首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
花色是观赏植物最重要的品质性状之一,是植物自然进化过程中最具适应意义的表型性状,也是表观遗传学研究的重要内容。花青素苷是使花朵呈色的重要色素之一,被子植物中约有80%的科的花朵颜色由花青素苷决定;迄今从自然界分离和鉴定出的花青素苷多达600种,主要由6种花青素苷元衍生而来。花青素苷合成途径是迄今为止研究得最为清楚的植物次生代谢途径之一,它的合成首先取决于类黄酮代谢途径的生成,花青素苷种类的多样性则源于其不同分支途径的形成,在花青素苷元基本骨架上不同位置取代基的差异形成了多种多样的花青素苷。在花青素苷生物合成过程中,分支点酶的竞争机制和关键酶的底物特异性使花青素苷的种类及相应的花色表型具有种属特异性。花青素苷合成后需要转运到液泡中被包裹成色素体,植物细胞中的液泡积累和贮存色素体的能力是影响花青素苷呈色的重要因素,因此,花青素苷在花瓣中的最终呈色还受液泡pH、助色素含量以及金属离子的络合作用等多种细胞内因素的影响。目前,已经在多种植物中获得了与花青素苷合成及呈色相关的结构基因和调节基因,并解析了其功能,成功获得了一些转基因花卉,但是这些基因调控表达的机制,包括转录水平和转录后水平的调控、DNA序列本身的差异和DNA甲基化修饰的调控机制等仍不清楚,转基因植株花色改良的程度也很有限,对于如何将这些机制应用于花色改良的转基因育种也是一个前沿的课题。花青素苷对园艺作物器官呈色机制的解析有助于对花朵呈色机制的理解,观赏植物中花色形成机理的研究对于园艺作物器官呈色机制的解析同样具有重要的参考价值。因此,本文以观赏植物为例,从花青素苷合成分支途径形成的机理、花青素苷生物合成途径的遗传调控机理以及影响花青素苷呈色的主要因素及其遗传调控机理3个方面,对影响植物花朵呈色的机制进行了综述,并对近年来基于花青素苷代谢和呈色机理的花色改良分子设计育种,尤其是国际上广泛关注的蓝色花育种进行了梳理和总结,以期为定向培育具有新奇花色的观赏植物新品种提供参考。  相似文献   

2.
花青素合成酶是植物花青素合成途径中的关键酶,为了探究花青素合成酶编码基因在红白忍冬花色苷合成中的作用,在分析忍冬、红白忍冬转录组数据的基础上,用逆转录PCR(RT-PCR)技术从红白忍冬中分离得到1个编码花青素合成酶基因的全长cDNA序列,将其命名为rLjANS1。测序结果表明,该基因的开放阅读框为1 068 bp,编码355个氨基酸。生物信息学分析结果显示,rLjANS1编码蛋白具有植物ANS特有的2OG-FeⅡ_Oxy氧化酶结构域,与蓝果忍冬、榴莲、雷公藤、三七等植物ANS蛋白序列的同源相似性较高,荧光定量PCR和花色苷含量相关性分析结果表明,rLjANS1基因表达量与花色苷含量呈明显正相关,说明rLjANS1在红白忍冬花色苷代谢及色泽形成过程中具有重要作用。研究结果为深入研究红白忍冬色泽形成机制奠定了基础。  相似文献   

3.
花青素是植物的主要代谢产物,在植物的生长发育过程中扮演重要角色。其合成受多种结构基因和调控基因的控制。文中综述了模式植物拟南芥的花青素合成途径,着重介绍了调控花青素合成途径转录因子的最新进展,为植物代谢工程和观赏园艺植物分子育种提供参考。  相似文献   

