首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The desorption kinetics of cadmium from natural sediments was investigated. Three sediment samples from Maryland water bodies were artificially contaminated with Cd(II) and subsequently exposed to a wide range of chemical conditions in batch reactors. Dissolved Cd(II) was monitored. The highest desorption rates and extents were observed at low pH and high concentrations of CaCl2 and EDTA (a strong Cd chelator), with reduced rates at higher pH. Nearly all of the desorption occurred within the first 30 minutes of exposure. Adsorption of Cd(II) was greatest, and desorption slowest on the sediments with the lowest sand content. A simple desorption model was developed assuming proton competition with cadmium. This model was fit to experimental data at different pH using a non-linear, least-squares analysis to obtain rate constants.  相似文献   

2.
The adsorption of Cd, Cu, Pb, and Zn from 0.025 M NaClO4 solutions by two ferruginous subsoils, Christiana silty clay loam and Dothan sandy clay, was investigated. Under acidic conditions, selective dissolution and removal of the Fe oxide soil component by dithionite-citrate-bicarbonate (DCB) generally increased heavy metal adsorption by the soils. This effect was attributed to increased electrostatic attraction of cations to the DCB-washed soils as evidenced by substantial reduction in the zero point of charge (ZPC) for the Dothan soil following DCB extraction. Alternately, the DCB extraction stripped Fe and Al species bound to structural exchange sites or eliminated coatings which reduce cation accessibility to such sites. Addition of low levels (10?6 M) of ferric iron suppressed heavy metal adsorption capacity of the DCB-extracted Christiana soil to values comparable to the unmodified whole soil system. While hydrous oxide surfaces represent highly reactive sites for cation binding, Fe oxides can modify both the pH-dependent and structural exchange sites in a manner which hinders heavy metal adsorption. Thus, a soil's Fe-oxide content is unlikely to be a reliable guide to heavy metal adsorption capacity.  相似文献   

3.
砷是农田土壤重金属污染的主要元素之一,在砷污染农田土壤的修复过程中往往忽视纳米颗粒能够使结合态的砷重新释放,导致有效态砷浓度升高,探究土壤中黏土矿物对氧化石墨烯(Graphene Oxide,GO)和五价砷(As(V))在多孔介质中迁移行为的影响,对进一步完善农田土壤砷修复理论以及提高农作物产量、保护人体健康具有重要意义。该研究利用蒙脱石和高岭石改性石英砂,通过砂柱迁移试验系统地研究了GO、As(V)和GO-As(V)在填加0%、10%、30%和50%的蒙脱石和高岭石改性石英砂柱中的迁移行为。研究结果表明,随着高岭石和蒙脱石改性石英砂填加比例的增加,GO和As(V)的迁移能力均呈降低趋势,且GO和As(V)在不同条件下的迁移曲线均存在显著差异(P0.05);GO在50%高岭石和蒙脱石改性石英砂柱中的回收率相对于石英砂柱分别下降了14%和17%,As(V)分别下降了15%和12%;在共迁移试验中,GO和As(V)在石英砂柱中回收率分别上升至99%和100%。分析表明,As(V)在蒙脱石改性石英砂柱中的迁移能力大于高岭石改性石英砂,而GO与之相反;当GO和与As(V)共迁移时,二者在介质中的迁移能力均大于其单独迁移。本研究表明GO、As(V)释放到土壤后,能够加速As(V)的迁移,造成土壤砷污染的扩大化。  相似文献   

4.
赵军  唐骏  党廷辉 《土壤》2022,54(3):610-618
本文探究了人工纳米颗粒(NPs)在饱和多孔介质中的传输规律和影响机制,重点阐明生物膜和土壤矿物对纳米颗粒传输的影响及其机制。结果表明,在干净的石英砂介质中,不同种类和粒径NPs的传输效率具有明显差异,不同种类NPs传输效率表现为ZnO> CeO2>Fe2O3;对于报告粒径在20~100 nm之间的CeO2 NPs,粒径的增加有助于其在多孔介质的传输。溶液离子强度的增大会降低Zn O NPs的传输,而NPs浓度的增大不利于其在饱和多孔介质的传输,传统的DLVO理论能够很好地解释NPs在无涂层饱和多孔介质中的传输。生物膜和土壤矿物均能抑制纳米颗粒在饱和多孔介质的传输,其主要通过对纳米颗粒的吸附和异质聚集作用影响纳米颗粒的传输,非DLVO相互作用以及介质涂层的表面特性对增强纳米颗粒沉积有很大贡献。  相似文献   

