首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The postprandial increases in AA and insulin independently stimulate protein synthesis in skeletal muscle of piglets. Leucine is an important mediator of the response to AA. We have shown that the postprandial increase in leucine, but not isoleucine or valine, acutely stimulates muscle protein synthesis in piglets. Leucine increases muscle protein synthesis by modulating the activation of mammalian target of rapamycin (mTOR) complex 1 and signaling components of translation initiation. Leucine increases the phosphorylation of mTOR, 70-kDa ribosomal protein S6 kinase-1, eukaryotic initiation factor (eIF) 4E-binding protein-1, and eIF4G; decreases eIF2α phosphorylation; and increases the association of eIF4E with eIF4G. However, leucine does not affect the upstream activators of mTOR, that is, protein kinase B, adenosine monophosphate-activated protein kinase, and tuberous sclerosis complex 1/2, or the activation of translation elongation regulator, eukaryotic elongation factor 2. The action of leucine can be replicated by α-ketoisocaproate but not by norleucine. Interference by rapamycin with the raptor-mTOR interaction blocks leucine-induced muscle protein synthesis. The acute leucine-induced stimulation of muscle protein synthesis is not maintained for prolonged periods, despite continued activation of mTOR signaling, because circulating AA fall as they are utilized for protein synthesis. However, when circulating AA concentrations are maintained, the leucine-induced stimulation of muscle protein synthesis is maintained for prolonged periods. Thus, leucine acts as a nutrient signal to stimulate translation initiation, but whether this translates into a prolonged increase in protein synthesis depends on the sustained availability of all AA.  相似文献   

2.
Neonatal growth is characterized by a high protein synthesis rate that is largely due to an enhanced sensitivity to the postprandial rise in insulin and amino acids, especially leucine. The mechanism of leucine’s action in vivo is not well understood. In this study, we investigated the effect of leucine infusion on protein synthesis in skeletal muscle and liver of neonatal pigs. To evaluate the mode of action of leucine, we used rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) complex-1 (mTORC1). Overnight-fasted 7-day-old piglets were treated with rapamycin for 1 hour and then infused with leucine (400 μmol·kg -1 ·h -1 ) for 1 hour. Leucine infusion increased the rate of protein synthesis, and ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1) phosphorylation in gastrocnemius and masseter muscles (P < 0.05), but not in the liver. The leucine-induced stimulation of protein synthesis and S6K1 and 4E-BP1 phosphorylation were completely blocked by rapamycin, suggesting that leucine action is by an mTORC1-dependent mechanism. Neither leucine nor rapamycin had any effect on the activation of the upstream mTORC1 regulators, AMP-activated protein kinase and protein kinase B, in skeletal muscle or liver. The activation of eIF2a and elongation factor 2 was not affected by leucine or rapamycin, indicating that these two pathways are not limiting steps of leucine-induced protein synthesis. These results suggest that leucine stimulates muscle protein synthesis in neonatal pigs by inducing the activation of mTORC1 and its downstream pathway leading to mRNA translation.  相似文献   

3.
Background: The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1,6- and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemiohyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic- hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-1ike kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein 56 (rpS6) and eukaryotic initiation factor 4E (elF4E) activation, components of translation initiation. Results: Abundance of atrogin-1, but not MuRF1, was greater in 26- than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-11/LC3-1 ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of elF4E, but not rpS6, was higher in 6- than 26-d-old-pigs but unaffected by treatment. Phosphorylation of elF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the response  相似文献   

4.

Background

The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6- and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemic-hyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic-hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-like kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein S6 (rpS6) and eukaryotic initiation factor 4E (eIF4E) activation, components of translation initiation.

Results

Abundance of atrogin-1, but not MuRF1, was greater in 26- than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-II/LC3-I ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of eIF4E, but not rpS6, was higher in 6- than 26-d-old-pigs but unaffected by treatment. Phosphorylation of eIF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the responses decreased with development.

