling the difference in dynamics of MeHg and Hgtotal in the forest floor by doubling the throughfall input and manipulating aboveground litter inputs (litter removal and doubling litter addition) in the snow‐free period in a Norway spruce forest in NE Bavaria, Germany, for 14 weeks. The MeHg concentrations in the forest‐floor percolates were not affected by any of the manipulation and ranged between 0.03 (Oa horizon) and 0.11 (Oi horizon) ng Hg L–1. The Hgtotal concentrations were largest in the Oa horizon (24 ng Hg L–1) and increased under double litterfall (statistically significant in the Oi horizon). Similarly, concentrations of dissolved organic C (DOC) increased after doubling of litterfall. The concentrations of Hgtotal and DOC correlated significantly in forest‐floor percolates from all plots. However, we did not find any effect of DOC on MeHg concentrations. The difference in the coupling of Hgtotal and MeHg to DOC might be one reason for the differences in the mobility of Hg species in forest floors with a lower mobility of MeHg not controlled by DOC.  相似文献   

3.
Dissolved organic matter (DOM) is important for the cycling and transport of carbon (C) and nitrogen (N) in soil. In temperate forest soils, dissolved organic N (DON) partly escapes mineralization and is mobile, promoting loss of N via leaching. Little information is available comparing DOC and DON dynamics under tropical conditions. Here, mineralization is more rapid, and the demand of the vegetation for nutrients is larger, thus, leaching of DON could be small. We studied concentrations of DOC and DON during the rainy seasons 1998–2001 in precipitation, canopy throughfall, pore water in the mineral soil at 5, 15, 30, and 80 cm depth, and stream water under different land‐use systems representative of the highlands of northern Thailand. In addition, we determined the distribution of organic C (OC) and N (ON) between two operationally defined fractions of DOM. Samples were collected in small water catchments including a cultivated cabbage field, a pine plantation, a secondary forest, and a primary forest. The mean concentrations of DOC and DON in bulk precipitation were 1.7 ± 0.2 and 0.2 ± 0.1 mg L–1, respectively, dominated by the hydrophilic fraction. The throughfall of the three forest sites became enriched up to three times in DOC in the hydrophobic fraction, but not in DON. Maximum concentrations of DOC and DON (7.9–13.9 mg C L–1 and 0.9–1.2 mg N L–1, respectively) were found in samples from lysimeters at 5 cm soil depth. Hydrophobic OC and hydrophilic ON compounds were released from the O layer and the upper mineral soil. Concentrations of OC and ON in mineral‐soil solutions under the cabbage cultivation were elevated when compared with those under the forests. Similar to most temperate soils, the concentrations in the soil solution decreased with soil depth. The reduction of OC with depth was mainly due to the decrease of hydrophobic compounds. The changes in OC indicated the release of hydrophobic compounds poor in N in the forest canopy and the organic layers. These substances were removed from solution during passage through the mineral soil. In contrast, organic N related more to labile microbial‐derived hydrophilic compounds. At least at the cabbage‐cultivation site, mineralization seemed to contribute largely to the decrease of DOC and DON with depth, possibly because of increased microbial activity stimulated by the inorganic‐N fertilization. Similar concentrations and compositions of OC and ON in subsoils and streams draining the forested catchments suggest soil control on stream DOM. The contribution of DON to total dissolved N in those streams ranged between 50% and 73%, underscoring the importance of DOM for the leaching of nutrients from forested areas. In summary, OC and ON showed differences in their dynamics in forest as well as in agricultural ecosystems. This was mainly due to the differing distribution of OC and ON between the more immobile hydrophobic and the more easily degradable hydrophilic fraction.  相似文献   