5.
Rachel Levy  C.W Francis 《Geoderma》1976,15(5):361-370
Tracer levels of 109Cd were used to study the adsorption and desorption of Cd by synthetic and natural organo—clay complexes. Synthetic organo—clay complexes were made by adsorbing humic acid extracted from soil to various forms of < 2 μm diameter montmorillonite (Na, Ca, Al, and Fe saturated and Ca-montmorillonite coated with Al or Fe hydroxide). Natural organo—clay complexes were fractionated from the clay fraction of a Captina silt loam by density-gradient centrifugation in a large-scale zonal rotor.To evaluate the influence of humic acid on adsorption of Cd, Cd was adsorbed to the various forms of montmorillonite before and after humic acid adsorption. No appreciable difference in Cd adsorption was noted except in the case where montmorillonite was coated with Al or Fe hydroxides. Cadmium was found to be strongly bonded to clays coated with Al or Fe hydroxides; however, Cd adsorption to these clays after humic acid adsorption was considerably less. Data indicated Cd and humic acid adsorption sites on Al or Fe coated clays were either identical or prior adsorption of humic acid simply covered available Cd sites.Cadmium adsorption to clay density fractions showed that greatest adsorption was to fractions containing high quantities of organic matter or sesquioxides. Desorption of Cd with 0.01 M Ca (NO3)2 showed that Cd was adsorbed more tenaciously to the sesquioxides than organo—clay fractions.  相似文献   

6.
Soils of former coking plant sites are frequently contaminated with cyanide, which mainly occurs as the pigment Berlin blue, FeIII4 [FeIICN)6]3, and soluble iron cyanide complexes, Fe(CN)63-/4?. Berlin blue is only slightly soluble under acidic conditions. The cyanide mobility in a strongly acid soil (pH about 3) of such a site was studied by assessing the distribution of cyanides in the soil and sediment and by conducting batch experiments at different pH levels. The soil is based on a disposal layer (0–32 cm) overlying sandy loess (32–145 cm) overlying glaciofluvial sand (145–250 cm) overlying marlstone (250–500 cm). Highest cyanide concentrations were found in the disposal layer (62–2865 mg CN? kg?1), medium concentrations in the sandy loess (16–29 mg CN? kg?1), concentrations of about 100 mg CN? kg?1 in the glaciofluvial sand and lowest concentrations in the marlstone (0.22–0.49 mg CN?1 kg?1). The surfaces of macropores, which occur in the sandy loess and finish in the glaciofluvial sand, are dark-blue dyed and have much higher cyanide concentrations than the surrounding bulk soil. Thus, the accumulation of cyanides in the sand layer may partly be the result of macropore flow. Batch experiments show a strong pH dependence of the solubility of cyanide in the soil as well as of Berlin blue which was found by Mössbauer spectroscopy to be the dominating or sole iron cyanide. The time necessary to transport the cyanides solely as hexacyanoferrate into the undisturbed horizons is estimated to 1000 yr. However, because Berlin blue is known to form colloids, we discuss the possibility of cyanide transport as colloid not requiring dissolution and reprecipitation. We postulate that colloidal Berlin blue transported by macropore flow is responsible for the high mobility of cyanides in this acid soil.  相似文献   

