首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
葡萄皮渣中可溶性膳食纤维提取工艺研究   总被引:3,自引:0,他引:3  
【目的】探讨酸法与酶法提取葡萄皮渣可溶性膳食纤维的最佳工艺组合,并比较8种酿酒葡萄皮渣中可溶性膳食纤维含量的差异。【方法】(1)用HCl提取葡萄皮渣中的可溶性膳食纤维,以HCl浓度、提取温度、提取时间、料液比4因素设计四因素三水平正交试验,确定酸法提取葡萄皮渣可溶性膳食纤维的最佳工艺条件;(2)以纤维素酶液提取葡萄皮渣中的可溶性膳食纤维,设计四因素三水平正交试验(4因素包括纤维素酶用量、提取温度、提取时间、料液比),确定酶法提取葡萄皮渣中可溶性膳食纤维的最佳工艺条件;(3)采用酸法和酶法获得的最佳工艺条件,比较8种酿酒葡萄皮渣中可溶性膳食纤维的含量。【结果】(1)酸法提取葡萄皮渣可溶性膳食纤维的最佳工艺组合为:HCl浓度0.389mol/L,提取温度75℃,提取时间75min,料液比1∶20;纤维素酶液提取葡萄皮渣可溶性膳食纤维的最佳工艺组合为:纤维素酶用量2.0%,提取温度55℃,提取时间210min,料液比1∶20。(2)在最佳工艺条件下,酸法提取8种酿酒葡萄皮渣中可溶性膳食纤维含量占葡萄皮渣干质量的27%~45%;纤维素酶液提取8种酿酒葡萄皮渣中可溶性膳食纤维含量占葡萄皮渣干质量的24%~42%。佳美葡萄所得的SDF含量最高,分别为455.2和421.0mg/g,其次为霞多丽(438.6和401.8mg/g),而西拉最低,分别为277.2和242.8mg/g。【结论】HCl与纤维素酶液提取葡萄皮渣中可溶性膳食纤维是可行的,且HCl提取的可溶性膳食纤维的产量普遍高于纤维素酶液,但差异不显著。  相似文献   

2.
以经超微粉碎后废弃葛渣作为原料,采用纤维素酶酶解的方法,使葛渣不溶性膳食纤维(IDF)部分转变为可溶性膳食纤维(SDF)。以SDF的得率为考察指标,通过单因素试验和正交试验对影响SDF得率的指标进行优化。结果表明,当料液比1∶16(g∶m L)、酶用量1.2 g/L、提取温度70℃、溶液p H 3.8时,SDF的得率最高,可达到15.6%。  相似文献   

3.
为研究过氧化氢对葛渣膳食纤维的改性作用,以葛根加工淀粉后的残渣为原料,采用单因素与正交试验,以可溶性膳食纤维得率以及不溶性膳食纤维膨胀力为指标,得出了过氧化氢改性制备葛渣膳食纤维的最佳工艺条件,即H_2O_2体积分数0.3%,pH为12,温度为90℃,时间为75 min,得到可溶性膳食纤维得率最高为52.16%,不溶性膳食纤维膨胀力为7.01 m L/g。  相似文献   

4.
以蓝莓果渣为原料,开展双酶法提取非水溶性膳食纤维及其性质研究,采用双酶法提取的非水溶性膳食纤维,通过单因素试验和正交试验对提取条件进行优化,确定最优提取条件为碱性蛋白酶浓度0.4%、碱性蛋白酶酶解p H值为8、α-淀粉酶浓度0.5%、α-淀粉酶酶解pH值为6;持水力为25.86±0.54 g/g,持油力为5.21±0.28 g/g,膨胀力为9.38±0.47 mL/g。  相似文献   