4.
Dissolved organic nitrogen (DON) plays an important ecological role in forest ecosystems, and its concentration is related to that of dissolved organic carbon (DOC). We investigated DON concentrations and ratios of DOC to DON in throughfall and soil waters in 16 Norway spruce and two Scots pine forest stands sampled at weekly intervals between 1996 and 2006. The stands are all included in the ICP Forests Level II monitoring program and are located throughout Norway. DON concentrations were significantly and positively related to DOC concentrations in throughfall (r 2?=?0.72, p?<?0.0001) and soil water at 5, 15, and 40 cm (r 2?=?0.86, 0.32, and 0.84 and p?<?0.0001, 0.04, and <0.0001, respectively). At most sites, the annual median DOC/DON ratio in throughfall ranged from 20.3 to 55.5, which is lower than values in soil water, which ranged from 24.5 to 81.3, gradually decreasing with soil depth. DON concentrations varied seasonally in throughfall at many plots and in soil water at 5-cm depth at one plot only, with higher values in the growing season, but there was no noticeable seasonality at greater depth. The ratios of DOC/DON in soil water were significantly positively related to the C/N ratio in soil at the same depth. Above-ground litter input was the main factor having a significant, negative relationship to DOC/DON in soil water at all depths studied. This might reflect the effect of site conditions on both DOC/DON ratios and litter quantity.  相似文献   

5.
Dissolved organic carbon (DOC) and nitrogen (DON) are important components of the carbon and nitrogen turnover in soils. Little is known about the controls on the release of DOC and DON from forest floors, especially about the influence of solid phase properties. We investigated the spatial variation of the release of DOC and DON from Oe and Oa forest floor samples at a regional scale. Samples were taken from 12 different Norway spruce sites with varying solid phase properties, including C/N ratio, pH, different fractions of extractable carbon and exchangeable cations. Most of these solid phase properties are available for large forested areas of Europe in high spatial resolution. The samples were incubated at water holding capacity for eight weeks at 15°C and then extracted with an artificial throughfall solution to measure DOC and DON release. The rates of soil respiration and N-mineralization were determined to estimate soil microbial activity. The release of DOC and DON from Oe samples was two- to threefold higher than from Oa samples. The amounts released differed by one order of magnitude among the sites. The DOC/DON ratios in the percolates of the Oa samples were much higher as compared to the solid phase C/N, indicating different release rates of DOC and DON. In contrast, the DOC/DON ratios of the Oe percolates were in the range of the C/N ratios of the solid phase. The release of DOC and DON from Oe samples was not statistically correlated to any of the measured solid phase parameters, but to N-mineralization. The DOC and DON release from the Oa samples was positively related only to pH and soil respiration. Overall it was not possible to explain the large spatial variation of DOC and DON release by the measured solid phase properties with satisfying accuracy.  相似文献   

6.
The results of four-year monitoring of natural waters in forest ecosystems of the Zvenigorod Biological Station (Moscow State University, Moscow oblast) show regular changes in the concentrations and fluxes of dissolved organic carbon (DOC) within the atmospheric precipitation–throughfall–soil waters system. Precipitation passing through the tree canopy is enriched with DOC (2–3 and 9–24 mg/L). The average carbon concentration in soil waters reaches 100–110 mg/L in complex spruce and pine–spruce forests and does not exceed 40–60 mg/L in spruce–birch forests.  相似文献   