7.
A pot experiment was conducted in a greenhouse to evaluate the effects of different levels of cadmium (Cd) on Cd accumulation and their effects on uptake of micronutrients in Indian mustard [Brassica juncea (L.) Czern.]. Cadmium accumulation in shoots and interactions among other metals [manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn)] were investigated. Ten levels of Cd ranging from 0 to 200 mg kg–1 soil were tested. The crop was grown for 60 days in a loamy sand soil with adequate basal fertilization of nitrogen (N), phosphorus (P), and potassium (K), and dry-matter yield (DMY) was recorded. The plants were analyzed for total Cd and micronutrients, and the soil was analyzed for diethylenetriaminepentaacetic acid (DTPA)–extractable Cd. Experimental results showed that the DTPA-extractable Cd in the soil increased consistently and significantly with increase in rates of Cd application up to 200 mg Cd kg–1 soil. Significant reduction in the DMY of Indian mustard occurred with application of 5 mg Cd kg–1 soil and greater. The content as well as uptake of Cd by Indian mustard increased significantly over the control at all rates of its application. It increased from 5.95 μg pot–1 in the control to 150.6 μg pot–1 at Cd application of 200 mg kg–1 soil. Application of Cd to soil though decreased the content of micronutrients in plants, but significant reduction occurred only for Fe at rates beyond 50 mg Cd kg–1 soil. However, the total removal of Fe, Zn, and Cu registered a significant decline over the control at and above Cd application of 10 mg kg–1 and that of Mn beyond 10 mg kg–1. In loamy sand soil, a DTPA-extractable Cd level of 3.8 mg kg–1 soil and in plant content of 28.0 μg Cd g–1 DMY was found to be the upper threshold levels of Cd for Indian mustard. Considerable residual content in the soil suggests that once the soil is contaminated by Cd it remains available in the soil for decades, and food crops grown on these soils may be a significant source of Cd toxicity to both humans and grazing animals.  相似文献   

8.
The transport of solutes in soils, and its intensification due to preferential flow, plays crucial role when problems related to the groundwater pollution are dealt with. The objective of this study was to examine transport of cadmium (Cd) in response to an extreme rainfall event for three different soils using numerical modeling. The 115mCd2+ concentration profile had been measured in the Bodiky reference site (Danubian Lowland, Slovakia) by the radioactive‐tracer technique and used for the calibration of the dual‐continuum model S1D. The Cd transport during a single rain event was predicted with the S1D model for light, medium‐heavy, and heavy soil in the same region. The Cd transport through the soil profile was simulated by the one‐dimensional dual‐permeability model, which assumes the existence of two pore domains: the soil‐matrix domain and the preferential‐flow domain. The model is based on Richards' equation for water flow and advection‐dispersion equation for solute transport. A modified batch technique enables to distinguish process of adsorption in the matrix domain and the preferential pathways. Modeling with classical single‐permeability approach and dual‐continuum approach without considering the particle‐facilitated transport led to negligible Cd penetration. The rainfall event with extremely high rainfall intensity induced deep penetration of Cd in the medium‐heavy and heavy soil, which may indicate increased vulnerability to shallow groundwater pollution for the respective sites in Danubian Lowland region. The highest Cd leaching was predicted for heavy clay soil, where the preferential particle‐facilitated transport of Cd through the soil profile was significant due to the contrasting properties of the soil‐matrix domain and the preferential‐flow domain. The results of the sensitivity analysis suggested only slight effect of the transfer rate coefficients on simulated Cd leaching.  相似文献   

9.
Increasing the phosphorus (P) saturation of sandy soils may cause an increase in the rate of transport of dissolved P to groundwater. We hypothesize that by increasing sorption of P, soil colloids such as iron (Fe) oxides are also mobilized, because the adsorption of P causes the surface charge to become more negative, which increases the repulsive forces between the colloids and the sand grains, and between the colloids in suspension. Goethite particles adsorbed to fine quartz sand and precipitated goethite coatings on coarse quartz sand were used as model systems to test this hypothesis. Soil samples from a Cambisol Bw horizon and a Gleysol Bg horizon were also investigated. We conducted a series of batch experiments with increasing concentrations of ortho‐P and inositol hexaphosphate (IHP). The adsorption of P and the dispersion of colloids were determined by measuring P, Fe, aluminium and carbon concentrations in supernatants before and after ultracentrifugation. Dispersed colloids were characterized according to their optical density, zeta potential and particle size. The addition of P caused mobilization of goethite and soil colloids when a critical P saturation, corresponding to a zeta potential of about ?20 mV, was exceeded. To induce colloid mobilization in soils, one to two orders of magnitude larger equilibrium concentrations of dissolved P were necessary, compared with those required for the model systems. The adsorption of IHP reduced the zeta potential of colloids more effectively than the adsorption of ortho‐P per mol P. Environmentally significant concentrations of colloidal P (> 0.1 mg P litre?1) were released from soil samples at equilibrium concentrations of dissolved P < 0.1 mg P litre?1. We conclude that the sorption and accumulation of P in sandy subsoils that might occur as a result of excessive fertilization might induce the mobilization of colloids and colloidal P.  相似文献   