5.
过氧化氢改性苹果渣膳食纤维的研究   总被引:1,自引:1,他引:0  
【目的】研究过氧化氢对苹果渣膳食纤维的改性作用,为提高苹果渣可溶性膳食纤维含量、改善苹果渣理化性质提供一种简单高效、成本低廉的方法。【方法】采用不同pH和浓度的过氧化氢溶液处理果汁厂苹果渣,经醇沉、干燥、粉碎后,制得过氧化氢改性苹果渣。研究pH及过氧化氢浓度对改性苹果渣得率、膳食纤维组成及含量、物理性质及结构特性的影响。其中,膳食纤维组成及含量包括总膳食纤维(Total dietary fibre, TDF)含量、不可溶性膳食纤维(Insoluble dietary fibre, IDF)含量、可溶性膳食纤维(Soluble dietary fibre, SDF)含量,物理性质包括改性苹果渣持水力、膨胀力、持油力、堆积密度、颜色,结构特性包括改性苹果渣热稳定性、超微结构,并检测改性苹果渣中过氧化氢残留量。【结果】(1)过氧化氢溶液的pH对苹果渣理化结构性质具有显著影响。过氧化氢溶液浓度相同时,经酸性(pH 3.8)、中性(pH 7)过氧化氢处理的苹果渣,TDF含量、持水力、膨胀力、持油力均有不同程度的提高,而SDF含量、堆积密度较原果渣无显著变化,颜色变暗。经碱性(pH 11.5)过氧化氢处理的苹果渣,SDF含量显著提高,持水力、膨胀力、颜色等理化性质均得到极大改善,堆积密度增加,TDF含量较未处理苹果渣有所提高。热重及超微分析结果表明,酸性、中性过氧化氢处理后苹果渣热稳定性及超微结构与原果渣相比无明显差异,碱性过氧化氢处理后苹果渣热稳定性下降,超微结构变得紧密平滑。(2)过氧化氢溶液浓度对苹果渣理化结构性质也具有显著性影响。在pH为11.5的碱性条件下,使用不含过氧化氢的溶液处理后,苹果渣理化结构性质与经酸性、中性过氧化氢处理的苹果渣相似。随着过氧化氢浓度逐渐升高,苹果渣SDF含量逐渐增加,SDF含量由3.30%增加到19.02%-28.32%,提高476%-758%,膨胀力、颜色逐渐改善,堆积密度增加,持水力先上升后下降,苹果渣得率、TDF、IDF含量逐渐下降,持油力未得到改善。此外,随着过氧化氢浓度升高,苹果渣结构性质也发生变化,苹果渣热稳定性逐渐降低,结构变得更加松碎。(3)过氧化氢残留量检测结果表明,过氧化氢在处理过程中可完全分解除去,改性苹果渣中无残留。【结论】碱性过氧化氢处理可作为一种清洁高效的提高苹果渣SDF含量并改善苹果渣理化性质的改性方法,改性效果与过氧化氢pH及浓度密切相关。  相似文献   

6.
酶法提取薯渣膳食纤维及制品特性研究   总被引:4,自引:0,他引:4  
利用α-淀粉酶、胰蛋白酶和糖化酶对甘薯(Ipomoea batatas(L.)Lam.)渣进行酶解,提取膳食纤维,并对所得膳食纤维产品特性进行了分析。结果表明,黄心甘薯是提取薯渣膳食纤维的理想材料;各种酶的最适用量分别为:α-淀粉酶1.2mL/g,胰蛋白酶0.7mL/g,糖化酶4.0mL/g;糖化酶最佳酶解条件为:酶解温度60℃,时间40min,pH 5.0;膳食纤维产品中总膳食纤维含量为81.43%,其中可溶性膳食纤维含量可达40.31%,甘薯渣膳食纤维膨胀力和持水力分别达到195mL/g和910%。  相似文献   

7.
酶法制备葛渣水不溶性膳食纤维的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以加工淀粉后的葛根残渣(葛渣)为原料,用α 淀粉酶、糖化酶和蛋白酶进行水不溶性膳食纤维的制备,同 时测量膳食纤维的膨胀力.在单因素试验基础上,通过响应面分析得到酶法制备膳食纤维的最佳工艺条件:以5g 葛渣为原料,α 淀粉酶与糖化酶总用量75U,α 淀粉酶与糖化酶用量比例1∶8.5,60℃下酶解90min,中性蛋白 酶75U,45℃下酶解60min,该条件下水不溶性膳食纤维得率为52.33%,膳食纤维膨胀力5.76mL/g.  相似文献   

8.
采用马铃薯渣为试验原料,运用双酶法,将马铃薯渣中水不溶性膳食纤维有效提取,α-淀粉酶与木瓜蛋白酶能够保证马铃薯渣中水不溶性膳食纤维提取率。本文主要介绍了双酶法提取马铃薯渣中水不溶性膳食纤维的工艺要点,希望能够给相关工作人员提供一定的参考与帮助。  相似文献   