7.
Clear‐cutting of forest provides a unique opportunity to study the response of dynamic controls on dissolved organic matter. We examined differences in concentrations, fluxes and properties of dissolved organic matter from a control and a clear‐cut stand to reveal controlling factors on its dynamics. We measured dissolved organic C and N concentrations and fluxes in the Oi, Oe and Oa horizons of a Norway spruce stand and an adjacent clear‐cutting over 3 years. Aromaticity and complexity of organic molecules were determined by UV and fluorescence spectroscopy, and we measured δ13C ratios over 1 year. Annual fluxes of dissolved organic C and N remained unchanged in the thin Oi horizon (~ 260 kg C ha?1, ~ 8.5 kg N ha?1), despite the large reduction in fresh organic matter inputs after clear‐cutting. We conclude that production of dissolved organic matter is not limited by lack of resource. Gross fluxes of dissolved organic C and N increased by about 60% in the Oe and 40% in the Oa horizon upon clear‐cutting. Increasing organic C and N concentrations and increasing water fluxes resulted in 380 kg C ha?1 year?1 and 10.5 kg N ha?1 year?1 entering the mineral soil of the clear‐cut plots. We found numerous indications that the greater microbial activity induced by an increased temperature of 1.5°C in the forest floor is the major factor controlling the enhanced production of dissolved organic matter. Increasing aromaticity and complexity of organic molecules and depletion of 13C pointed to an accelerated processing of more strongly decomposed parts of the forest floor resulting in increased release of lignin‐derived molecules after clear‐cutting. The largest net fluxes of dissolved organic C and N were in the Oi horizon, yet dissolved organic matter sampled in the Oa horizon did not originate mainly from the Oi horizon. Largest gross fluxes in the Oa horizon (control 282 kg C ha?1) and increased aromaticity and complexity of the molecules with increasing depth suggested that dissolved organic matter was derived mainly from decomposition, transformation and leaching of more decomposed material of the forest floor. Our results imply that clear‐cutting releases additional dissolved organic matter which is sequestered in the mineral soil where it has greater resistance to microbial decay.  相似文献   

8.
Ion concentrations in water collected within a forest of sugar maple and yellow birch at the Turkey Lakes Watershed near Sault Ste. Marie, Ontario were examined from 1982 to 1984 to determine sources of acidity and the extent of cation leaching from forest floor horizons. Volume-weighted concentrations and ion fluxes in throughfall and forest-floor percolate during the growing and dormant seasons were calculated. Hydrogen ion content of the forest-floor percolate decreased in relation to that of throughfall in the dormant season and increased in the growing season. Hydrogen ion deposition in throughfall could account for 100% of the flux of H+ through the forest floor in the dormant period, and 40% of the flux during the growing season. In forest-floor percolate, Ca2+ concentrations were positively correlated with those of SO4 2-, NO3 - and organic anions during both dormant and growing seasons. Sources of NO3 - and organic anions within the ecosystem and major external inputs of NO3 - and SO4 2- were critical factors that influenced cation mobility in the forest floor.  相似文献   

9.
The concentrations and annual fluxes of Fe, Al, Mn, Cu and Pb were measured during 1983 in bulk precipitation, throughfall, stem-flow, forest floor percolate, mineral soil solution below the root zone and streamflow in a maple-birch stand on an acid podzolic soil at the Turkey Lakes Watershed (TLW), Ontario. Inputs of metals to TLW in precipitation were small in comparison with those in the eastern United States and Europe. Considerable loss of Mn and Cu from the vegetation during both the growing and the dormant (leafless) periods was observed and presumed to be due to leaching. The enrichment in soil solution of all metals examined, in relation to throughfall, was greatest for Al (7X) and least for Cu (1.2X). Aluminum was mobilized in both the forest floor and the mineral soil, the latter possibly in association with SO4 2?. Copper was solubilized in the lower forest floor or the mineral soil. Surface soil contents of Al and Cu were reduced by Al and, to a lesser extent, Cu leaching beyond the effective rooting zone. Iron, Mn and Pb were mobilized largely in the F horizon of the forest floor, most likely by organic acids. Leaching of Fe, Mn and Pb was reduced by metal accumulation in vegetation, the lower forest floor, or mineral soil within the effective rooting zone of the vegetation. Most (80 to 99%) of the metals leached from the rooting zone were retained in the watershed and did, not appear in streamwater.  相似文献   

