共查询到18条相似文献,搜索用时 62 毫秒
1.
基于冠层光谱的锦橙叶片磷素营养监测研究 总被引:2,自引:0,他引:2
以盆栽蓬安100号锦橙施肥调控试验为基础,利用田间冠层光谱信息探索建立植株磷素营养监测技术与方法。通过采集蓬安100号锦橙95个单株样本的冠层光谱信息和室内检测分析叶片磷含量,随机选取76个作为建模样本,19个为检验样本,运用多种光谱预处理方法和偏最小二乘法(Partial least square method,PLS)及内部交叉验证方法建立校正模型与模型检验。结果表明,经多种光谱预处理方法的建模结果比较,冠层原始反射光谱经二阶求导和SNV处理后建立的蓬安100号锦橙叶片磷含量冠层光谱监测模型预测能力和稳健性最佳,其主成分数4个,能表达全波段63%的信息;校正模型相关系数为0.90,偏差Bias=2.45E-10,且RMSEC和RMSEP均最小。模型检验预测的决定系数R2=0.85。因此,利用二阶导数及标准归一化(Standard normal variate transformation,SNV)预处理的田间冠层光谱信息快速无损监测蓬安100号锦橙叶片磷含量具有一定的可行性。 相似文献
2.
利用无人机平台搭载多光谱相机组成的遥感监测系统在农业上已取得了一些成果,但利用无人机多光谱影像开展作物氮素估测研究少有尝试。基于此,该文利用国家精准农业基地2017年夏玉米3个关键生育期无人机多光谱影像和田间实测叶片氮含量数据,开展夏玉米叶片氮素含量的无人机遥感估测研究。对该研究选用的15个光谱变量,通过相关性分析解析光谱变量与LNC的相关关系,筛选出对玉米叶片氮素含量敏感的光谱变量;应用后向逐步回归方法分析不同变量指数下估测精度变化,最终确定不同生育期夏玉米LNC估测的光谱变量,实现对夏玉米叶片氮含量的较高精度监测。研究发现:1)在3个生育时期,GRE和GNDVI与LNC都有很强的相关性,表明绿波段可以很好地进行夏玉米生物理化参数的反演;2)在喇叭口期和灌浆期,OSAVI、SAVI与LNC具有高度相关性,证明在夏玉米生长前期和后期选择控制土壤因素的光谱变量可以提高对氮素估测的能力。在筛选最优光谱变量建模过程中发现,喇叭口期选取5个光谱变量(GNDVI、GRE、OSAVI、REG、SAVI)建模效果最好,估测模型的R~2、RMSE和nRMSE分别为0.63、27.63%、11.62%;抽雄吐丝期选取6个光谱变量(REG、GRE、GNDVI、MNLI、RED、NDVI)建模效果最好,估测模型的R~2、RMSE和n RMSE分别为0.64、20.50%、7.80%;灌浆期选取5个光谱变量(GRE、GNDVI、RED、NDVI、OSAVI)建模效果最好,估测模型的R~2、RMSE和n RMSE分别为0.56、31.12%、12.71%;在不同生育期选取最优光谱变量进行夏玉米LNC估测具有很好的效果。应用无人机多光谱遥感影像数据可以很好地监测田块尺度夏玉米LNC的空间分布,可为玉米田间氮素精准管理提供空间决策服务信息支持。 相似文献
3.
为实现柑橘氮素管理的定量化,该研究以5年生‘春见’橘橙为试验材料,设置不同对照施氮处理N0、N1、N2、N3(施氮量分别为0、50、100、200 g/株)和调控施氮处理Nr1、Nr2、Nr3(分别根据N1、N2、N3进行调控),在试验开展的第1年利用高光谱技术,分别建立柑橘果实膨大期和转色期的叶片功能性氮含量无损监测模型;第2年利用叶片功能性氮含量无损监测模型与追氮量公式计算调控施氮处理的实际追氮量,比较分析对照施氮和调控施氮对柑橘果实产量、品质及氮肥利用率的影响。结果表明,利用反向传播神经网络构建的叶片功能性氮含量模型精度较高,决定系数R2为0.78(果实膨大期)和0.77(果实转色期)。调控施氮处理Nr1和Nr3比对照施氮N1和N3分别增产5.49和4.4... 相似文献
4.
