首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
OBJECTIVE: To determine whether a shoe with an axialcontoured lateral branch would induce greater lateral roll of the forelimb hoof during the time between heel and toe lift-off at end of the stance phase (breakover). Animals-10 adult horses. PROCEDURE: A gyroscopic transducer was placed on the hoof of the right forelimb and connected to a transmitter. Data on hoof angular velocity were collected as each horse walked and trotted on a treadmill before (treatment 1, no trim-no shoe) and after 2 treatments by a farrier (treatment 2, trim-standard shoe; and treatment 3, trim-contoured shoe). Data were converted to hoof angles by mathematical integration. Breakover duration was divided into 4 segments, and hoof angles in 3 planes (pitch, roll, and yaw) were calculated at the end of each segment. Multivariable ANOVA was performed to detect differences among treatments and gaits. RESULTS: Trimming and shoeing with a shoe with contoured lateral branches induced greater mean lateral roll to the hoof of 3.2 degrees and 2.5 degrees during the first half of breakover when trotting, compared with values for no trim-no shoe and trim-standard shoe, respectively. This effect dissipated during the second half of breakover. When horses walked, lateral roll during breakover was not significantly enhanced by use of this shoe. CONCLUSIONS AND CLINICAL RELEVANCE: A shoe with an axial-contoured lateral branch induced greater lateral roll during breakover in trotting horses, but change in orientation of the hoof was small and limited to the first half of breakover.  相似文献   

3.
OBJECTIVE: To test the hypotheses that kinematic data of the sagittal motion of canine hind limbs during walking obtained with a 2-dimensional (2-D) system correlate well with those obtained with a 3-dimensional (3-D) system and that the data obtained with the 2-D system are repeatable. ANIMALS: 6 adult dogs with no evidence of lameness. PROCEDURES: Hind limb motions of 6 walking dogs were recorded via 2-D video and 3-D optoelectric systems simultaneously. Five valid trials were digitized, and 5 data sets (2-D 60 Hz, 3-D 180 Hz, 3-D sagittal 180 Hz, 3-D 60 Hz, and 3-D sagittal 60 Hz) of a complete gait cycle were created for each dog. In sagittal data sets, 3-D data were reduced to exclude coordinates for mediolateral orientation. Temporospatial parameters; angles of hip, stifle, and tarsal joints; and coefficients of variation of angular measurements of each dog were calculated for each data set. Accuracy of the 2-D analysis was determined by calculating mean absolute differences and estimating agreement between the 2-D and 3-D 180-Hz data sets. RESULTS: Values of joint angles and angular excursions measured with the 2-D system were repeatable and agreed with respective values obtained with the 3-D system. Reduction of the sampling rate had a greater impact on values of kinematic variables obtained with the 3-D system than did elimination of data on mediolateral orientation. CONCLUSIONS AND CLINICAL RELEVANCE: Kinematic analysis using a 2-D video system provided accurate and repeatable data of the sagittal angular motion of canine hind limbs during walking.  相似文献   

4.
Electromyographic (EMG) activity of 4 muscles of the cubital joint and the strain of forelimb hooves were recorded telemetrically in 4 Thoroughbreds (with and without a rider) standing, walking, trotting, and cantering. Bipolar fine wire electrodes were inserted into the muscles, and strain gauges were attached to the hoof wall. Motion pictures (16 mm), synchronized with EMG tracings, were taken to obtain kinematic data. When horses were standing, the biceps brachii had tonic activity, but the brachialis and the caput longum and the caput laterale of the triceps brachii had no EMG activity. The biceps brachii had EMG activity during the stance phase. The brachialis had EMG activity from the end of the stance phase to the middle of the swing phase. Unlike the biceps brachii, the brachialis acted as a flexor muscle of the cubital joint during locomotion. The EMG activity of the caput longum of the triceps brachii was detected from midswing phase to early stance phase. The EMG activity of the caput laterale of the triceps brachii began in midswing or late-swing phase and ceased in early stance or midstance phase. During locomotion, caput longum EMG activity always preceded caput laterale activity. When horses were cantering, the brachialis and the caput longum (acting mainly in the swing phase) had an EMG activity phase different from those in leading and trailing forelimbs. These 4 muscles had similar EMG activity patterns during locomotion in horses with and without a rider.  相似文献   