Conclusions

The rapid growth of neonatal muscle is in part due to the positive balance between the activation of protein synthesis and degradation signaling. Insulin, amino acids, and, particularly, leucine, act as signals to modulate muscle protein synthesis and degradation in neonates.  相似文献   

5.
The high rate of protein synthesis in skeletal muscle of dairy calves can benefit their first lactation even lifetime milk yield. Since the rate of protein synthesis is relatively low in the post‐absorptive state, the aim of this research was to determine whether leucine supplementation could increase the post‐absorptive essential amino acid (EAA) utilization and protein synthesis in the skeletal muscle. Ten male neonatal dairy calves (38 ± 3 kg) were randomly assigned to either the control (CON, no leucine supplementation, n = 5) or supplementation with 1.435 g leucine/L milk (LEU, n = 5). Results showed that leucine significantly increased the length and protein concentration in longissimus dorsi (LD) muscle, whereas it decreased creatinine concentration and glutamic‐oxalacetic transaminase (GOT) activity. Compared to the control group, leucine supplementation also reduced the glutamic‐pyruvic transaminase (GPT) activity. Supplementation of leucine improved the phosphorylation of mammalian target of rapamycin (mTOR), eukaryotic initiation factor 4E‐binding protein 1 (4EBP1) and substrates ribosomal protein S6 kinase 1 (p70S6K). Supplementation of leucine resulted in increased concentrations of glucose, methionine, threonine, histidine and EAAs and decreased concentration of arginine in serum. Liver glucose concentration was higher and pyranic acid was lower in LEU compared to CON. In conclusion, leucine supplementation can promote post‐absorptive EAA utilization and hepatic gluconeogenesis, which contributes to protein synthesis in skeletal muscle of dairy calves.  相似文献   

6.
本试验旨在研究槲皮素促进猪肠上皮细胞利用蛋白质的作用及机制.猪肠上皮细胞孵育48 h后试验组分别用含0.1、0.2、0.4、0.8和1.6 mg/L槲皮素的二甲基亚砜(DMSO)溶液处理72 h,对照组采用0.2%DMSO处理.采用二喹啉甲酸(BCA)测定受试细胞中蛋白质的含量;采用实时荧光定量PCR(RT-qPCR)...  相似文献   

7.
The mechanistic target of rapamycin complex 1 (mTORC1) integrates various types of signal inputs, such as energy, growth factors, and amino acids to regulate cell growth and proliferation mainly through the 2 direct downstream targets, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and ribosomal protein S6 kinase 1 (S6K1). Most of the signal arms upstream of mTORC1 including energy status, stress signals, and growth factors converge on the tuberous sclerosis complex (TSC) − Ras homologue enriched in brain (Rheb) axis. Amino acids, however, are distinct from other signals and modulate mTORC1 using a unique pathway. In recent years, the transmission mechanism of amino acid signals upstream of mTORC1 has been gradually elucidated, and some sensors or signal transmission pathways for individual amino acids have also been discovered. With the help of these findings, we propose a general picture of recent advances, which demonstrates that various amino acids from lysosomes, cytoplasm, and Golgi are sensed by their respective sensors. These signals converge on mTORC1 and form a huge and complicated signal network with multiple synergies, antagonisms, and feedback mechanisms.  相似文献   

8.
p70 S6 kinase (p70S6K) is a key enzyme involved in the control of protein synthesis. We have previously shown that this kinase is insulin sensitive in chicken muscle despite a relative insulin resistance in the early steps of insulin receptor signaling in this tissue, particularly with no change in tyrosine phosphorylation of the insulin receptor substrate 1 (IRS1). The aim of the present study is to further study the p70S6K pathway in chicken muscle. By analyzing in silico several kinases involved in the protein kinase B (PKB also called AKT)/target of rapamycin (TOR)/p70S6K pathway in the chicken, we showed that the amino acid sequence of the proteins exhibited a very high identity with their homologs in mammalian species and Drosophila. We investigated the regulation of these kinases in vivo or in vitro. Refeeding and insulin treatment significantly (P<0.05) increased the phosphorylation and/or activity of kinases upstream of p70S6K such as AKT and TOR. Similarly, refeeding and insulin increased the phosphorylation of p70S6K on key residues (i.e. T389, T229 and T421/S424) and the phosphorylation of a p70S6K downstream target, the ribosomal protein S6 (by 3-10-fold, P<0.05). Interestingly, we also showed an increase in the phosphorylation level of IRS1 on S632/S635, sites involved in insulin resistance. In conclusion, the AKT/TOR/p70S6K pathway is activated by refeeding and insulin injection, which might negatively regulate IRS1 tyrosine phosphorylation. These results indicate some particularities of the insulin signaling in chicken muscle and suggest the involvement of p70S6K in these features.  相似文献   