10.
Chronic N deposition has been hypothesized to affect DOC production in forest soils due to the carbon demand exerted by microbial immobilization of inorganic N. We tested this hypothesis in field experiments at the Harvard Forest, Petersham, Massachusetts, USA. During four years of sampling soil solution collected beneath the forest floor in zero-tension lysimeters, we observed little change in DOC concentrations (10-30% increase, not statistically significant) associated with elevated N inputs, but did observe significant increases in DON concentrations. Both DOC and DON varied seasonally with highest concentrations in summer and autumn. Mean DON concentrations increased 200-300 % with the highest rate of inorganic N fertilization, and concentrations of DON were highest in samples with high inorganic N concentrations. We conclude that the organic chemistry of soil solution undergoes qualitative changes as a result of long-term N amendment at this site, with small changes in DOC, large increases in DON, and a decline in the C:N ratio of dissolved organic matter.  相似文献   

11.
Dissolved organic matter (DOM) plays a central role in driving many chemical and biological processes in soil; however, our understanding of the fluxes and composition of the DOM pool still remains unclear. In this study we investigated the composition and dynamics of dissolved organic carbon (DOC) and nitrogen (DON) in five temperate coniferous forests. We subsequently related our findings to the inputs (litterfall, throughfall, atmospheric deposition) and outputs (leaching, respiration) of C and N from the forest and to plant available sources of N. With the exception of NO3?, most of the measured soil solution components (e.g. DOC, DON, NH4+, free amino acids, total phenolics and proteins) progressively declined in concentration with soil depth, particularly in the organic horizons. This decline correlated well with total microbial activity within the soil profile. We calculated that the amount of C lost by soil respiration each day was equivalent to 70% of the DOC pool and 0.06% of the total soil C. The rapid rate of amino acid mineralization and the domination of the low molecular weight soluble N pool by inorganic N suggest that the microbial community is C‐ rather than N‐limited and that C‐limitation increases with soil depth. Further, our results suggest that the forest stands were not N‐limited and were probably more reliant on inorganic N as a primary N source rather than DON. In conclusion, our results show that the size of the DON and DOC pools are small relative to both the amount of C and N passing through the soil each year and the total C and N present in the soil. In addition, high rates of atmospheric N deposition in these forests may have removed competition for N resources between the plant and microbial communities.  相似文献   

12.
In many forest ecosystems chronically large atmospheric deposition of N has caused considerable losses of inorganic N by seepage. Freezing and thawing of soil may alter the N turnover in soils and thereby the interannual variation of N seepage fluxes, which in turn makes it difficult to evaluate the N status of forest ecosystems. Here, we analyzed long‐term monitoring data of concentrations and fluxes of dissolved inorganic N (DIN) in throughfall and seepage from a Norway spruce stand at the Fichtelgebirge (SE Germany) between 1993 and 2004. Despite constant or even slightly increasing N inputs in throughfall, N losses with seepage at 90 cm declined from 15–32 kg N ha–1 y–1 in the first years of the study period (1993–1999) to 3–10 kg N ha–1 y–1 in 2000 to 2004. The large N losses in the first years coincided with extreme soil frost in the winter of 1995/96, ranging from –3.3°C to –1.0°C at 35 cm soil depth. Over the entire observation period, maximum fluxes of nitrate and ammonium were observed in the mineral soil following thawing of the soil. The elevated ammonium and nitrate fluxes resulted apparently from increased net ammonification and nitrification rates in the mineral soil, whereas mineral‐N fluxes in the O horizon were less affected by frost. Our data suggest that (1) extreme soil frost may cause substantial annual variations of nitrate losses with seepage and that (2) the assessment of the N status of forest ecosystems requires long periods of monitoring. Time series of biogeochemical data collected over the last 20–30 y include years with extreme cold winters and warm summers as well as unusual precipitation patterns. Analysis of such long‐term monitoring data should address climate extremes as a cause of variation in N outputs via leaching. The mean loss of 14.7 kg N with seepage water during 12 y of observation suggests that the forest ecosystem was saturated with N.  相似文献   