玉米叶片氮含量的高光谱估算及其品种差异 总被引:7,自引:4,他引:7
准确、快速、及时地对玉米氮营养状况做出判断是氮肥合理施用的基础。该研究在水培条件下对3个玉米品种(组合)叶片氮含量(LNC)的高光谱敏感波段、估算模型及其品种差异进行了探讨。结果表明,LNC与不同波段叶片光谱反射率的相关性存在品种差异,但3个品种(组合)都在500~649 nm和691~730 nm表现极显著的负相关关系,并在同一波长获得最高的相关系数,说明可以利用统一的波段来预测不同品种的LNC。依品种建立了LNC与归一化差值光谱指数(NDSI)或比值光谱指数(RSI)的定量关系模型,NDSI(714,554)和RSI(714,554)所建模型的拟合度最好,直线和指数模型拟合度均达到极显著水平,可以用来估算玉米LNC。玉米LNC估算中,以该品种数据所建模型的估算偏差最低,利用综合模型或其他品种模型则加大了估算偏差,高估与低估的最高偏差分别为35.6%和32.7%。在利用高光谱技术进行玉米氮营养状况诊断的研究及应用中,应考虑品种间差异。 相似文献
5.
果树叶片的叶绿素含量(SPAD)是植株营养状况的表现,也决定其光合作用能力的强弱,并且越冬前的树体营养状态,对果树抵御极端低温和顺利越冬是一个重要的影响因素,而果树受冻时叶绿素渗出和降解也是冻害发生程度的指标。通过对不同生长期的柑橘叶片进行光谱扫描,采用逐步回归法、红边参数法和光谱指数法分析叶片光谱反射率和叶绿素含量之间的关系,构建了柑橘叶片叶绿素光谱反射模型。结果表明,柑橘叶片叶绿素含量与反射光谱之间有较强的相关性,且两种方法所得模型预测值与实测值的相对误差都小于10%,说明模型具有良好的预测结果。两种方法中,选择波段的逐步回归法比光谱指数法的精度更高,但从建模参数的物理意义和逻辑性方面考虑,推荐光谱指数法建模,该模型可为远距离遥感监测果园营养状况和冻害情况提供参考。 相似文献
6.
探究消费级无人机多光谱影像对不同生态点、不同品种水稻氮营养监测建模精确度和普适度的影响,对于实现区域水稻氮营养精确管理与应用有重要意义。该研究分别在云南省西双版纳勐遮镇(供试品种:云粳37)与重庆市北碚区(供试品种:极优6 135)2个试验点设置不同氮水平田间试验,利用大疆精灵4多光谱无人机于水稻分蘖期、拔节期和抽穗期采集水稻冠层多光谱图像,采用凯氏定氮法测定水稻植株冠层氮含量(canopy nitrogen content,CNC)并计算地上部氮累积量(plant nitrogen accumulation,PNA);分别利用植被指数、偏最小二乘回归(partial least squares regression,PLSR)、随机森林(random forest,RF)、反向传播神经网络(back-propagation neural network,BPNN)对单一试验点、单品种和不同试验点、多品种水稻建立氮营养监测模型并探究模型的迁移能力。拔节期和抽穗期的模型精度较高(归一化植被指数NDVI或近红外归一化植被指数NNVI,R2为0.68~0.88),而分蘖... 相似文献
7.
不同施氮水平下温室番茄叶片反射光谱特征分析 总被引:1,自引:0,他引:1
利用便携式光谱辐射仪测定了温室番茄叶片的光谱反射率,研究了不同施氮水平下特定光谱指数与叶片氮含量、光合速率及产量的关系。结果表明,温室番茄叶片的光谱反射率在可见光波段随供氮水平的升高而降低,在近红外波段随供氮水平的升高而增加。随施氮水平的提高,绿峰的蓝移和红边的红移现象明显,而红谷反射率与光合速率之间的关系可用二次方程拟合,相关系数达0.805。番茄叶片氮含量的敏感光谱波段为580~695 nm,740~900 nm,由695 nm、770 nm两个波段构建的高光谱指数(RVI、NDVI)与叶片氮含量的相关性显著。而基于原始光谱数据对番茄产量的估测也可在温室中得到很好的运用,其中光谱指数RV(I710,680)、VARI700和产量的拟合方程最优。 相似文献
8.
以ASD Field spee FR 2500光谱仪测定了不同生育期不同氮钾处理的烤烟叶片光谱反射率,通过光谱反射率、一阶导数光谱和光谱特征变量与烟碱含量的相关分析和逐步回归模型筛选出特征波长,并对回归模型的预测效果进行检验.结果表明,一阶导数光谱回归方程预测效果最好、光谱反射率回归方程次之、特征变量回归方程最差.筛选出光谱反射率特征波长为1792 nm、一阶导数光谱特征波长为810 nm.光谱反射率和一阶导数光谱在427~712、741~810、1382~1879、1905~1969、2067~2338 nm范围内与烟碱含量相关性强.本研究为采用高光谱技术预测烟叶烟碱含量提供了理论参考. 相似文献
9.
