首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Azam  F.  Ashraf  M.  Lodhi  Asma  Sajjad  M. I. 《Biology and Fertility of Soils》1990,10(2):134-138
Summary A pot experiment was conducted to study the N availability to wheat and the loss of 15N-labelled fertilizer N as affected by the rate of rice-straw applied. The availability of soil N was also studied. The straw was incorporated in the soil 2 or 4 weeks before a sowing of wheat and allowed to decompose at a moisture content of 60% or 200% of the water-holding capacity. The wheat plants were harvested at maturity and the roots, straw, and grains were analysed for total N and 15N. The soil was analysed for total N and 15N after the harvest to determine the recovery of fertilizer N in the soil-plant system and assess its loss. The dry matter and N yields of wheat were significantly retarded in the soil amended with rice straw. The availability of soil N to wheat was significantly reduced due to the straw application, particularly at high moisture levels during pre-incubation, and was assumed to cause a reduction in the dry matter and N yields of wheat. A significant correlation (r=0.89) was observed between the uptake of soil N and the dry matter yield of wheat with different treatments. In unamended soil 31.44% of the fertilizer N was taken up by the wheat plants while 41.08% of fertilizer N was lost. The plant recovery of fertilizer N from the amended soil averaged 30.78% and the losses averaged 45.55%  相似文献   

2.
Summary A pot experiment was conducted to compare the yields from five commercially cultivated varieties (Bas-198, Bas-370, Bas-Pak, Bas-385, and IR-6) of rice (Oryza sativa L.) and to establish the relative significance of soil N and fertilizer N (15N-labelled ammonium sulphate) in affecting crop performance. Another aim was to study the interaction of fertilizer N and soil N as influenced by different rice varieties. Among the five varieties tested, Bas-Pak gave the maximum dry matter and N yield. The N-use efficiency (percentage of applied N taken up by the plants) of different varieties ranged between 33.7 and 43.7%, Bas-Pak being the most efficient. Significant losses of fertilizer N occurred from the soil-plant system. The maximum N loss (52.1% of applied N) was observed with IR-6 and the minimum loss (39.2%) with Bas-Pak. A substantial increase in the uptake of soil N following the application of fertilizer and an interaction between the two N sources were observed with all varieties except Bas-385. The interaction was attributed to greater root proliferation following the application of fertilizer. It was concluded that a varietey with greater potential to use soil N is likely to give a better yield and that, of the two N sources, the availability of soil N was more important in determining the yield performance of different varieties of rice.  相似文献   

3.
Abstract

Excessive use of nitrogen (N) fertilizers in wheat fields has led to elevated NO3-N concentrations in groundwater and reduced N use efficiency. Three-year field and 15N tracing experiments were conducted to investigate the effects of N application rates on N uptake from basal and topdressing 15N, N use efficiency, and grain yield in winter wheat plants; and determine the dynamics of N derived from both basal and topdressing 15N in soil in high-yielding fields. The results showed that 69.5–84.5% of N accumulated in wheat plants derived from soil, while 6.0–12.5%and 9.2–18.1% derived from basal 15N and top 15N fertilizer, respectively. The basal N fertilizer recovery averaged 33.9% in plants, residual averaged 59.2% in 0–200 cm depth soil; the topdressing N fertilizer recovery averaged 50.5% in plants, residual averaged 48.2% in 0–200 cm soil. More top 15N was accumulated in plants and more remained in 0–100 cm soil rather than in 100–200 cm soil at maturity, compared with the basal 15N. However, during the period from pre-sowing to pre-wintering, the soil nitrate moved down to deeper layers, and most accumulated in the layers below 140 cm. With an increase of N fertilizer rate, the proportion of the N derived from soil in plants decreased, but that derived from basal and topdressing fertilizer increased; the proportion of basal and top 15N recovery in plants decreased, and that of residual in soil increased. A moderate application rate of 96–168 kg N ha?1 led to increases in nitrate content in 0–60 cm soil layer, N uptake amount, grain yield and apparent recovery fraction of applied fertilizer N in wheat. Applying above 240 kg N ha?1 promoted the downward movement of basal and top 15N and soil nitrate, but had no significant effect on N uptake amount; the excessive N application also obviously decreased the grain yield, N uptake efficiency, apparent recovery fraction of applied fertilizer N, physiological efficiency and internal N use efficiency. It is suggested that the appropriate application rate of nitrogen on a high-yielding wheat field was 96–168 kg N ha?1.  相似文献   