4.
植物花青素合成与基因调控(英文)   总被引:1,自引:0,他引:1  
文章在阐述植物花青素生物化学合成的基础上,综述了植物花色素苷合成的基因调控及环境、激素化学物质等外在因子对花青素基因调控的影响。结果表明:在植物花青素代谢中,温度、光照、紫外线、施肥状况、激素水平等因素能诱发花青素合成的调节基因或反义基因的表达,从而诱导或抑制了花青素的合成。在调控基因中,一些对花青素合成的结构蛋白表达产生促进作用,一些则具有抑制效应。不同外在因子激活或抑制调控基因的种类与数量不同,因此,产生了不同的花青素组型或相同组型的不同配比,使植物器官表现不同的颜色。  相似文献   

5.
黄春国  马素娴 《山西农业科学》2012,40(6):563-565,578
二氢黄酮醇-4-还原酶(DFR)是花青素合成途径中的关键酶,它在花色的修饰中起着很重要的作用,在烟草植物体内过量表达积累后,可能会使烟草的花色加深或变为红色。研究结果表明,通过转基因技术将NtDfr1,NtDfr2基因转入烟草后,获得转基因植株烟草的花色为红色,这与试验预期结果一致。  相似文献   

6.
花色苷生物合成关键酶基因在植物基因工程中的应用   总被引:1,自引:0,他引:1  
杨晓娜 《安徽农业科学》2013,(7):2866-2869,2893
文中主要论述了花色苷的合成途径及途径中所涉及的关键酶基因在植物基因工程中的应用,为花色苷在基因工程的应用提供基础资料。  相似文献   

7.
花青素是植物体内非常重要的一类次生代谢物,有很强的药理活性。花青素在医药保健、药用植物开发等方面具有重要的研究价值和应用潜力。目前研究者基本探明了花青素生物合成途径和分子调控机制,但还没有完全掌握花青素合成的整个网络体系,还需要继续加强对花青素生物合成与调控的研究。因此,对植物花青素生物合成途径、反应酶、结构基因、调控基因及转录因子进行综述,旨在为花青素类植物品种改良和开发提供理论支持。  相似文献   

8.
袁菱婧  罗盼  蒋明  李温平  何建婷 《浙江农业科学》2012,(7):1060-1062,1066
花青素合成酶是催化无色花色素转变成花青素的关键酶,对编码基因进行克隆和分析,有助于研究植物叶色、果色和花色的形成机理。本研究以紫苤蓝为材料,克隆到一个花青素合成酶基因,并进行了表达和序列分析。结果表明,紫苤蓝花青素合成酶基因BocANS的编码区全长为107 7 bp,编码358个氨基酸;RT-PCR结果表明,BocANS在叶柄、叶片、茎、花柄和花蕾中表达,BocANS的长度、碱基组成与甘蓝和芥菜的序列最为接近,在系统发育树上聚为一组,与不同科植物的花青素合成酶基因差异较大,在发育树上处于不同的分支。  相似文献   

9.
红掌是仅次于兰花的第二大热带观赏植物.佛焰苞颜色是红掌育种的主要目标性状,与其所含的花色素种类和含量密切相关.研究表明,花青素是影响红掌花色的主要色素之一,其生物合成受结构基因和调节基因的共同调控.综述了红掌佛焰苞中花青素生物合成相关结构以及调节基因克隆和功能研究进展,为红掌花色的分子育种提供指导.  相似文献   

10.
花色苷作为植物的次生代谢产物及花和果实的主要色素成分,不仅可以吸引授粉者和种子传播者,还参与过滤紫外线,抵御病原菌,提高植物的育性.因为它具有抗氧化、抗炎症、抗癌、抗肥胖、抗糖尿病和保护心脏等活性,因此不仅可以作为天然染料,还可以作为保健食品.随着在众多植物中发现了花色苷合成基因及调控基因,其合成途径和分子调控得到了阐释,因此花色苷代谢工程被应用于植物和微生物.  相似文献   