13.
Understanding and quantification of phosphorus (P) fluxes are key requirements for predictions of future forest ecosystems changes as well as for transferring lessons learned from natural ecosystems to croplands and plantations. This review summarizes and evaluates the recent knowledge on mechanisms, magnitude, and relevance by which dissolved and colloidal inorganic and organic P forms can be translocated within or exported from forest ecosystems. Attention is paid to hydrological pathways of P losses at the soil profile and landscape scales, and the subsequent influence of P on aquatic ecosystems. New (unpublished) data from the German Priority Program 1685 “Ecosystem Nutrition: Forest Strategies for limited Phosphorus Resources” were added to provide up‐to‐date flux‐based information. Nitrogen (N) additions increase the release of water‐transportable P forms. Most P found in percolates and pore waters belongs to the so‐called dissolved organic P (DOP) fractions, rich in orthophosphate‐monoesters and also containing some orthophosphate‐diesters. Total solution P concentrations range from ca. 1 to 400 µg P L?1, with large variations among forest stands. Recent sophisticated analyses revealed that large portions of the DOP in forest stream water can comprise natural nanoparticles and fine colloids which under extreme conditions may account for 40–100% of the P losses. Their translocation within preferential flow passes may be rapid, mediated by storm events. The potential total P loss through leaching into subsoils and with streams was found to be less than 50 mg P m?2 a?1, suggesting effects on ecosystems at centennial to millennium scale. All current data are based on selected snapshots only. Quantitative measurements of P fluxes in temperate forest systems are nearly absent in the literature, probably due to main research focus on the C and N cycles. Therefore, we lack complete ecosystem‐based assessments of dissolved and colloidal P fluxes within and from temperate forest systems.  相似文献   

14.
We conducted a laboratory incubation of forest (Scots pine (Pinus sylvestris) or beech (Fagus sylvatica)), grassland (Trifolium repens/Lolium perenne) and arable (organic and conventional) soils at 5 and 25 °C. We aimed to clarify the mechanisms of short-term (2-weeks) nitrogen (N) cycling processes and microbial community composition in relation to dissolved organic carbon (DOC) and N (DON) availability and selected soil properties. N cycling was measured by 15N pool dilution and microbial community composition by denaturing gradient gel electrophoresis (DGGE), phospholipid fatty acid (PLFA) and community level physiological profiles (CLPP). Soil DOC increased in the order of arable<grassland<forest soil while DON and gross N fluxes increased in the order of forest<arable<grassland soil; land use had no affect on respiration rate. Soil DOC was lower, while respiration, DON and gross N fluxes were higher at 25 than 5 °C. Gross N fluxes, respiration and bacterial biomass were all positively correlated with each other. Gross N fluxes were positively correlated with pH and DON, and negatively correlated with organic matter, fungal biomass, DOC and DOC/DON ratio. Respiration rate was positively correlated with bacterial biomass, DON and DOC/DON ratio. Multiple linear modelling indicated that soil pH, organic matter, bacterial biomass, DON and DOC/DON ratio were important in predicting gross N mineralization. Incubation temperature, pH and total-C were important in predicting gross nitrification, while gross N mineralization, gross nitrification and pH were important in predicting gross N immobilization. Permutation multivariate analysis of variance indicated that DGGE, CLPP and PLFA profiles were all significantly (P<0.05) affected by land use and incubation temperature. Multivariate regressions indicated that incubation temperature, pH and organic matter content were important in predicting DGGE, CLPP and PLFA profiles. PLFA and CLPP were also related to DON, DOC, ammonium and nitrate contents. Canonical correlation analysis showed that PLFA and CLPP were related to differences in the rates of gross N mineralization, gross nitrification and soil respiration. Our study indicates that vegetation type and/or management practices which control soil pH and mediate dissolved organic matter availability were important predictors of gross N fluxes and microbial composition in this short-term experiment.  相似文献   