4.
The effects of 15N-labeled ammonium nitrate on yield, uptake of nitrogen (N) by sorghum (Sorghum sudanense, Piper), and on N remaining in the soil were studied in a field experiment with different N rates (0, 50, and 100 kg N ha?1) and with two irrigation water qualities, well water (WW) and treated wastewater (TWW). Treated wastewater irrigation increased dry matter and N yield compared to WW. At equal N rates, recovery of 15N-labeled fertilizer by plants increased with TWW irrigation compared to WW (36% versus 23%). Neither fertilizer rate nor water quality had an effect on the 15N-labeled fertilizer remaining in the 0- to 60-cm layer of soil. On average 41% in the TWW treatment (49–33%) and 38% in WW treatment was mostly present in the surface 20-cm layer. Losses of 15N-labeled fertilizer were unaffected by irrigation water quality (35%) and increased with N application rate in TWW (4% versus 31%).  相似文献   

5.
Summary Three15N isotopic dilution methods (15N natural abundance, labelled mineral fertilizer, and organic matter) were used to determine the proportion of N derived from different available sources in seedlines ofAlnus glutinosa andPopulus nigra planted together or in monoculture under natural climatic conditions. The proportion of N derived from N2 fixation in associated alders was appreciably higher than that determined in monoculture. The reduction of soil N uptake by associated alders contributed to an increase in total plant N and biomass production in associated poplars. When slightly N-labelled organic matter (alder leaf litter) was incorporated into the soil, 10–15% of its initial N content was recovered in poplar tissues, showing that this N source makes an important contribution to the N yield of associated non-fixing plants. There were no significant differences between the results obtained by15N natural abundance and those obtained by labelled fertilizer methods, suggesting that the 15N method could be used to evaluate annual N budgets in natural ecosystems.  相似文献   

6.
The effects of 15N-labelled ammonium nitrate, urea and ammonium sulphate on yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L. cv. Mexi-Pak-65) were studied in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 64.0–74.8%, 61.5–64.7% and 61.7–63.4% of the N from ammonium nitrate, urea and ammonium sulphate, respectively. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea and ammonium sulphate. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the three N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied with the method of application of fertilizer N. Ammonium nitrate, urea and ammonium sulphate gave 59.3%, 42.8% and 26.3% more added N interaction, respectively, when applied by the broadcast/worked-in method than with band placement. A highly significant correlation between soil N and grain yield, dry matter and added N interaction showed that soil N was more important than fertilizer N in wheat production. A values were not significantly correlated with added N interaction (r=0.719). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N stood proxy for unlabelled soil N.  相似文献   