10.
In a 2-yr pot experiment the effects of texture and organic matter content on adsorption in soil and uptake in Perennial ryegrass (Lolium perenne) and Winter rape (Brassica napus) of Cd added to the soil were studied. The soils used were a clay, a loamy sand and a sapric peat mixed in different proportions. One mg kg?1 of Cd was added to each soil mixture. The organic matter showed a greater ability than clay to adsorb Cd in an unavailable form and thereby reduce plant uptake. The effect per unit of organic matter added was greatest at low organic matter content. Most of the Cd was adsorbed in a non-exchangeable form indicating the presence of strong organic complexing. The addition of organic matter reduced plant uptake more efficiently in sand than in clay even though the exchangeable Cd did not differ between the two soils. Increasing the clay content in sand from 9 to 63% led to slightly decreased water leachability but did not significantly decrease non-exchangeable Cd. Neither was plant uptake notably affected. The two crops showed a similar reaction to the different treatments. Uptake was correlated with Cd extractable in ammonium acetate at pH 7, but the relationship was different at each sampling occasion. No significant change in adsorption of the added Cd, fixation, was detected during the 2-yr period but seasonal variations in solubility and uptake were noticed.  相似文献   

11.
Selective extraction techniques followed by batch adsorption experiments and statistical analyses were employed to investigate the adsorption behavior of bisphenol A (BPA) onto the natural surface coatings samples (NSCSs) and surficial sediments (SSs) and estimate the relative contribution of components (i.e. Fe oxides, Mn oxides, organic materials and residues) to the total BPA adsorption. The results indicate that nonlinear Langmuir model can describe the adsorption behavior of BPA on the NSCSs and SSs before and after extraction treatments. The removal of Mn oxides from the NSCSs and SSs caused a significant increase in BPA adsorption, which implied that Mn oxides inhibited BPA adsorption onto solid matrix, and Fe oxides played a positive role in BPA adsorption onto the NSCSs and SSs. However, the removal of organic materials (OMs) led to a dramatic decrease in BPA adsorption, suggesting considerable amounts of BPA adsorbed onto OMs in the NSCSs and SSs. This study may provide important insights into the understanding of the transport and ultimate fate of BPA in the aquatic environments.  相似文献   

12.
Adsorption isotherms as regulators controlling heavy metal transport in soils The adsorption and desorption of Pb2+ and Cd2+ from equilibrium solutions with heavy metal contents up to 5000 μg/1 were determined in bulk experiments for soil samples from an acid Braunerde developed in loess loam, taken from the humic surface layer of the mineral soil (0–10 cm) and from the subsoil fairly free from organic matter (30–40 cm). Pb and Cd in solutions were determined by flameless atomic absorption spectroscopy. Pb was more strongly retained in the solid phase than Cd, and higher amounts of heavy metals were retained in the humic surface soil than in the subsoil free of organic matter. In the case of Pb adsorption/desorption showed slight hysteresis in the subsoil. The quantity/intensity (Q/I) relationships found in the experiments could be described by the Freundlich equation. The Q/I-relationships were substituted in the general transport equation. With a simulation model the transport of Pb and Cd through the soil with vertical water flow was calculated by the use of the Continuous Simulation Programming Language (CSMP). Two different cases were considered: a small, continuous increase in the heavy metal input of the soil surface, and a high, instantaneous peak input. Simulation of the transport and distribution mechanisms induced by the inputs over a period of 10 years showed strong retention of lead in the surface layer and consequently a strong damping of the concentration peak in the soil solution. In contrast, cadmium is distributed more quickly over the whole profile, yet the concentration peak in the solution phase is, too, damped considerably in the surface layer by temporary retention in the solid phase. The results of the simulation runs are in accordance with the situation in real soils where often strong accumulation of Pb is found in the top soil, while Cd is accumulated only slightly.  相似文献   