9.
香菇柄膳食纤维酶法改性及功能特性研究   总被引:1,自引:0,他引:1  
通过单因素和正交试验,得到香菇柄膳食纤维酶法改性的最佳工艺条件为:香菇柄粉碎度180~250μm,纤维索酶添加量0.9%,酶解时间4.5 h,鹃解温度50℃,pH值4.5,液固比25:1,香菇柄中可溶性膳食纤维(Soluble dietary fibre,SDF)溶出量每100g为10.15 g.在此条件下获得的香菇俩膳食纤维为淡黄色的粉末状,粒度均匀,无特殊性气味,是较理想的膳食纤维.同时研究了香菇柄改性膳食纤维的功能特性,结果表明,其结合水力为5.88g/g,膨胀力为7.521 mL/g,持油力为2.21 g/g,粘度为5.70mPa·S.  相似文献   

10.
酶法提取豆渣中水溶性膳食纤维工艺研究   总被引:1,自引:0,他引:1  
以大豆分离蛋白质时所产生的废豆渣为原料,采用酶法提取豆渣中水溶性膳食纤维,以豆渣水溶性膳食纤维得率为指标,考察纤维素酶添加量、溶液p H、酶解次数、酶解温度和酶解时间5个因素,通过单因素试验与均匀设计,确定了制备水溶性膳食纤维的最佳酶解条件,纤维素酶添加量为原料的2%,p H 4.5,酶解温度为51℃,酶解时间为2.0 h。在最佳条件下,水溶性膳食纤维得率可达11.48%,该结果可为豆渣中制备水溶性膳食纤维酶的选择和应用提供参考。  相似文献   

11.
以莲藕渣为原料,研究超声波辅助酶法提取莲藕渣中的可溶性膳食纤维,并对其持水力、膨胀力等特性进行检测。试验结果表明,最佳工艺参数为料液比1∶20、酶用量0.5%、超声时间50 min、超声温度50℃;该条件下的可溶性膳纤维提取率达到5.2%,产物呈黄褐色,持水力和膨胀率分别为2.28 g·g~(-1)和3.0 m L·g~(-1)。影响莲藕渣可溶性膳食纤维提取率的因素主次顺序为超声温度超声时间酶用量料液比。  相似文献   

12.
苹果渣膳食纤维研究   总被引:3,自引:0,他引:3  
本试验以苹果渣为原料,采用发酵法制取苹果渣膳食纤维.并对发酵法制取苹果渣膳食纤维的工艺条件、制取苹果渣膳食纤维的色泽保护进行了研究,对膳食纤维的组成成分、干燥率及膳食纤维的溶胀性、持水力进行了测试和分析.结果表明采用发酵法制取的膳食纤维其蛋白质、粗纤维、乙醚提取物(主要为黄酮类化合物)的含量高,且其持水力显著高于化学法制取的膳食纤维的持水力,这表明发酵法制取的膳食纤维活性高,有较好的预防和保健功能.通过不同浓度的柠檬酸、抗坏血酸和EDTA混合液护色处理,它们对提高膳食纤维白度有一定效果,但它们的浓度变化对提高苹果渣膳食纤维白度没有显著影响.通过对苹果渣膳食纤维干燥率的测定,可知发酵好的苹果渣中80%以上是水分和挥发物,而苹果渣膳食纤维只占18.70%左右.以上结果为进一步研究苹果渣制取膳食纤维提供了实验依据.  相似文献   

13.
利用苹果皮渣制备膳食纤维的工艺研究   总被引:3,自引:0,他引:3  
以苹果皮渣为原料,进行了酸水解法提取苹果皮渣中的水溶性膳食纤维,酶法和化学法提取水不溶性膳食纤维试验。结果表明,提取水溶性膳食纤维的适宜条件为:水解温度80℃,pH 1.5,水解时间150 min,加水比为12∶1,水溶性膳食纤维的得率为13.54%,成品呈浅黄色。酶法提取水不溶性膳食纤维的最佳工艺条件为:α-淀粉酶的添加量是0.4%,酶解温度为70℃,酶解时间为40 min,木瓜蛋白酶的添加量为0.2%,酶解温度为45℃,酶解时间为40 min,水不溶性膳食纤维的产率高达39.01%,膨胀力为27 mL/g,持水力为13.14 g/g。化学法制得的水不溶性膳食纤维的产率仅为23.30%,膨胀力为18 mL/g,持水力为2.6 g/g。  相似文献   