9.
本试验旨在研究低蛋白质饲粮补充过瘤胃赖氨酸(RPLys)和过瘤胃蛋氨酸(RPMet)对荷斯坦公牛生长性能、屠宰性能、肉品质及氮代谢的影响.选取36头健康无疾病的荷斯坦公牛,随机分为3组,每组12头牛.对照组(Ⅰ组)饲喂蛋白质水平为13%的正常饲粮,2个试验组(Ⅱ、Ⅲ组)均饲喂蛋白质水平为11%的低蛋白质饲粮,同时Ⅱ组补...  相似文献   

10.
To investigate the possibility that a disorder of potassium balance may have a role in the development of equine rhabdomyolysis, the potassium concentration within erythrocytes (RBC [K+]) and plasma (P [K+]) was measured in 3 groups of horses: group 1, eight 2-year-old fillies that had postexercise muscle soreness within 48 hours of sample collection; group 2, ten 2-year-old fillies subjected to identical management and training conditions (as fillies of group 1) and that did not have signs of myopathy; and group 3, 32 yearlings of both sexes on the farm of origin of groups 1 and 2 that were pastured and not in training. Creatine kinase activity in serum from horses of groups 1 and 2 was also measured. The mean P [K+] was not significantly different between groups, whereas the mean RBC [K+] was significantly (P less than 0.01) lower in group-1 fillies vs group-2 fillies and group-3 horses. Group-1 fillies also had markedly high serum creatine kinase activity. Results of the study revealed significantly lower RBC [K+] in horses that had had signs of myopathy within the preceding 48 hours. This does not prove a causal relationship between RBC potassium depletion and myopathy, but does suggest that decreased RBC [K+] may be observed in horses with exercise-related myopathy.  相似文献   

11.
The mammalian target of rapamycin (mTOR) signaling controls nutrient-stimulated protein synthesis in skeletal muscle, whereas ubiquitin-proteasome systems control the degradation of myofibrillar proteins. The objective of this study was to elucidate the effect of nutrient restriction on the mTOR signaling and ubiquitin-proteasome system in the skeletal muscle of cows and their fetuses. Beginning 30 d after conception, 20 cows were fed either a control diet that provided 100% nutrient requirements or a nutrient-restricted diet at 68.1% of NE(m) and 86.7% of metabolizable protein requirement. Cows were slaughtered on 125 d of gestation, and the LM of both cows and fetuses was sampled for the measurement of mTOR, ribosomal protein S6, adenosine 5'-monophosphate-activated protein kinase (AMPK), and protein ubiquitylation. When comparing the muscle samples from nutrient-restricted and control cows and their fetuses, no difference was observed for the content of mTOR and ribosomal protein S6, but the phosphorylation of mTOR at Ser(2448) and ribosomal protein S6 at Ser(235/336) were greater (P < 0.05) in control muscle than in muscle from nutrient-restricted animals. Because the phosphorylation of mTOR and ribosomal protein S6 upregulates translation, these results showed that nutrient restriction inhibits protein synthesis in muscle. The activity of AMPK in the muscle of nutrient-restricted cows was significantly lower (P = 0.05) than that of control cows. The protein ubiquitylation, however, was greater (P < 0.05) in the muscle from nutrient-restricted cows, showing accelerated protein degradation. No difference in the protein ubiquitylation was detected for fetal muscle. Data suggested that the decreased protein synthesis and promoted protein degradation resulted in muscle atrophy of pregnant cows, but not in fetal muscle. Results of this study show that in response to nutrient restriction, protein degradation was differentially regulated between cow and fetal muscle. The atrophy of cow muscle during nutrient deficiency may involve the enhanced degradation of muscle proteins.  相似文献   