13.
ABSTRACT

The present study was conducted to evaluate the effects of different concentrations of cadmium (Cd) and zinc (Zn), singly and in combination, on uptake and bioaccumulation of Cd and Zn in Daucus carota L. (carrot) grown under natural field conditions. Carrot plants were treated with two Cd concentrations (10 and 100 μg mL?1), two Zn concentrations (100 and 300 μg mL?1), and two combined concentrations of Cd and Zn (10 + 100 and 100 + 300 μg mL?1) 15 d after seed germination. Treatments were repeated at 10 d intervals up to 90 d of plant age. A control was also kept without a Cd or Zn treatment. Uptake, total accumulation rate (TAR), bioconcentration factor (BCF), primary transport index (PTI), secondary transport index (STI), and accumulation of Cd and Zn in root, stem, and leaf were quantified. The results show that uptake, TAR, and accumulation of Cd and Zn are concentration-dependent phenomena. Highest accumulation of Cd and Zn was found in the root, followed by the stem and then leaves. The results also showed that bioaccumulation of Cd in root, stem, and leaf was greater at the low metal-application rates of Cd and Zn in combination than at the higher rate. This study further showed that interactions of Zn and Cd are dependent on the concentrations of those metals in the soil.  相似文献   

14.
控/缓释肥在不同介质中的氮素释放特性及其肥效评价   总被引:45,自引:4,他引:45  
以水、土壤、砂子、土壤+砂子和土壤+沸石为介质,研究了5种控/缓释肥的溶(淋)出特征。结果表明,由于性质不同,同一肥料在不同介质中的溶(淋)出率和溶(淋)出模式有很大差异。水中溶出率虽可以快速比较不同控/缓释肥的溶出速率,但用以估测肥料在田间的实际肥效,则产生较大的误差。客观、合理地评价控/缓释肥,应该在肥料 土壤 作物系统中考虑。相对而言,考虑土壤因子的土柱淋出率法较水中溶出率法更为接近田间实际。  相似文献   

15.
This study determined isotopic fractionation of nitrate-nitrogen during denitrification in riparian aquifer sediments by sequential-column experiments at two different water flow rates. The purpose was to discuss the relationships of nitrogen isotopic enrichment factor of denitrification, denitrification rate, and infiltrating condition in sediment. Sandy sediment and groundwater were collected from floodplain in the middle reach of the Tama River where nitrogen isotopic enrichment factor for denitrification had been measured in a result of previous field observation. The denitrification rates and the isotopic enrichment factors of nitrate-nitrogen were estimated at 2.1 mgN dry-kg?1 day?1 and ?32.9‰ during the low water flow condition, and at 3.5 mgN dry-kg?1 day?1 and ?34.1‰ during the high water flow condition. The calculated water flow rates of the present column experiments were 300–400 times higher than that of the field observation. Because of the fast flow rate, nitrate was expected to continuously pass though active denitrifying sites in the small pore spaces of sediment, and nitrate supply to denitrifers by infiltration flow transport greatly exceeded the supply by diffusion. The observed denitrification rates was proportional to Peclet number as the ratio of solute nitrate transport to the diffusion, and apparent nitrogen isotopic enrichment factors during denitrification of our column experiments were lower than those obtained from the field observation. This study showed that denitrification rate and apparent nitrogen isotopic enrichment factor of denitrification in sediment depended on Peclet number.  相似文献   

16.
Column experiments have been extensively used in transport studies of major cations but few investigations are available on migration through soils of strongly retained species that are environmentally relevant (like heavy metals). By presenting some selected experiments (lead and proton step-breakthrough tests in different conditions), this study shows that the soil-column technique is also applicable in the case of species which exhibit very large retention factors. The use of very small soil columns (about 0.4 mL of pore volumes) combined with relatively high flow rates (0.1–0.3 mL min-1 ) allows to observe the entire breakthrough curve (adsorption and desorption front up to 5000 pore volumes) in reasonable experimental time, in reproducible conditions and without experimental drawbacks. In the adopted experimental conditions no kinetic effects, related to diffuse transport and sorption reaction were recognized; moreover, Peclet number was higher than 60. Consequently, it was possible to calculate the equilibrium isotherms from the diffuse fronts of the breakthrough. Knowledge that can be derived, concerning the reversibility of the adsorption process, the influence of complexation on the adsorption, the kinetics of complex formation, and the effect of dissolution on proton transport, is also discussed.  相似文献   

17.
The dissolution of organic matter in soil is of fundamental relevance for the fate of organic contaminants associated with organic matter and for the microbial availability of organic matter. In this study, the kinetics of soil organic matter (SOM) dissolution from a sandy forest soil was investigated under different electrolyte conditions, using a continuous extraction method. The mathematical analysis of the concentration signal obtained from extractions with constant flow rates and after sudden flow rate changes showed that the dissolution of SOM is diffusion limited. The dissolution rate was lower during extraction with 0.01 M CaCl2. The reaction on sudden flow rate changes was slower when extracting with 0.01 M CaCl2 as compared to water, and the mechanism was different. These observations were explained by a gel phase developing in the swelling SOM. The lower dissolution rates found for extractions with 0.01 M CaCl2 could indicate a more stable gel structure in the presence Ca2+. The development of the gel phase may be influenced by mechanical strain due to increased flow rates.  相似文献   