14.
甘薯渣膳食纤维酶解法提取工艺研究   总被引:1,自引:0,他引:1  
利用α-淀粉酶、胰蛋白酶和糖化酶对甘薯渣进行酶解,提取膳食纤维,并对所得膳食纤维产品进行分析.试验结果表明,黄心甘薯是提取薯渣膳食纤维的理想材料;各种酶的最适用量分别为:α一淀粉酶1.2ml/g,胰蛋白酶0.7 ml/g,糖化酶4.0 ml/g;糖化酶最佳酶解条件为:酶解温度60℃,时间 40 min,pH值5.O;膳食纤维产品中总膳食纤维含量为81.43%,其中可溶性膳食纤维含量可达40.3l%,甘薯渣膳食纤维膨胀力和持水力分别达到195 ml/g和910%.  相似文献   

15.
以光皮木瓜渣为原料,用碱法从光皮木瓜渣中提取可溶性膳食纤维(SDF)。通过研究液料比、碱液浓度、提取温度、提取时间四个单因素对于SDF提取率的影响,设计了L9(34)正交试验,确定了最佳提取工艺。结果表明:光皮木瓜渣中可溶性膳食纤维的最佳提取工艺为:液料比25∶1(mL·g-1),NaOH浓度0.70 g·100mL-1,提取温度65℃,提取时间2.5 h。在此工艺条件下的最佳提取率为28.629%  相似文献   

16.
响应面法优化酶法提取麦麸膳食纤维工艺   总被引:2,自引:0,他引:2  
研究了酶法提取麦麸膳食纤维工艺.通过氨基态氮含量筛选了最适蛋白酶;可溶性糖含量分析了混合酶配比,最适pH和温度.然后以膳食纤维的持水性、得率为响应值,采用响应面法优化酶法提取麦麸膳食纤维的工艺.结果表明:木瓜蛋白酶为该工艺的最适蛋白酶;混合酶中α-淀粉酶与糖化酶质量最佳比值为1∶3,混合酶最适pH值为3.6,最适温度为45℃;响应面法优化工艺参数为蛋白酶用量0.4%,蛋白酶反应时间60 min,混合酶用量0.5%;混合酶反应时间30 min,持水性达到8.87714 g·g-1,得率达到71.6985%.  相似文献   

17.
双酶法提取褐蘑菇膳食纤维的最佳工艺条件研究   总被引:1,自引:0,他引:1  
为了确定从褐蘑菇中提取膳食纤维的工艺参数,采用双酶法提取褐蘑菇膳食纤维,对加酶量、pH值、酶解温度、酶解时间及液料比5个因素进行研究.结果表明:褐蘑菇膳食纤维的最佳提取工艺参数为:加酶量2.1%,酶解温度60℃,酶解时间4.5 h,pH值7.0,料水比1:10,在此条件下褐蘑菇膳食纤维提取率较高,可达41.37%,且提取的膳食纤维理化性质好.  相似文献   

18.
对甘薯[Dioscorea esculenta(Lour.)Burkill]提取淀粉后产生的副产物甘薯渣的营养成分进行了分析,将其应用于高膳食纤维饼干的制作。通过质构仪分析及感官评价,确定了甘薯渣膳食纤维饼干的最佳配方为低筋全麦面粉70 g,湿甘薯渣30 g,鸡蛋15 g,糖30 g,植物油20 g,黄油5 g,泡打粉4 g,全脂奶粉5 g,玉米淀粉5 g;最佳烘烤工艺条件为烘烤温度170℃,烘烤时间6 min。  相似文献   

19.
可溶性膳食纤维是一种非常重要并为国际一致公认的功能性食品基料。以枣渣为原料,采用纤维素酶法提取可溶性膳食纤维,探讨了加酶量、料液比、酶解温度和酶解时间对可溶性膳食纤维得率的影响。通过正交试验确定制备枣渣可溶性膳食纤维的最佳工艺条件为:纤维素酶加酶量为4%,料液比1∶15,酶解温度50℃,酶解时间1.5 h,此条件下枣渣可溶性膳食纤维得率达6.20%。研究结果将为枣渣的综合利用提供参考数据,并能丰富膳食纤维的材料来源。  相似文献   

20.
以杏渣为原料,采用化学法水解淀粉、蛋白质、脂肪,提取杏渣中不溶性膳食纤维。研究表明,碱作用提取的最佳工艺条件为:pH值为12,温度为60℃,时间为80min,固液比为1:15;酸作用提取的最佳工艺条件为:pH值为2.0,时间100min,温度50℃,固液比1:15;不溶性膳食纤维得率为69.25%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号