11.
苹果果色主要由花青素等色素控制,花青素是植物的一类黄酮类次生代谢物,赋予植物各种颜色,转录因子MYB110基因参与植物花青素合成调控.本研究通过对MYB110转录因子扩增测序,检测MYB110在22种苹果属植物中的多态性.结果表明,MYB110基因编码区长度均为602 bp,扩增出新疆野苹果和西府海棠等7种材料的基因序列,其多态性位点共有52个,翻译成蛋白质后多态性位点为28个,且多态性位点主要位于非功能结构域,不同苹果果色间存在基因调控差异.  相似文献   

12.
MYB转录因子家族是植物中组大的转录因子家族之一,在调控植物的蜡质合成、生长发育、非生物和生物胁迫方面都起着重要的作用。综述了在植物MYB转录因子家族方面的研究进展,主要为其分布特征、结构特征、对生物和非生物的胁迫应答,尤其是在蜡质方面的作用、与植物花青素合成、在茄子中的作用等,以期为植物抗逆性、花色及果色变化与植物MYB转录因子家族关系方面的研究提供一定的参考。  相似文献   

13.
MYB转录因子家族是植物中组大的转录因子家族之一,在调控植物的蜡质合成、生长发育、非生物和生物胁迫方面都起着重要的作用。综述了在植物MYB转录因子家族方面的研究进展,主要为其分布特征、结构特征、对生物和非生物的胁迫应答,尤其是在蜡质方面的作用、与植物花青素合成、在茄子中的作用等,以期为植物抗逆性、花色及果色变化与植物MYB转录因子家族关系方面的研究提供一定的参考。  相似文献   

14.
梁平  宋洪元 《广西农业科学》2014,45(8):1375-1379
花青素是高等植物中发现的一种次生代谢物,能够决定花和果实的颜色,保护植物免受各种生物和非生物胁迫损伤。花青素生物合成由一系列结构基因编码的酶催化完成,属于类黄酮途径一个特异分支,其合成结构基因的表达受由MYB、bHLH和WD40 3类转录因子组成的MBW(MYB-bHLH-WD40)转录复合体协同调控。文章主要就MYB、bHLH和WD40 3类转录因子在调节结构基因表达和花青素合成中的功能和作用进行综述。  相似文献   

15.
张云洁  潘怡辰  王汝茜  李集临  张杰 《安徽农业科学》2014,(34):12014-12016,12080
花青素是自然界中存在的天然色素.通过基因工程等技术手段可以生产出绿色、健康的保健品、水果及观赏性花卉植物.目前与花青素生物合成相关的基因已通过PCR、蛋白质纯化、转座子标签等技术手段从金鱼草、玉米、矮牵牛等植物中分离且克隆.本研究综述了花青素合成途径相关调节基因和结构基因的研究进展.  相似文献   

16.
植物类黄酮合成途径包括花青素、黄酮醇、原花青素等不同分支。为了解析中国水仙花色单一的原因,我们通过显色反应和HPLC分析了中国水仙(漳州水仙)不同器官中类黄酮的主要成分。结果显示:花瓣和副冠中类黄酮的主要成分是黄酮醇;鳞茎盘中的主要成分是原花青素;几个器官中都没有花青素。因此,缺乏花青素可能是中国水仙花色单一的主要原因。为了进一步了解中国水仙不能合成花青素的原因,我们进行了鳞茎盘转录组测序。De novo组装出36,006个unigene,平均读长706bp。通过Blast数据库比对、序列分析等方法鉴定类黄酮合成途径中表达的结构基因,共获得了4个Nt CHS、2个Nt CHI、3个Nt F3H、3个Nt UFGT、1个Nt F3’H、1个Nt DFR和1个Nt LAR;同时还获得了与类黄酮代谢相关的调控因子MYB,b HLH和WD40等基因。但没有发现花青素合成途径的ANS基因以及原花青素合成分支途径的ANR基因。通过q PCR研究获得的16个结构基因在中国水仙全开、半开和花蕾期三个时期的花瓣、副冠以及叶片和鳞茎盘中的表达。结果发现,在花瓣和副冠中Nt DFR的表达量低,Nt FLS的表达量很高;鳞茎盘中Nt DFR和Nt LAR的表达量都很高,Nt FLS的表达量低。结构基因的表达水平与这三种器官中类黄酮的主要成分相吻合。通过HPLC进一步分析了鳞茎盘中原花青素单体的成分,发现主要是儿茶素单体(catechin),说明中国水仙鳞茎盘中经过Nt DFR作用生成无色花青素(leucoanthocyandin)后,直接在Nt LAR的作用下合成原花青素,没有经过ANS和ANR的作用步骤,与转录组测序中没有发现ANS和ANR基因表达相一致。因此我们推测,中国水仙花瓣和副冠中也缺少ANS基因的表达,没有ANS基因的表达可能是中国水仙不能合成花青素的主要原因,有待进一步验证。  相似文献   