12.
13.
In mammals, insulin regulates S6K1, a key enzyme involved in the control of protein synthesis, via the well-documented phosphoinositide-3'kinase (PI3K) pathway. Conversely, S6K1 is activated by insulin in avian muscle despite the relative insulin insensitivity of the PI3K pathway in this tissue. Mitogen-activated protein kinase (MAPK) cascade is another insulin sensitive pathway. The aim of this study was to explore the potential involvement of the ERK1/2 MAPK pathway in the control of p70 S6 kinase (S6K1) in avian species. Firstly, we characterized ERK1/2 MAPK in various chicken tissues. ERK2 was the only isoform detected in avian species whatever the tissue studied. We also showed that ERK2 is activated in vivo by insulin in chicken muscle. The regulation and the role of ERK2 in insulin signaling were next investigated in chicken hepatoma cells (LMH) and primary myoblasts. Insulin stimulation led to ERK2 and S6K1 phosphorylation, and concomitantly increased kinase activity. U0126, an inhibitor of the ERK MAPK pathway, completely abolished insulin-induced S6K1 phosphorylation and activity in chicken myoblasts, whereas its effect was only partial in LMH cells. In conclusion, these results show that ERK1/2 MAPK is involved in the control of S6K1 by insulin in chicken cells, particularly myoblasts.  相似文献   

14.
Using the MAC-T cell line as a model, the effects of insulin-like growth factor (IGF)-1 on the regulation of protein synthesis through the mammalian target of rapamycin complex 1 (mTORC1) signaling in bovine mammary epithelial cells were evaluated. Global rates of protein synthesis increased by 47% within 30 min of IGF-1 treatment. The effect of IGF-1 on protein synthesis was associated with enhanced association of the eukaryotic initiation factor (eIF) 4E with eIF4G and a concomitant reduction of eIF4E association with eIF4E-binding protein-1 (4E-BP1). There was a progressive increase in the phosphorylation state of ribosomal protein S6 kinase-1, a downstream target of mTORC1 in response to IGF-1. In addition, IGF-1 stimulated mTORC1 kinase activity toward 4E-BP1 in vitro. Phosphorylation on Ser473 of Akt was induced by IGF-1 within 5 min and remained elevated throughout a 30-min time course. The effect of IGF-1 on Akt phosphorylation was also concentration dependent. Activation of Akt by IGF-1 led to increased phosphorylation of tuberous sclerosis complex 2 on Thr1426, without any change in its association with tuberous sclerosis complex 1. Phosphorylation of proline-rich Akt substrate of 40-kDa (PRAS40) at Thr246 was stimulated by IGF-1. The amount of PRAS40 associated with mTORC1 decreased in response to IGF-1, and PRAS40 binding to mTORC1 was inversely related to its phosphorylation level. Overall, these results suggest that activation of the PI3K-Akt pathway by IGF-1 stimulated global protein synthesis in bovine mammary epithelial cells through changes in the phosphorylation and association state of components of the mTORC1 signaling pathway.  相似文献   