7.
Summary The effect of salts on the balance of fertilizer N applied as 15N-labelled ammonium sulphate and its interaction with native soil N was studied in a pot experiment using rice (Oryza sativa L.) as a test crop. The rice crop used 26%–40% of the applied N, the level of applied N and salts showing no significant bearing on the uptake of fertilizer N. Losses of fertilizer N ranged between 54% and 68% and only 5%–8% of the N was immobilized in soil organic matter. Neither the salts nor the rate of N application had any significant effect on fertilizer N immobilization. The effective use of fertilizer N (fertilizer N in grain/fertilizer N in whole plant) was, however, better in the non-saline soil. The uptake of unlabelled N (N mineralized from soil organic matter and that originating from biological N2 fixation in thes rhizosphere) was inhibited in the presence of the salts. However, in fertilized soil, the uptake of unlabelled N was significantly enhanced, leading to increased A values [(1-% Ndff/% Ndff)x N fertilizer applied, where Ndff is N derived from fertilizer], an index of interaction with the added N. This added N interaction increased with increasing levels of added N. Since the extra unlabelled N taken up by fertilized plants was greater than the fertilizer N immobilized, and the root biomass increased with increasing levels of added N, a greater part of the added N interaction was considered to be real, any contribution by an apparent N interaction (pool substitution or isotopic displacement) to the total calculated N interaction being fairly small. Under saline conditions, for the same level of fertilizer N addition, the added N interaction was lower, and this was attributed to a lower level of microbial activity, including mineralization of native soil N, rootdriven immobilization of applied N, and N2 fixation.  相似文献   

8.
Abstract

A field study with maize (Zea mays L.) was conducted in the 1988/89 cropping season to investigate the fate of 15NO3-N-labelled NH4 15NO3 applied at 40, 80 and 120 kg N ha?1 (unlabelled N applied at 0, 80, 160 and 240 N ha?1) with and without lime. The investigations were conducted in northern Zambia at Misamfu Regional Research Centre, Kasama on a Misamfu red sandy loam soil. The experimental design was a split plot arrangement with four replications with main plots receiving 0 and 2 Mg ha?1 dolomitic limestone, while subplots received fertilizer N at various rates. Significant (p < 0.001) grain and DM yield responses to applied N up to 160 kg ha?1 were observed. At higher rates little or no crop responses were observed and fertilizer use efficiency declined. Partitioning of amounts of total N and 15N in plants was in the order of seed = tassel > leaf> cob = earleaf> stem. Fertilizer N rates showed a highly significant (p < 0.001) effect on plant uptake of labelled N. Lime and its interaction with N rates had no effect on all measured parameters. Leaching of NO3-N fertilizer to lower soil depths was in proportion to the rate of N applied, with highly significant (p < 0.001) differences among soil depths. Although higher concentrations of fertilizer-15N were recovered in the 0–20 cm depth the recovered portion at lower soil depths was still significant. Total recovery of labelled N by plant and by soil after crop harvest averaged 75, 55 and 54% of originally applied fertilizer-15N at 40, 80 and 120 kg N ha?1, respectively. Corresponding unaccounted for 15N was 25, 45 and 46%. The most probable loss mechanism could have been by leaching to depths greater than 60 cm, gaseous losses to the atmosphere and root assimilation.  相似文献   

9.
Summary We used 15N technology to investigate N2 fixation by Sesbania speciosa and Sesbania rostrata and its transfer to a lowland rice crop after incorporation of the Sesbania spp. into soil as green manure. During the first 50 days after establishment in November–December 1989, S. speciosa and S. rostrata produced 1126 and 923 kg dry matter ha-1 respectively. They gathered 31 and 23 kg N ha-1 respectively, of which 62%±5% and 55%±3% respectively, came from N2 fixation. Both these species produced a greater biomass during September–October 1989, with S. rostrata producing more than S. speciosa. These results reflected differential responses by the plants to different day lengths at different times of the year. Furthermore, the dry matter yield and %N of 15N-labelled S. speciosa were smaller than those of the unlabelled plants, possibly due to inhibition of N2 fixation in root nodules by the chemical N fertilizers added during labelling. These differences were not so pronounced in the stem-nodulated S. rostrata. The increased grain yield of rice fertilized with N in the form of chemical fertilizer or green manure was a result of an increased number of panicles per hill. The rice crop manured with S. speciosa produced a lower grain yield, with a lower grain weight than that manured with S. rostrata. This was due to a low uptake of soil N by rice manured with S. speciosa. Recovery of N from the green manure in rice straw with S. speciosa was significantly higher than from rice manured with S. rostrata, because of the higher applied N uptake by rice manured with the former.  相似文献   