15.
ABSTRACT

Antecedent soil moisture before freezing can affect greenhouse gases (GHG) fluxes from soils during thaw, but their critical threshold values for GHG fluxes and the underlying mechanisms are still not clear. By using packed soil-core incubation experiments, we have studied nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from a mature broadleaf and Korean pine-mixed forest soil and an adjacent white birch forest soil with nine levels of soil moisture ranging from 10 to 90% water-filled pore space (WFPS) during a 2-month freezing at ?8°C and the following 10-day thaw at 10°C. The threshold values of soil moisture ranged from 50 to 70% WFPS for CH4 uptake and from 70 to 90% WFPS for N2O and CO2 emissions from the two soils during the freeze-thaw period. Under the optimum soil moisture condition, fulvic-like compounds with high bioavailability contributed more than 60% of dissolved organic matter (DOM) in the soil. Cumulative N2O emissions from forest soils during the freeze-thaw period were greatest when the concentration ratio of nitrate-N to dissolved organic carbon (DOC) was 0.04 g N g?1 C. Cumulative soil CO2 emissions and CH4 uptake during the freeze-thaw period were both regulated by the interaction between soil DOC and net N mineralization. The activities of β-1,4-glucosidase and β-1,4-N-acetyl-glucosaminidase, microbial biomass C and N, and the microbial biomass C-to-N ratios, were all significantly correlated to the soil N2O, CO2, and CH4 fluxes. Overall, upon a freeze-thaw period with different soil moistures, GHG fluxes from forest soils were jointly regulated by inorganic N and DOC concentrations, and related to the labile components of DOM released into the soil, which could be strictly controlled by the related microbial properties.  相似文献   

16.
Recent evidence from nitrogen (N) saturation studies indicates that forest floors in moderately impacted forests are the primary sink for atmospheric N inputs. Some researchers have suggested that the sink capacity of organic horizons is dependent on the amount of available carbon (C), which can be used for microbial N assimilation. To test the hypothesis that C limitation in forest floors exposed to chronic N deposition leads to an enhanced N leaching, a field C input manipulation experiment is under way in a deciduous forest. Since September 1999 aboveground C input has been doubled (by doubling litter input or by amending glucose) or excluded in replicated plots. Here we report the short-term response of concentrations of dissolved inorganic N (DIN: NO3 ?-N and NH4 +-N) in forest floor percolate to the C input manipulation. In autumn following the C input manipulation, DIN concentrations in forest floor percolate decreased in all plots except the No Litter plots compared to the pre-treatment summer concentrations. In contrast, the concentrations of DIN in the No Litter plots remained high. A different seasonal pattern of DIN leaching among treatments, along with measurements of microbial biomass C and potential nitrification rates of forest floor samples, indicates that seasonal N dynamics in the forest floor are largely regulated by C availability changes assoicated with litterfall C input.  相似文献   

17.
Leaves lying on the forest floor are a major source of dissolved organic substances in soil and surface waters, and these substances have important effects in those environments. We used zero‐tension lysimeters to study the chemical characteristics of water percolating through litter from various species of forest trees. The leaching rates were greatest in the autumn and declined rapidly thereafter, especially for deciduous litter. During an annual cycle, 2.5–17% of the initial contents of the carbon in the litter was recovered as dissolved organic carbon in percolates. Humus‐like substances, hydrophilic acids and hydrophilic neutral compounds constituted the major fractions of dissolved C. Leachates from deciduous leaf litter were only partly biodegradable, and those from spruce needles were scarcely biodegradable. Low molecular weight organic acids constituted 0–12% of the dissolved organic carbon in the percolates of the first autumn sampling and decreased over time. Acetic and formic acids were present at the largest concentrations, up to 30 μmol l?1 per g litter, and gluconic, pyruvic, fumaric, oxalic and citric acids were also frequent in significant concentrations. Among the aromatic acids, p‐hydroxybenzoic acid was identified in four out of five autumn samples. The organic components in litter leachates are important for the microbial activity in soil and surface waters. The organic acids enhance weathering and translocation of metals by their ability to form complexes. Litter is also a source of inorganic ions in soil solutions. The dominant cations in the percolates were K+, Ca2+ and Mg2+, and spruce litter also yielded large quantities of Al and Fe.  相似文献   