17.
对植物花青素生物合成及调控基因的研究进展、基因工程在调控花青素合成途径中的应用进行了综述。植物花青素生物合成属次生代谢途径,对该途径关键酶基因的调控可降低或提高目标化合物的产量,可通过调控植物次生代谢的方式对植物进行遗传改良。对植物通过积累花青素来适应紫外线辐射、防卫害虫及真菌侵害的分子机制进行研究,有助于培育抗病、抗逆的植物新品种。  相似文献   

18.
AtPAP2基因是拟南芥花青素生物合成途径中的重要调控基因,为了实现该基因在烟草中的高效表达,从拟南芥中分离克隆出了AtPAP2基因并构建了植物表达载体,利用农杆菌介导的侵染方法,将该基因成功转入到烟草受体材料中,并获得了紫色的转基因烟草植株,相对于野生型烟草,该烟草在根、茎、叶等组织上均表现出不同程度的紫色。进一步的qRT-PCR分析结果表明,在花青素生物合成途径中,AtPAP2基因的表达可以上调从4-香豆酰CoA到最终合成花青素过程中的相关基因,促进了合成反应的进行,对花青素的合成具有重要的作用。该研究对于揭示AtPAP2基因的作用以及烟草花青素合成途径相关基因的调节机理具有重要的意义。  相似文献   

19.
花青素合成酶(anthocyanidin synthase,ANS,EC:1.14.11.19)是花青素合成中的一个关键酶。为了鉴定和分析芒果ANS基因,以芒果ANS基因作为研究目标,以拟南芥的ANS基因为参考,通过BLAST方法获得了番木瓜、金钱橘、甜橙、苹果、小果野蕉、桃子、葡萄、龙眼、甜樱桃、枣、石榴、西洋梨、中华猕猴桃、荔枝、无油樟的ANS基因序列,对其进行了系统进化分析、理化性质分析、结构分析等。系统进化分析结果显示,双子叶植物与单子叶植物的ANS基因进化树没有单独形成分支,推测在进化过程中ANS基因的分化在双子叶植物和单子叶植物形成之后;理化性质分析结果显示,酸性蛋白占97.2%、稳定性蛋白占13.9%,有导肽的蛋白占8.3%,所有蛋白均为无信号肽的亲水性蛋白;蛋白二级结构分析结果显示,α-螺旋、无规则卷曲是主要结构元件。说明芒果ANS基因具有稳定的花青素合成酶结构,并与本试验中的绝大多数植物ANS基因具有相似的性质。这为进一步研究芒果ANS基因在花青素合成途径中的作用提供了理论支持。  相似文献   

20.
二氢黄酮醇4-还原酶(Dihydroflavonol4-reductase,DFR)是花青素合成途径的关键酶之一,也是该途径的关键调控位点之一。该文以葡萄DFR家族为例,对多个物种DFR基因及编码蛋白在基因结构、编码氨基酸基本理化性质、疏水性、功能域、亚细胞定位和进化关系等方面进行了比较分析。为葡萄等富含花青素植物中花青素合成及调控研究提供基础资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号