10.
Summary Using 15N, the fate of N applied to wetland rice either as Azolla or urea was studied in a field at the International Rice Research Institute (IRRI). In bigger plots nearby, yield response and N uptake were also determined with unlabelled N sources. Azolla microphylla was labelled by repeated application of labelled ammonium sulfate. Labelled and unlabelled N were used alternately in applications of Azolla or urea 0 and 42 days after transplanting, in order to determine the effect of the time of application on the availability of Azolla N. The quantities of Azolla N incorporated were 23% more than those of urea N (30 kg N ha–1) in the isotope plots or 7% less in the yield response plots. Grain yield and total N uptake by the rice plants in the yield-response plots were higher in the urea-treated plots than in the Azolla-treated plots, but the physiological effect of Azolla N (grain yield response/increase in N uptake) was higher than that of rea. The labelled N balance was studied after the first and second crops of rice. Losses of labelled N after the first crop were higher from urea (30%–32%) than from Azolla (0%–11 %). Losses in N applied as a side dressing 42 days after transplanting were less than those of N applied basally. No further losses of 15N occurred after the first crop. The recovery of Azolla 15N in the first crop of rice was 39% from the basal application and 63% from the side dressing. The recovery of urea 15N was 27% from the basal application and 48% from the side dressing. Recoveries of residual N from both Azolla and urea during the second rice crop were similar. Laboratory incubation of the Azolla used and the changes in labelled exchangeable N in the soil showed that at least 65% of Azolla N (4.7% N content) was mineralized within 10 days.  相似文献   

11.
Summary The proportion of N derived from N2 fixation for 99 strains ofAzolla spp. (comprising all known species) in the presence of ammonium (40 mg/1) was assessed using a15N-dilution technique. The percentage of N derived from air varied from 29.5% to 79.9%. Although the N concentration ofAzolla spp. was not correlated with fertilizer N, it correlated fairly well with N2 fixation. Regression analysis suggests that the N yield ofAzolla spp. is more dependent on N2 fixation than on ammonium assimilation. The high correlation between N yield and isotopically determined, fixed N2 indicates that the N yield could be used as a parameter in the selection ofAzolla spp. strains that are capable of maintaining high N2 fixation in the presence of a high level of ammonium.  相似文献   

12.
Summary A pot experiment was conducted to study the availability of soil and fertilizer N to wetland rice as influenced by wheat straw amendment (organic amendment) and to establish the relative significance of the two sources in affecting crop yield. Straw was incorporated in soil at 0.1, 0.2, and 0.3% before transplanting rice. Inorganic N as 15N-ammonium sulphate was applied at 30, 60, and 90 g g-1 soil either alone or together with wheat straw in different combinations. After harvesting the rice, the plant and soil samples were analyzed for total N and 15N. Straw incorporation significantly decreased the dry matter and N yield of rice, the decrease being greater with higher rates of straw. The reduction in crop yield following the straw incorporation was attributed mainly to a decrease in the uptake of soil N rather than fertilizer N. The harmful effects of organic matter amendment were mitigated by higher levels of mineral N addition. The uptake of applied N increased and its losses decreased due to the straw incorporation. Mineral N applied alone or together with organic amendment substantially increased the uptake of unlabelled soil N. The increase was attributed to a real added N interaction.  相似文献   