18.
Column laboratory experiments were employed to assess the leaching behaviour of pyroclastic glassy ash deposits collected in the central Main Ethiopian Rift, where surface and groundwater resources are affected by fluoride (F?) pollution, which is the cause of an endemic disease (fluorosis) in the local community. To elucidate the source of F? and simulate the water–rock interaction processes, as well as quantify its distribution within different grain sizes, the pyroclastic ash was analysed by XRF, XRD and SEM and separated into coarse and fine fractions. Three columns were filled with raw (unsieved), coarse (63 μm–2 mm) and fine (<63 μm) fraction, respectively, and flushed with synthetic rain water in saturated conditions. Very fast F? leaching was observed in the fine fraction column at the start of the experiment, while in the other two columns, F? was slowly released; in addition, a strong accumulation of F? was found in the fine fraction. The effect was more pronounced in the fine fraction column due to the available effective adsorbing surface area. Subsequent to elution experiments, the columns were characterised via moment analysis of tracer test. Finally, flow and transport modelling (MODFLOW-2000 and MT3DMS) was employed to compute the amount of F? adsorbed onto the solid phase, comparing the calculated conservative transport of F? and the observed concentrations. The results of this study suggest that fluoride is a fundamental constituent of the glass phase (about 0.3 wt.%) and that it is released during the incongruent dissolution of glassy particles. Dissolution of coatings on glass particles could provide an additional contribution to the geochemistry of the interacting fluids. These processes are more effective in the fine fraction due to a much higher reactive (specific) surface area.  相似文献   

19.
In this study, N-(2-aminoethyl)salicylaldimine bonded silica gel was synthesized and characterized using Fourier transform infrared and C, H, N elemental analysis. The analytical conditions such as the pH and volume of the solution, flow rates of the sample solution and the type of eluent to achieve the simultaneous preconcentration of Cu(II), Ni(II), Cd(II) and Zn(II) were optimised using the modified silica gel loaded column using a solid phase extraction technique. Samples (50?C500?ml) containing metal ions at optimal pH of 8 were passed through the column filled with the modified silica gel at 7?ml min?1 and then elution was achieved using 5?ml of 0.25?M HCl. The concentrations of metal ions in the eluates were determined using flame atomic absorption spectrometry (FAAS). The effects of matrix ions were also studied and none of the major ions interfered to the proposed method. The accuracy of the developed method was validated using a certified reference water sample (Ontario Lake water, NWTMDA-54.4). The method was successfully applied to the analysis of various natural water samples. The adsorption capacities of the modified silica gel for Cu(II), Ni(II), Cd(II) and Zn(II) ions were determined and found to be 0.332, 0.261, 0.130 and 0.375?mmol g?1, respectively.  相似文献   

20.
Cu/Pb/Zn/Cd在石英砂中的迁移实验及模拟   总被引:4,自引:0,他引:4  
孙军娜  徐绍辉 《土壤学报》2010,47(6):1101-1109
通过稳定流混合置换实验,研究了孔隙水流速和pH变化对Cu/Pb/Zn/Cd在石英砂中迁移行为的影响,获得了示踪剂Br-和Cu/Pb/Zn/Cd的穿透曲线(BTCs);并通过室内批量平衡实验获得吸附系数,进而计算出阻滞因子Rd。基于这些实验结果,借助CXTFIT2.1软件,用平衡CDE模型拟合了Br-的BTCs,得到了弥散系数D;在此基础上应用CDE非平衡模型拟合Cu/Pb/Zn/Cd在不同流速和pH条件下的BTCs,并预测了平行实验和不同埋深处Cu/Pb/Zn/Cd浓度的动态变化。结果表明,Cu/Pb/Zn/Cd的迁移能力随流速的增大而增强,而随pH的增大而降低;化学非平衡的两点模型能较好地模拟本文实验条件下Cu/Pb/Zn/Cd的迁移过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号