5.
REASONS FOR PERFORMING STUDY: Comprehensive understanding of the 3-dimensional (3D) kinematics of the distal forelimb and precise knowledge of alterations induced by dorsopalmar foot imbalance remains incomplete because in vivo studies performed with skin markers do not measure the actual movements of the 3 digital joints. OBJECTIVE: To quantify the effects of 6 degree heel or toe wedges on the 3D movements of the 4 distal segments of the forelimb in horses trotting on a treadmill. METHODS: Three healthy horses were equipped with ultrasonic markers fixed surgically to the 4 distal segments of the left forelimb. The 3D movements of these segments were recorded while horses were trotting on a treadmill. Rotations of the digital joints were calculated by use of a joint coordinate system. Data obtained with 6 degree heel or toe wedges were compared to those obtained with flat standard shoes. RESULTS: Use of heel wedges significantly increased maximal flexion and decreased maximal extension of the proximal (PIPJ) and distal (DIPJ) interphalangeal joints. Inverse effects (except for PIPJ maximal extension) were observed with the toe wedges. In both cases, neither flexion-extension of the metacarpophalangeal joint nor extrasagittal motions of the digital joints were statistically different between conditions. CONCLUSIONS: At a slow trot on a treadmill, heel and toe wedges affect the sagittal plane kinematics of the interphalangeal joints. POTENTIAL RELEVANCE: Better understanding of the actual effects of toe and heel wedges on the 3D kinematics of the 3 digital joints may help to improve clinical use of sagittal alteration of hoof balance in the treatment of distal forelimb injuries.  相似文献   

6.
A lightweight bracelet that provides tactile stimulation to the horse's pastern and coronet induces a higher flight arc of the hoof. This study addresses the pattern of habituation to these devices. OBJECTIVE: To evaluate short-term habituation to tactile stimulation of the pastern and coronet in trotting horses. METHODS: Tactile stimulation was provided by a lightweight (55 g) device consisting of a strap with seven chains that was attached loosely around the pastern. Reflective markers were fixed to the dorsal hoof wall, the forehead and over the tenth thoracic vertebra of eight sound horses. The horses trotted in hand 10 times at a consistent velocity along a 30 m runway under three conditions applied in random order at two-hour intervals: no stimulators, stimulators on both front hooves or stimulators on both hind hooves. One stride per trial was analyzed to determine peak hoof heights in the swing phase. Sequential trials with stimulators were compared with unstimulated trials using a nested ANCOVA and Bonferronni's post hoc test (P < 0.005). RESULTS: Peak hind hoof height increased significantly for all 10 trials when wearing hind stimulators, whereas peak fore hoof height increased during the first six trials only when wearing fore stimulators. The first trial with stimulators showed the greatest elevation, followed by a rapid decrease over the next three trials and then a more gradual decrease. CONCLUSIONS: If the goal is to facilitate a generalized muscular response, a short burst of tactile stimulation is likely to be most effective, whereas longer periods of stimulation will be more effective for strength training.  相似文献   

7.
OBJECTIVE: To assess effects of exercise on a treadmill with changes in gastric volume and pH in the proximal portion of the stomach of horses. ANIMALS: 3 healthy adult horses. PROCEDURE: A polyester bag of approximately 1,600 mL was placed into the proximal portion of the stomach of each horse via a nasogastric tube. Changes in bag volume, determined by an electronic barostat, were recorded before, during, and after a training session on a treadmill with and without prior withholding of food. In separate experiments, pH in the proximal portion of the stomach was continuously recorded during exercise for fed and food-withheld conditions. Finally, changes in intra-abdominal and intragastric pressure were simultaneously recorded during a training session. RESULTS: Bag volume rapidly decreased to nearly zero during trotting and galloping. Conversely, a return to walking resulted in a sharp increase in volume and a return to pre-exercise values. Intragastric and intra-abdominal pressures increased almost in parallel with walking, trotting, galloping, and galloping on a slope. Gastric pH decreased rapidly to < 4 at the beginning of walking, continued to decrease during trotting and galloping, and remained low until a return to walking. CONCLUSIONS AND CLINICAL RELEVANCE: Increased intra-abdominal pressure during intense exercise in horses causes gastric compression, pushing acidic contents into the proximal, squamous-lined region of the stomach. Increased duration of acid exposure directly related to daily duration of exercise may be the reason that squamous lesions tend to develop or worsen when horses are in intensive training programs.  相似文献   

8.
AIMS: To determine the frontal plane position of the ground reaction force vector at its centre of pressure under the hoof of walking horses, and its projection through the distal limb joints, and to relate this to hoof geometric measurements.