13.
Pot experiments were conducted with two soils, from Rottenhaus and Seibersdorf in Austria, to ascertain whether the rate of fertilizer N application and the test crop would influence the amount of N available in the soil as assessed by the A-value method. 15N-labelled fertilizer was applied at rates of 10, 25, 40, 60, and 100 mg N kg-1 soil, corresponding approximately to 20, 50, 80, 120 and 200 kg N ha-1 respectively, and two crop species, barley (Hordeum vulgareL.) and non-nodulating soybean (Glycine max L.) were used to determine the soil A N value under the various fertilizer regimes. The results showed that the Rottenhaus soil had a higher A N value than the Seibersdorf soil, suggesting that the former was more fertile than the latter. The A N values of both soils were significantly affected by the level of N application. When grown in the same soil, the two test crops showed significantly different fertilizer use efficiency and per cent N derived from fertilizer when the rate of N application exceeded 20 kg ha-1. Thus, the A N value as determined by the two test crops differed significantly for the same soil when the rate of N application was greater than 20 kg/ha. The difference was greater when the soil fertility level was high. The dependence of the A N value on the level of N application and the species of crop seriously compromises the suitability of this method for determining plant-associated N2 fixation. Hence, considerable caution is required when using this method to estimate plant-associated N2 fixation.  相似文献   

14.
We studied the effects of 15N-labelled ammonium nitrate and urea on the yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L., cv. Mexi-Pak-65) in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 33.6–51.5 and 30.5–40.9% of the N from ammonium nitrate and urea, respectively. Splitting the fertilizer N application had a significant effect on the uptake of fertilizer N by the wheat. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the two N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied according to the fertilizer N split; six split applications gave the highest added N interaction compared to a single application or two split applications for both fertilizers. Ammonium nitrate gave 90.5, 33.5, and 48.5% more added N interaction than urea with one, two, and six split N applications. A values were not significantly correlated with the added N interaction (r=0.557). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N replaced unlabelled soil N.  相似文献   

15.
Summary We studied the effect of three successive cuttings on N uptake and fixation and N distribution in Leucaena leucocephala. Two isolines, uninoculated or inoculated with three different Rhizobium strains, were grown for 36 weeks and cut every 12 weeks. The soil was labelled with 50 ppm KNO3 enriched with 10 atom % 15N excess soon after the first cutting. Except for the atom % 15N excess in branches of K28 at the second cutting, both the L. leucocephala isolines showed similar patterns of total N, fixed N2, and N from fertilizer distribution in different parts of the plant at each cutting. The Rhizobium strain did not influence the partitioning of 15N among the different plant parts. Significant differences in 15N enrichment occurred in different parts. Live nodules of both isolines showed the lowest atom % 15N excess values (0.087), followed by leaves (0.492), branches (0.552), stems (0.591), and roots (0.857). The roots contained about 60% of the total plant N and about 70% of the total N derived from fertilizer over the successive cuttings. The total N2 fixed in the roots was about 60% of that fixed in the whole plant, while the shoots contained only 20% of the fixed N2. We conclude that N reserves in roots and nodules constitute another N source that must be taken into account when estimating fixed N2 or the N balance after pruning or cutting plants. 15N enrichment declined up to about fivefold in the reference and the N2-fixing plants over 24 weeks following the 15N application. The proportion and the amounts of N derived from fertilizer decreased, while the amount derived from N2 fixation increased with time although its proportion remained constant.  相似文献   

16.
Summary It is commonly assumed that a large fraction of fertilizer N applied to a rice (Oryza sativa L.) field is lost from the soil-water-plant system as a result of denitrification. Direct evidence to support this view, however, is limited. The few direct field, denitrification gas measurements that have been made indicate less N loss than that determined by 15N balance after the growing season. One explanation for this discrepancy is that the N2 produced during denitrification in a flooded soil remains trapped in the soil system and does not evolve to the atmosphere until the soil dries or is otherwise disturbed. It seems likely, however, that N2 produced in the soil uses the rice plants as a conduit to the atmosphere, as does methane. Methane evolution from a rice field has been demonstrated to occur almost exclusively through the rice plants themselves. A field study in Cuttack, India, and a greenhouse study in Fort Collins, Colorado, were conducted to determine the influence of rice plants on the transport of N2 and N2O from the soil to the atmosphere. In these studies, plots were fertilized with 75 or 99 atom % 15N-urea and 15N techniques were used to monitor the daily evolution of N2 and N2O. At weekly intervals the amount of N2+N2O trapped in the flooded soil and the total-N and fertilized-N content of the soil and plants were measured in the greenhouse plots. Direct measurement of N2+N2O emission from field and greenhouse plots indicated that the young rice plant facilitates the efflux of N2 and N2O from the soil to the atmosphere. Little N gas was trapped in the rice-planted soils while large quantities were trapped in the unplanted soils. N losses due to denitrification accounted for only up to 10% of the loss of added N in planted soils in the field or greenhouse. The major losses of fertilizer N from both the field and greenhouse soils appear to have been the result of NH3 volatilization.  相似文献   