15.
ObjecTIVE: To determine the effects of dexamethasone treatment on selected components of insulin signaling and glucose metabolism in skeletal muscle obtained from horses before and after administration of a euglycemic-hyperinsulinemic clamp (EHC). ANIMALS: 6 adult Standardbreds. PROCEDURES: In a balanced crossover study, horses received either dexamethasone (0.08 mg/kg, IV, q 48 h) or an equivalent volume of saline (0.9% NaCl) solution, IV, for 21 days. A 2-hour EHC was administered for measurement of insulin sensitivity 1 day after treatment. Muscle biopsy specimens obtained before and after the EHC were analyzed for glucose transporter 4, protein kinase B (PKB), glycogen synthase kinase (GSK)-3alpha/beta protein abundance and phosphorylation state (PKB Ser(473) and GSK-3alpha/beta Ser(21/9)), glycogen synthase and hexokinase enzyme activities, and muscle glycogen concentration. RESULTS: Dexamethasone treatment resulted in resting hyperinsulinemia and a significant decrease (70%) in glucose infusion rate during the EHC. In the dexamethasone group, increased hexokinase activity, abrogation of the insulin-stimulated increase in glycogen synthase fractional velocity, and decreased phosphorylation of GSK-3alpha Ser(21) and GSK-3B Ser(9) were detected, but there was no effect of dexamethasone treatment on glucose transporter 4 content and glycogen concentration or on PKB abundance and phosphorylation state. CONCLUSIONS AND CLINICAL RELEVANCE: In horses, 21 days of dexamethasone treatment resulted in substantial insulin resistance and impaired GSK-3 phosphorylation in skeletal muscle, which may have contributed to the decreased glycogen synthase activity seen after insulin stimulation.  相似文献   

16.
1. The change in the rate of protein synthesis of different muscles, concentrations of plasma insulin, plasma insulin-like growth factor-I (IGF-I) and other plasma components were investigated after refeeding in fasted chicks. 5.2 g of the complete diet was refed. This was the maximum that could be force-fed with water. 2. The fractional synthesis rates (FSR) of breast (M. pectoralis major) and leg (M. gastrocnemius) muscles were measured after injection of L-[2, 6-(3)H]phenylalanine. Plasma insulin and IGF-I concentration were determined by radioimmunoassay. 3. In the breast muscle, FSR was significantly reduced by 2-d fasting. The FSR had recovered completely after 1 h of refeeding and was maintained until 6 h. The change in FSR after refeeding was associated with the change in ribosomal efficiency (K(RNA); absolute synthesis rate per unit RNA), while no change in ribosomal capacity (C(S); RNA: protein ratio) was observed. 4. In the leg muscle, FSR was decreased by 2-d fasting and increased gradually toward 6 h after refeeding but did not reach the level of the fed control. In contrast to the breast muscle, no significant changes in Cs and K(RNA) in the leg muscle were observed. 5. Plasma glucose concentration increased significantly at 1 h after refeeding but returned to the fasted level after 24 h. Plasma insulin concentration in chicks refed for 1 h was higher than in the fasted group. There was no significant change in plasma IGF-I concentration. 6. These results suggest that the FSR of breast muscle was more sensitive to refeeding than that of leg muscle which may be explained, in part, by differences in sensitivity to the change in circulating plasma insulin concentration after refeeding.  相似文献   

17.
The mycotoxins beta-zearalenol (beta-ZOL) and deoxynivalenol (DON) produce toxic effects that result in diseases in humans and animals. The molecular mechanisms that control the mycotoxin-mediated effects are far from being completely understood. Various results show that these mycotoxins could inhibit cell proliferation. In the present short communication, the influence of beta-ZOL and DON on the abundance and phosphorylation state of kinases that are included in regulation of the initiation of mRNA translation (which is correlated with cell proliferation) was compared in porcine endometrial cells (PEC). Our results indicate that these mycotoxins modulate the expression and phosphorylation of these factors in a different manner. Whereas beta-ZOL mainly had an impact on the biological activity of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), protein kinase B (Akt), eukaryotic initiation factor 4E (eIF4E) and its repressor 4E binding protein 1 (4E-BP1), DON reduced the abundance of p38 MAPk, Akt and specific 4E-BP1 bands. In summary, these results indicate that beta-ZOL influences molecular events that are included in the initiation of mRNA translation in the porcine endometrium but DON does not alter such processes clearly.  相似文献   