为了快速、准确估测番茄营养水平和生长状态,利用多光谱图像分析技术研究了温室番茄营养素含量和图像特征的相关性。在日光条件下采集了温室番茄叶片多光谱图像,并采用多尺度Retinex算法有效地解决了叶片平整度差异造成的图像质量退化问题。从颜色模型、比值植被指数和归一化差值植被指数出发,自定义了49个多光谱图像特征参数。结合相关性分析和系统聚类分析消除了多光谱图像特征参数的多重共线性,并提取了4个能反映叶绿素含量(SPAD指数)和全氮含量预测模型,其中SPAD指数模型的决定系数(R2)为0.8668,均方根误差(RMSE)为3.997;全氮模型的R2为0.7284,RMSE为0.5130。 相似文献
10.
冬小麦叶片氮含量与叶片光合作用和营养状况密切相关,直接影响植株生长发育,而茎秆中的氮含量与茎秆中纤维素、半纤维素和木质素的比例和含量密切相关,直接影响茎秆质量及植株的抗倒伏能力。然而,有关对冬小麦茎秆氮含量估算研究较为有限,限制了从氮含量角度判断茎秆质量及对倒伏的预测能力。为精准估算冬小麦不同器官(叶片、茎秆)氮含量,该研究通过2年田间试验,获取冬小麦4个关键生育期(拔节期、抽穗期、开花期、灌浆期)和3种施氮水平条件下(N1、N2和N3)的冠层光谱反射率、叶片、茎秆氮含量及叶片SPAD (soil and plant analyzer development, SPAD)值。分析了不同生育期和施氮水平条件下高光谱植被指数对叶片和茎秆氮含量的敏感性,并结合5种常用的机器学习算法:随机森林回归(random forest regression,RFR)、支持向量回归(support vector regression,SVR)、偏最小二乘回归(partial least squares regression,PLSR)、高斯过程回归(gaussian process regression,GPR)、深度神经网络回归(deep neural networks,DNN)构建冬小麦叶片和茎秆氮含量估算模型。结果表明:高光谱植被指数对叶片和茎秆氮含量的敏感性受到生育期和施氮水平的影响。在灌浆期,最佳植被指数双峰冠层植被指数 DCNI(double-peak canopy nitrogen index)对叶片氮含量的敏感性最高,R2为0.866。对茎秆氮含量,在抽穗期的敏感性最高,最佳植被指数归一化叶绿素比值指数 NPQI(normalized phaeophytinization index)与氮含量相关系数R2=0.677。施氮水平的提升增加了光谱植被指数对茎秆氮含量的敏感性。结合SPAD值的机器学习算法提升了氮含量的估算精度,对叶片氮含量,在不同生育期和施氮水平条件下估算精度提升了1%~7%,其中在全生育期的归一化均方根误差NRMSE从0.254提升到0.214,抽穗期的NRMSE提升最大,从0.201提升到0.128。对茎秆氮含量,全生育期的NRMSE从0.443提升到0.400,抽穗期的NRMSE提升最大,从0.323提升到0.268。在全生育期,结合SPAD值的DNN模型对叶片(R2=0.782、NRMSE=0.214)和茎秆(R2=0.802、NRMSE=0.400)氮含量的估算精度最佳。研究说明,SPAD值与光谱植被指数结合有利于提升冬小麦不同生育期和施氮水平条件下叶片和茎秆氮含量的估算精度。 相似文献
11.
应用数字图像分析技术进行棉花氮素营养诊断的研究 总被引:16,自引:3,他引:16
本文利用图像分析技术并结合常规观测手段,研究应用图像分析技术诊断棉花氮素营养状况的可行性及获取的光谱参数与表征棉花氮素营养状况的生物学参数之间的关系.结果表明:棉花在不同时期特征光谱参数与棉花含氮量及叶片含氮量呈显著相关,其中盛蕾期棉花全氮含量与光谱参数的相关性最好,在盛花期棉花叶片含氮量与光谱参数的相关系数最高,G/(G R B)可作为氮素营养诊断的指标.在棉花全生育期内,地面覆盖度与棉花叶面积指数、生物量及吸氮量呈显著相关,在出苗至盛花期之间达极显著相关.经检验,地面覆盖度可很好地预测棉花的叶面积指数、生物量及吸氮量,相对误差分别为26.2%、3.46%和3.37%. 相似文献
12.