METHODS: Reflective markers were glued to the forelimb hooves and skin of 26 horses, over palpable landmarks representing centres of the coffin, fetlock and carpal joints, and the dorsal toe at its most distal point. A 4-camera kinematic system recorded the position of these markers as the horse walked in hand across a force platform, to generate a frontal plane representation of the ground reaction force vector passing between the markers at the joints. The position of the vector was calculated as the relative distance between the lateral (0%) and medial (100%) markers at each joint. Digital photos were taken of the hoof in frontal and sagittal views to determine hoof geometric measurements. Associations between these and the position of the force vector at each joint were examined using Pearson correlation coefficients.

RESULTS: Mean vector position for both forelimbs at the toe, coffin, fetlock and carpal joint was 50.1 (SD 8.9), 53.0 (SD 9.2), 54.6 (SD 11.4) and 50.5 (SD17.3)%, respectively, of the distance between the lateral and medial sides of the joint in the frontal plane. Across all four joints, the vector position was slightly more medial (2–4%) for the right than left limb (p>0.05). Medial hoof wall angle was correlated (p<0.05) with force vector position at the fetlock (r=?0.402) and carpal (r=?0.317) joints; lateral hoof wall angle with vector position at the toe (r=0.288) and carpal (r=?0.34) joint, and medial hoof wall height with vector position at the fetlock (r=?0.306) and carpal (r=?0.303) joints.

CONCLUSION: The position of the two-dimensional frontal plane ground reaction force vector at the toe, and at the fetlock and carpal joints was associated with hoof shape. Mediolateral hoof balance has been shown in vitro to affect articular forces, which may be a factor in development of joint disease. The effect of hoof shape needs to be evaluated at faster gaits to determine the potential for joint injury in the presence of larger forces.  相似文献   

9.
OBJECTIVE: To determine the mechanism that enables horses to partially counteract the shift of the center of pressure under the hoof induced by changes in hoof morphology attributable to growth and wear during a shoeing interval. ANIMALS: 18 clinically sound Warmblood horses. PROCEDURES: Horses were evaluated 2 days and 8 weeks after shoeing during trotting on a track containing pressure-force measuring plates and by use of a synchronous infrared gait analysis system set at a frequency of 240 Hz. All feet were trimmed toward straight alignment of the proximal, middle, and distal phalanges and shod with standard flat shoes. Results-Temporal characteristics such as stance time and the time between heel lift and toe off (ie, breakover duration) did not change significantly as a result of shoeing interval. Protraction and retraction angles of the limbs did not change. Compensation was achieved through an increase in the dorsal angle of the metacarpohalangeal or metarsophalangeal (fetlock) joint and a concomitant decrease of the dorsal angle of the hoof wall and fetlock. There was an additional compensatory mechanism in the hind limbs during the landing phase. CONCLUSIONS AND CLINICAL RELEVANCE: Horses compensate for changes in hoof morphology that develop during an 8-week shoeing interval such that they are able to maintain their neuromuscular pattern of movement. The compensation consists of slight alterations in the angles between the distal segments of the limb. Insight into natural compensation mechanisms for hoof imbalance will aid in the understanding and treatment of pathologic conditions in horses.  相似文献   

10.
Instrumented shoes were used to measure the vertical forces exerted by horses moving at a variety of gaits. Two types of shoes were used; one contained a single transducer positioned over the center of the frog and the second contained transducers located at the toe and both sides of the heel. Horses were shod with these instrumented shoes and walked and trotted over a force plate. Forces were simultaneously recorded from the transducers in the shoes and from the force plate. Comparisons were made between the amount and duration of the forces exerted on the transducers and the vertical and horizontal forces recorded from the force plate. Forces recorded from the single transducer shoes showed strong correlations with the forces recorded from the force plate for horses moving at the walk; however, at the trot only moderate correlations occurred between these forces. At both the walk and trot, forces recorded from each side of the heel and the total forces occurring on all three transducers from the front hooves of horses shod with three transducer shoes showed strong correlations to the vertical forces recorded from the force plate.Vertical forces were also recorded from the instrumented shoes as horses walked, trotted and galloped on a track straightaway. Forces recorded from normal horses shod with single transducer shoes on all four feet were greater on the forelimbs than the rear limbs at the walk and trot. At the gallop, forces were highest on the lead front followed by the nonlead front, lead rear and nonlead rearlimb, respectively. Forces recorded from a three transducer shoe on the right front hoof of a horse walking, trotting and galloping in a right lead were highest on the medial side of the heel and occurred during the middle of the support period. Peak forces on the toe occurred at or near the time of heel lift.The results of these studies indicate that these instrumented shoes have advantages over the methods previously used to measure locomotor forces. These instrumented shoes can be used to simultaneously record the temporal components and the amount and distribution of vertical forces exerted during consecutive strides of horses moving at a variety of gaits.  相似文献   