18.
19.
The objective of this study was to determine the influence of age on expression of insulin-like growth factor 1 (IGF1), insulin-like growth factor binding protein (IGFBP5), myostatin (MSTN), and myosin (MYH1) genes which are related to growth and muscle development in the American Quarter Horse. Thus, horses (n = 10) from weanling, yearling, 2-, 3-, and 10-year-old age classes were sampled and gene expression was assessed by RT-qPCR. ΔCT was calculated using the hypoxanthine-guanine phosphoribosyltransferase gene as an internal normalizer. The generalized linear model was used to determine differentially expressed genes, by pairwise comparison between ages. Among technical replicates, the coefficient of variation ranged from 1.0 to 5.2% and was lower than the variation observed between biological replicates (2.1–12.9%). IGF1 demonstrated significantly lower expression in the 3-year-old age class than in weanlings and yearlings, but the 10-year-old age class displayed a significantly higher level than 2- and 3-year-old age classes. Expression of IGFBP5 was highest in weanlings compared with all other age classes. Expression of MSTN was significantly higher in weanlings than in other age classes, whereas 10-year-old horses had an intermediate level of expression, but significantly different from yearlings, 2- and 3-year-old fillies. Finally, expression of MYH1 was lower in 2- and 10-year-old horses than in weanlings and yearlings, whereas 3-year-old fillies demonstrated an intermediate level of expression. Differential expression patterns observed in this preliminary study provide insight into the physiological changes occurring throughout the life span of horses. These patterns could also help explain the variation in performance and endurance between individuals at different developmental stages.  相似文献   

20.
As major fuels for the small intestinal mucosa, dietary amino acids (AA) are catabolized in the mitochondria and serve as sources of energy production. The present study was conducted to investigate AA metabolism that supply cell energy and the underlying signaling pathways in porcine enterocytes. Intestinal porcine epithelial cells (IPEC-J2) were treated with different concentrations of AA, inhibitor, or agonist of mammalian target of rapamycin complex 1 (mTORC1) and adenosine monophosphate activated protein kinase (AMPK), and mitochondrial respiration was monitored. The results showed that AA treatments resulted in enhanced mitochondrial respiration, increased intracellular content of pyruvic acid and lactic acid, and increased hormone-sensitive lipase mRNA expression. Meanwhile, decreased citrate synthase, isocitrate dehydrogenase alpha, and carnitine palmitoyltransferase 1 mRNA expression were also observed. We found that AA treatments increased the protein levels of phosphorylated mammalian target of rapamycin (p-mTOR), phosphorylated-p70 ribosomal protein S6 kinase, and phosphorylated-4E-binding protein 1. What is more, the protein levels of phosphorylated AMPK α (p-AMPKα) and nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase sirtuin-1 (SIRT1) were decreased by AA treatments in a time depending manner. Mitochondrial bioenergetics and the production of tricarboxylic acid cycle intermediates were decreased upon inhibition of mTORC1 or AMPK. Moreover, AMPK activation could up-regulate the mRNA expressions of inhibitor of nuclear factor kappa-B kinase subunit beta (Ikbkβ), integrin-linked protein kinase (ILK), unconventional myosin-Ic (Myo1c), ribosomal protein S6 kinase beta-2 (RPS6Kβ2), and vascular endothelial growth factor (VEGF)-β, which are downstream effectors of mammalian target of rapamycin (mTOR). The mRNA expressions of phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform (PIK3CD) and 5′-AMP-activated protein kinase subunit gamma-1 (PRKAG1), which are upstream regulators of mTOR, were also up-regulated by AMPK activation. On the other hand, AMPK activation also down-regulated FK506-binding protein 1A (FKBP1A), serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform, phosphatase and tensin homolog (PTEN), and unc-51 like autophagy activating kinase 1 (Ulk1), which are up-stream regulators of mTORC1. Taken together, these data indicated that AA regulated cellular energy metabolism through mTOR and AMPK pathway in porcine enterocytes. These results demonstrated interactions of AMPK and mTORC1 pathways in AA catabolism and energy metabolism in intestinal mucosa cells of piglets, and also provided reference for using AA to remedy human intestinal diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号