数字图像技术在夏玉米氮素营养诊断中的应用 总被引:4,自引:5,他引:4
基于6个不同水平的氮肥田间试验,采用数码相机获取夏玉米6叶期和10叶期的冠层图像,分析了不同供氮水平下夏玉米冠层图像色彩参数指标与施氮量、叶片SPAD值、植株硝酸盐浓度、植株全氮含量、0~90cm土壤硝态氮含量之间的关系。结果表明:在6叶期,玉米冠层数字图像色彩参数指标B/(R+G+B)、G/B、R/B、B/L均与施氮量、叶片SPAD值、植株硝酸盐浓度、植株全氮含量、0~90cm土壤硝态氮含量存在极显著的线性相关关系,其中B/(R+G+B)与各营养参数的相关关系最好,其次是B/L。因此,运用数字图像技术进行玉米的氮素营养诊断是可行的。夏玉米6叶期冠层图像色彩参数指标与上述营养参数间的相关性明显高于10叶期,可作为应用数字图像技术进行氮素营养诊断的关键时期,而蓝光标准化值[B/(R+G+B)]是进行夏玉米氮素营养诊断的最佳冠层图像色彩参数指标。 相似文献
13.
为了实现苎麻氮素营养快速诊断,通过盆栽培养3个施氮水平的苎麻,使用信息技术和常规方法,分别获取了不同生育时期两个苎麻品种叶片的图像和氮营养元素含量。通过自主开发的苎麻叶片数字图像处理系统软件对叶片图像进行处理,并提取颜色特征值,分析叶片颜色特征值与叶片全氮营养含量之间的关系。结果表明,大部分颜色特征都与叶片全氮含量呈极显著相关。根据筛选的能有效预测苎麻叶片全氮营养的颜色特征,建立预测苎麻叶片全氮含量的6个模型,预测精度在75.95%~91.50%之间。说明应用数字图像技术诊断苎麻氮素营养是可行的。 相似文献
14.
15.
应用数字图像技术进行水稻氮素营养诊断 总被引:11,自引:1,他引:11
【目的】研究田间试验条件下水稻不同生育期冠层图像色彩参数(G、NRI、NGI、NBI、G/R和G/B)及植株氮素营养指标(叶片含氮量、植株全氮含量、生物量、氮素累积量和冠层NDVI值)的时空变化特征,并分析两者间的相关性,确立水稻氮素营养诊断的最佳色彩参数和方程模型,为探明数码相机在水稻上的适宜性及精确诊断水稻氮素营养状况提供理论基础。【方法】于2013年5月9月在湖北省武汉市华中农业大学试验基地(30°28'08'N,114°21'36'E)采用不同施氮处理的田间试验,以籼型两系杂交稻"两优6326"为供试作物,设置4个施氮水平:0、75、150和225 kg/hm2(分别以N0、N75、150和N225表示),3次重复,随机区组排列。分别在水稻分蘖期、拔节期、孕穗期和灌浆期采用数码相机(Nikon-D700,1200万像素)获取水稻冠层图像,应用Adobe photoshop7.0软件直方图程序提取图像的红光值R、绿光值G和蓝光值B,研究数码相机进行水稻氮素营养诊断色彩参数,确定植株氮素营养指标诊断模型。【结果】较对照(N0)相比,分蘖期、拔节期、孕穗期和灌浆期3个施氮处理水稻地上部生物量、叶片含氮量、植株全氮含量、氮素累积量、冠层NDVI值和成熟期产量增幅分别平均为40.7%98.0%、42.4%72.4%、36.2%85.3%、125.5%209.1%、51.3%60.6%和60.1%117.0%,差异显著。水稻不同生育期各冠层数字化指标G、NRI、NGI、NBI、G/R和G/B与上述氮素营养参数相关性差异较大,且以数字图像红光标准化值NRI表现最佳,建议作为应用数码相机进行水稻氮素营养诊断的最佳冠层图像色彩参数指标。进一步分析表明,可以用统一的线性回归方程来描述不同生育期、不同氮素水平下水稻植株氮素营养指标随冠层色彩参数NRI的变化模式。【结论】数码相机进行水稻氮素营养诊断测试结果稳定,具有快速、便捷、非破坏性等优点,冠层色彩参数NRI与水稻氮素营养指标和产量之间均表现出较好的相关性,满足氮素营养无损诊断的需求,对实时、快速监测水稻长势状况及氮素营养丰缺水平具有较高的可行性,有望发展成为新时期作物氮素营养无损诊断技术的潜力。 相似文献
16.