11.
The body centre of mass (BCM) is a key factor in the analysis of equine locomotion, as its position and movement determines the distribution and magnitude of loads on the limbs. In this study, the three-dimensional (3D) movement of the BCM in walking and trotting horses was assessed using a kinematic, segmental method. Thirty markers representing 20 body segments were recorded in 12 sound horses while standing, walking and trotting on a treadmill using a high-speed video system. Based on segmental inertial data, 3D positions of the segmental centres of mass as well as the total BCM were calculated. The position within the trunk during square standing and the movements of the BCM were determined for the three planes.The position of the BCM in the standing horse is presented relative to external reference points. At the trot, vertical displacement amplitude of the BCM amounted to 53 (6) mm as mean (sd), which was 27% smaller than external trunk movement. Medio-lateral displacement amplitude of the BCM was 19 (4) mm, 34% less than trunk amplitude. Sagittal forward-backward oscillations of the BCM independent from general forward movement were 13 (3) mm, being 24% less than trunk movements. At the walk, vertical, medio-lateral and sagittal BCM movements were smaller than trunk movements by 43, 65 and 65% respectively.The results show reduced and efficient BCM movements compared to the trunk and form a basis for the assessment of various clinical conditions such as lameness, the influence of a rider and various dressage performances.  相似文献   

12.
Reasons for performing study: Estimates of the position of the centres of mass (CM) of body segments are usually extrapolated relative to bony landmarks as determined in cadaver studies. This extrapolation assumes that segments are rigid bodies. Since the trunk represents a large percentage of the total body mass in horses, violation of the rigid body assumption by the trunk segment has important consequences for studying the biomechanics of equine locomotion. Objectives: To assess the magnitude of error in CM position due to deformability of the trunk segment and the timing of these errors during the trotting stride. The hypothesis was that shape changes during a stride are repeatable and predictable. Methods: Forty skin markers were attached in a grid pattern on the trunks of 6 adult horses, with an additional marker attached to each hoof. The markers were tracked using an 8 camera motion analysis system. Each horse was tested at 10 different velocities during trotting. The CM of the trunk was calculated under the assumption of a rigid body, based on 5 spine markers and from the volume encompassed by the 40 markers. The difference between the 2 calculation methods quantifies the effect of trunk deformation on the position of the CM. Results: The trunk changed shape during locomotion in a repeatable manner resulting in cyclic changes in CM position. Amplitudes of the CM displacement due to trunk deformation were equal in magnitude in the transverse and longitudinal directions. In the vertical direction, the CM moved only at half the amplitude. Magnitudes were strongly horse‐dependent. Conclusions and potential relevance: Shape changes in the equine trunk segment in the horizontal plane should be taken into account when modelling locomotion of horses. Amplitudes are horse dependent, complicating the development of correction routines.  相似文献   

13.
Using a system for motion analysis, linear correlation of speed and forelimb lameness was measured in 16 horses trotting on a treadmill at a minimum of three different trotting speeds. Forelimb lameness was determined as asymmetry of vertical head motion during left and right forelimb stance.In seven horses with a moderate forelimb lameness (head motion asymmetry >40%), lameness increased significantly with trotting speed. In a further seven horses with mild or subclinical forelimb lameness (head motion asymmetry <40%) and in two horses with a moderate forelimb lameness, no significant correlation between speed and motion asymmetry was found.The results indicate that moderate forelimb lameness measured as head motion asymmetry depends on the speed at which the measurements are taken. If head motion asymmetry is measured at two trotting speeds, it can be standardized to any speed within the trotting speed range.  相似文献   

14.
The purpose of this study was to determine basic kinematic parameters (linear, temporal and angular) in young and adult Andalusian horses (P.R.E.) at the trot, using a normal computer-aided videography system. The trotting gaits of 16 horses were analysed: seven young horses (3.7 +/- 0.2 years old, height at withers 167.1 +/- 4.1 cm) and nine adult stallions (12.3 +/- 2.9 years old, height at withers 162.9 +/- 3.6 cm) were recorded at least 6 times at the trot using a 25-Hz video-camera filming from the side. Video images were processed with a real-time digital system (SMVD). Speeds averaged 3.84 and 3.75 m/s for young and adult horses, respectively. Differences between age groups for speed and linear and temporal parameters of the stride were not significant. However, variations in angular parameters were detected: adults showed a greater ARM than younger horses for most forelimb joints. In the hind limb, hip, stifle, and, to a lesser degree, the tarsal joint, a smaller degree of extension during the stance phase was observed in adult horses.  相似文献   