18.
Acidified (H2SO4+HNO3, 3:1) throughfall waters (pH 3.16 and 3.40 as volume weighted means or control (untreated throughfall water, pH 3.72) were applied for 3.5 yr by an automatic irrigation device to lysimeters containing podzolized spruce forest soils of 0–5, 0–15 and 0–35 cm soil depth. The total volume of the leachates was measured together with their pH and total content of DOC, Na, K, Ca, Mg, Fe, Mn, Al, Cu, Zn, Cd and Pb and the initial amounts of metals and H in the soil. The main part of H+ added with the throughfall waters was retained within the soil. Concentrations and fluxes of Mg, Ca, Mn, Zn and Cd in the soil were significantly increased by addition of acidified throughfall waters; K was less affected. As a consequence of lowered flux of DOC in the A horizon as acid input increased, Fe, Al, Cu, and Pb fluxes also decreased. The mobility of these metals in the A horizon was shown to be regulated mainly by the formation of watersoluble organic compounds rather than directly by pH variations. Compared to the control, the additional annual loss of Mg from the soil profile in the most acid treatment was c. 10% of the currently exchangeable amount.  相似文献   

19.
Abstract

In this report, we propose a new method of evaluating the effect of nitrogen deposition on forest ecosystems, namely the spatial variation in nitrogen deposition enables to detect readily the effect of anthropogenic N deposition on biogeochemical processes in forest ecosystems. We analyzed the nitrogen deposition (throughfall fluxes) and stream water chemistry over five adjacent small catchments in which soil types (Hapludants) and vegetation composition (50 to 60 years old larch plantation) were fairly identical. Thirty-two throughfall collectors were set up in the five catchments (six to eight collectors in each catchment) and throughfall samples were collected after a rain event, while stream water samples were collected once or twice a month. The monitoring was carried out during a period of 6 months (2002 June to 2002 November). Throughfall dissolved inorganic nitrogen (DIN) fluxes were highly variable: the highest N input, 1.32 kg N ha?1 6 months?1, was sixty-six times higher than the lowest input, 0.02 kg N ha?1 6 months?1. The mean DIN inputs and the mean nitrate concentrations in streams showed a three-time variation across the five catchments. In addition, the DIN inputs showed a high correlation with the stream nitrate concentrations (r = 0.88).  相似文献   

20.
 The aims of this study were to characterize dissolved soil organic N (DON) and C (DOC) in a coniferous stand and an adjacent clear-cut, and to evaluate the importance of DON in N leaching. The study was carried out in a Norway spruce stand and a clear-cutting treatment in the same forest stand. Concentrations of DON in soil solution were monitored for 5 years after clear-cutting with gravity lysimeters. In the Norway spruce stand DON comprised 62–83% of the total N in soil solution over the 5-year period. The concentrations of DON in the clear-cut were higher than in the forest stand, but the proportion of total N was lower. To characterize dissolved organic matter, soil samples were aerobically incubated for 6 weeks in the laboratory, and the quantity, molecular size distribution and chemical nature of both DON and DOC were determined from water extracts made before and after the incubation. In the soil samples from the Norway spruce stand, C-rich compounds with a high C/N ratio and large molecular size were formed. In contrast, after the incubation the major carriers of DON in soil samples from the clear-cut were N-rich organic compounds with a low C/N ratio and a small molecular size. The distribution of different chemical fractions of DOC in soil did not differ much whether recovered from the Norway spruce stand or the clear-cut. It was (from highest to lowest concentration): hydrophobic acids>hydrophilic acids>phenols>hydrophilic neutrals. A major part of DON was also carried by these fractions. During incubation the concentration of N-containing hydrophilic acids increased, especially in the soil from the clearcut. In soil samples from the Norway spruce stand, the rate of net N mineralization was low and no NO3 was formed, whilst the rate of net N mineralization was high and net nitrification was intensive in soil from the clear-cut. Received: 12 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号