温室植物生长状况的实时监测可为生产管理提供科学的决策支持.为开发实时监测中的机器视觉技术,该文选定生菜为研究对象,从单株和群体两个角度构建生菜生长势图像检测法.采集自然光条件下生菜整个生命周期俯视及侧视两类序列图像样本,并同步人工实测生菜生长势的动态数据样本,探讨生长势的图像检测指标与人工实测综合指标之间的相关性.对于单株生菜,通过CCD相机获取其投影图像及水平面两垂直方向侧视图像.就投影图像分割,为提高算法运行效率,将图像由RGB模型转换到HSI模型并提取H分量图像,再运用自动阈值法进行图像二值化处理,可测得单株生菜的投影面积.由于侧视图像背景较复杂,故联合使用K-means彩色图像分割法及伪彩色图像处理方法,获得生菜株高值.同时手工测量表达单株生菜生长势的叶片数、株高、x轴和y轴方向生菜植株的最大宽度、生菜植株某选定叶片的长和宽等6个指标,用主成分分析法从中提取出总生长势信息.将该值作为因变量,图像测得的投影面积和株高值作为自变量并进行回归分析.结果表明,模型的显著性检验概率均小于0.0001,除第4株生菜外,其余模型的决定系数均大于0.80,说明模型极显著且具有较高的拟合精度.对于群体生菜,预试验发现其侧视图像难以准确表达群体生菜生长势信息,故只考虑投影图像,其分割方法与单株生菜侧视图像相同.从中可计算得到群体生菜覆盖指数,再手工测量并算得群体生菜体积指数,以体积指数为因变量,以覆盖指数为自变量建模并进行回归分析.结果表明,模型显著性检验概率均小于0.0001,且决定系数均大于0.89,覆盖指数较好地表达了群体生菜生长势信息.故用图像检测获得的生菜投影面积、株高、群体覆盖指数等三项指标表征生菜生长势一方面具有科学性和可行性,在植物生长状况实时监测领域具有潜在的应用价值,另一方面,其图像分割方法和数据统计方法也可为植物生长状况实时监测等提供一定的借鉴和参考. 相似文献
17.
基于数码相机图像的甜菜冠层氮素营养监测 总被引:1,自引:0,他引:1
为探究数码相机监测甜菜冠层叶片氮素的可行性,2014年于内蒙古赤峰市松山区太平地镇采用不同种植方案设计了田间试验。利用数码相机获取甜菜冠层数字图像,基于灰度值的阈值分割方法提取冠层图像的红光值(R)、绿光值(G)和蓝光值(B),交互调优R、G、B单色分量权重,提出三原色权值调优方法,并挖掘出适宜于表征甜菜冠层LNC(leaf nitrogen content)的基础调优参数BOP(basic optimal parameter)和归一化调优参数NOP(normalized optimal parameter)。结果表明:采用常规方法选取的敏感颜色参数G/R、NRI(R/(R+G+B))与冠层LNC的相关系数分别为0.80和0.79,三原色权值调优方法确定的调优参数BOP、NOP与冠层LNC的相关系数分别为0.83和0.84,算法优化后提高了颜色参数与冠层LNC的相关性。对比常规参数和调优参数对冠层LNC的预测精度,结果显示调优参数BOP、NOP建立模型的预测精度均高于常规参数G/R、NRI,BOP预测模型的决定系数R2和均方根误差RMSE(root mean square error)分别为0.69和2.65,NOP预测模型的R2和RMSE分别为0.68和2.73。该研究表明,在大田自然光照条件下,借助数码相机实时、准确监测甜菜氮素营养丰缺水平具有较高的可行性,数字图像处理技术在作物营养无损诊断中存在很大的应用潜力。 相似文献
18.
采用图像处理技术对鱼体健康状况监视和预报 总被引:5,自引:6,他引:5
该文采用两台PC工业控制计算机分别为现场上位机和远程监控机,以多个PLC可编程控制器和多个单片机系统作为下位机,构成计算机集散监控系统。对养殖水体的多环境因子进行自动监测和控制。特别是当鱼类出现不适或死亡时,鱼体会侧翻,腹部白色的区域会暴露,根据其特点,利用数字图像处理技术可以实现对养殖现场中鱼类的健康状况进行实时监视和预报。首先将摄像头拍摄的现场图像灰度化,然后去除各种噪声干扰,得到质量较好的图像,最后对该图像进行数据统计和识别。对如何实现这种图像处理进行了具体描述,结果表明该系统具有良好的实用效果。 相似文献