15.
REASONS FOR PERFORMING STUDY: Little is known about the interaction of the hoof with the ground at the onset of stance phase although is it widely believed that high power collisions are involved in the aetiopathology of several conditions causing lameness. OBJECTIVES: To answer 3 questions regarding the fundamental nature of hoof-ground collision: (1) is the collision process deterministic for ground surfaces that present a consistent mechanical interface (2) do collision forces act on the hoof in a small or large range of directions and (3) Is the hoof decelerated to near-zero velocity by the initial deceleration peak following ground contact? METHODS: Hoof acceleration during the onset of stance phase was recorded using biaxial accelerometry for horses trotting on a tarmac surface and on a sand surface. Characteristics of the collision process were identified both from vector plots and time series representations of hoof acceleration, velocity and displacement. RESULTS: The response of the hoof to collision with smooth tarmac was predominantly deterministic and consistent with the response of a spring-damper system following shock excitation. The response to collision with sand was predominantly random. The deceleration peak following ground contact did not decelerate the hoof to near-zero velocity on tarmac but appeared to on sand. On both surfaces, collision forces acted on the hoof in a wide range of directions. CONCLUSIONS: The study suggests the presence of stiff, viscoelastic structures within the foot that may act as shock absorbers isolating the limb from large collision forces. POTENTIAL RELEVANCE: The study indicates objectives for future in vivo and in vitro research into the shock absorbing mechanism within the equine foot; and the effects of shoe type and track surface properties on the collision forces experienced during locomotion. Studies of this nature should help to establish a link between musculoskeletal injury, hoof function and hoof-ground interaction if, indeed, one exists.  相似文献   

16.
OBJECTIVE: To define a 3-dimensional (3-D) coordinate system with clear definitions of origins and axes relative to hoof anatomic features and determine whether solar surfaces of Thoroughbred racehorse hooves have geometric asymmetry in the mediolateral and dorsopalmar directions. SAMPLE POPULATION: Left forelimb hooves from 20 Thoroughbred racehorse cadavers. PROCEDURE: A right-handed 3-D coordinate axes system centered on the collateral sulci was defined for the left front hoof. Orthogonal distances of anatomic features from the dorsopalmar axis and the plane coincident with the ground were measured and compared between medial and lateral sides and between dorsal and palmar regions of the hoof. RESULTS: The hoof was wider and had a greater radius laterally than medially. The most distal part of the lateral bar of the frog was further from the dorsopalmar axis than that of the medial bar. Overall, mediolateral asymmetries in depth were not observed. The sole at the perimeter was deeper medially in the dorsal part of the hoof and laterally in the palmar part, with depth overall being greater palmarly than dorsally. Most features had dorsopalmar asymmetry. CONCLUSIONS AND CLINICAL RELEVANCE: When the angle bisected by the collateral sulci is used to determine the dorsopalmar axis of the hoof, most central structures (bars and collateral sulci) have mediolateral symmetry. However, the hoof wall and sole have some mediolateral asymmetries and most structures have dorsopalmar asymmetry. These findings may assist the development of devices for attachment to hooves and studies of the interaction of hooves with bearing surfaces.  相似文献   

17.
OBJECTIVE: To evaluate back movement during walking in horses. ANIMALS: 22 adult horses with no history or signs of back pain. PROCEDURE: 3-dimensional movements of markers on the hooves, head, and back were measured with a motion analysis system while the horses were walking on a treadmill. The positions of markers on the hooves, head, and the skin above the spinous processes of T5, T10, T16, L3, and 2 sacral vertebrae were recorded. From a minimum of 6 walking motion cycles/horse, marker movement and the time of occurrence of minimum and maximum marker positions within the motion cycle were determined. Angles were calculated between the markers on the head, T16, and S4 or S5 and between the markers on T5, T16, and S4 or S5. RESULTS: Lateral back movement was maximal at L3, where it reached (mean +/- SD) 3.5 +/- 0.8% of the horses' height at the withers. Maximum dorsoventral back movement was found at the sacrum, where it reached 4.7 +/- 1.3% of the height at the withers. In the horizontal plane, the angle between T5, T16, and S4 or S5 was altered by 11 +/- 2.5 degrees during the motion cycle. In the sagittal plane, the angle between the head, T16, and S4 or S5 was altered by 7 +/- 3 degrees. CONCLUSIONS AND CLINICAL RELEVANCE: Results of this study may be used as basic kinematic reference data for evaluation of back movement in horses.  相似文献   

18.
OBJECTIVE: To determine whether kinematic changes induced by heel pressure in horses differ from those induced by toe pressure. ANIMALS: 10 adult Quarter Horses. PROCEDURE: A shoe that applied pressure on the cuneus ungulae (frog) or on the toe was used. Kinematic analyses were performed before and after 2 levels of frog pressure and after 1 level of toe pressure. Values for stride displacement and time and joint angles were determined from horses trotting on a treadmill. RESULTS: The first level of frog pressure caused decreases in metacarpophalangeal (fetlock) joint extension during stance and increases in head vertical movement and asymmetry. The second level of frog pressure caused these changes but also caused decreases in stride duration and carpal joint extension during stance as well as increases in relative stance duration. Toe pressure caused changes in these same variables but also caused maximum extension of the fetlock joint to occur before midstance, maximum hoof height to be closer to midswing, and forelimb protraction to increase. CONCLUSION AND CLINICAL RELEVANCE: Decreased fetlock joint extension during stance and increased head vertical movement and asymmetry are sensitive indicators of forelimb lameness. Decreased stride duration, increased relative stance duration, and decreased carpal joint extension during stance are general but insensitive indicators of forelimb lameness. Increased forelimb protraction, hoof flight pattern with maximum hoof height near midswing, and maximum fetlock joint extension in cranial stance may be specific indicators of lameness in the toe region. Observation of forelimb movement may enable clinicians to differentiate lameness of the heel from lameness of the toe.  相似文献   

19.
OBJECTIVE: To identify hind limb and pelvic kinematic variables that change in trotting horses after induced lameness of the distal intertarsal and tarsometatarsal joints and after subsequent intra-articular administration of anesthetic. ANIMALS: 8 clinically normal adult horses. PROCEDURE: Kinematic measurements were made before and after transient endotoxin-induced lameness of the distal intertarsal and tarsometatarsal joints and after intra-articular administration of anesthetic. Fourteen displacement and joint angle (metatarsophalangeal [fetlock] and tarsal joints) measurements were made on the right hind limb, sacrum, and the right and left tubera coxae. Kinematic measurements were compared by general linear models, using a repeated measures ANOVA. Post hoc multiple comparisons between treatments were evaluated with a Fisher least squared difference test at alpha = 0.05. RESULTS: After lameness induction, fetlock and tarsal joint extension during stance decreased, fetlock joint flexion and hoof height during swing increased, limb protraction decreased, and vertical excursion of the tubera coxae became more asymmetric. After intra-articular administration of anesthetic, limb protraction returned to the degree seen before lameness, and vertical excursion of the tubera coxae became more symmetric. CONCLUSIONS AND CLINICAL RELEVANCE: Increased length of hind limb protraction and symmetry of tubera coxae vertical excursion are sensitive indicators of improvement in tarsal joint lameness. When evaluating changes in tarsal joint lameness, evaluating the horse from the side (to assess limb protraction) is as important as evaluating from the rear (to assess pelvic symmetry).  相似文献   

20.
Although welfare of animals has become more important, housing horses in systems that limit natural behavior patterns is still widespread. Single stalls are the predominant housing system in Germany, especially for competition horses. Free exercise on fields or paddocks helps to improve welfare for the animals, but allowing it is not taken for granted by many horse keepers. In the present study, three common management practices were investigated with regard to their effect on the behavior of six competition horses housed in single stalls: 2-hour turnout after training in groups of two horses (group turnout [GT]), solitary turnout (ST) after training for 2 hours, and no turnout (NT) in addition to training. The aim of the study was to determine the differences in the horses’ behavior during turnout, training, and in the stable caused by the treatments. This article focuses on the behavior and activity patterns during turnout. The horses’ behavior was observed directly by the scan sampling method (5-minute interval), and the distance covered during turnout was measured by global positioning system devices. During turnout, the horses spent most of the time eating. After 1 hour of being turned out, eating decreased, and occupation, locomotion, and social interaction increased. When turnout was allowed in groups (GT), the horses spent more time in social interactions and less time walking and trotting than in ST. Therefore, they also covered a greater distance in ST than in GT. The distance covered in ST also showed a greater deviation both within and between days compared with GT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号