17.
A long-term experiment was carried out on a Vertisol from 1986 to 1992 to examine the combined effects of NPK fertilizers on yield using sorghum (Sorghum bicolor L. Moench cv. CSH 5) and short-duration pigeonpea (Cajanus cajan L. Millsp. cv. ICPL 87). The fertilizer treatments were as follows: 0 (no fertilization), N (150 kg N ha-1 ), P (65.5 kg P2O5 ha-1), K (124.5 kg K2O ha-1), and all possible combinations (NP, NK, PK, and NPK). In this study we continued this experiment during the period 1993 to 1994 and analyzed the crop yield response to fertilizers and the N balance. The amount of N derived from the atmosphere and fertilizer was estimated by the 15N natural abundance method and l5N isotope dilution method, respectively. A combined application of Nand P fertilizers gave the highest grain yield for the two crops under the 8th and 9th continuous croppings, unlike the application of K fertilizer. The values of total N for the two crops were significantly higher in the NP and NPK plots. These crops took up N mainly from soil. There was a significant positive relationship between the uptake of Ndff and Ndfs by each crop. Pigeonpea or sorghum took up more N from the soil in the N fertilizer plots than in the plots without N, suggesting that soil N fertility was enhanced and the amount of N supplied from soil increased in the plots with consecutive application of N fertilizer for 7 y. Even pigeonpea, which fixes atmospheric N inherently, needed N fertilizer to achieve high grain yield, suggesting that N fixation by the nodules was not always sufficient to meet the N requirements of the crop under these conditions. Although fertilizer N exerted a beneficial effect on plant growth and yield in the two crops, the values of fertilizer N recovery (FNR) by the two crops were considerably low. Therefore, it is suggested that the development of N fertilizer management which could maximize FNR of each crop should be promoted.  相似文献   

18.
Optimal fertilizer nitrogen (N) rates result in economic yield levels and reduced pollution. A soil test for determining optimal fertilizer N rates for wheat has not been developed for Quebec, Canada, or many other parts of the world. Therefore, the objectives were to determine: 1) the relationship among soil nitrate (NO? 3)- N, soil ammonium (NH + 4)- N and N fertilizer on wheat yields; and 2) the soil sampling times and depths most highly correlated with yield response to soil NO? 3-N and NH + 4-N. In a three year research work, wet and dried soil samples of 0- to 30- and 30- to 60-cm depths from 20 wheat fields that received four rates of N fertilizer at seeding and postseeding (plants 15 cm tall) were analyzed for NH + 4-N and NO? 3 -N using a quick-test (N-Trak) and a standard laboratory method. Wheat yield response to N fertilizer was limited, but strong to soil NO? 3-N.  相似文献   

19.
太湖地区不同轮作模式下的稻田氮素平衡研究   总被引:3,自引:0,他引:3  
采用田间微区15N示踪,研究了太湖地区稻田不同轮作模式(紫云英-水稻轮作、休闲-水稻轮作、小麦-水稻轮作)和施氮水平(0、120 kg·hm?2、240 kg·hm?2、300 kg·hm?2)下水稻对氮肥的吸收利用效率及土壤氮素残留特征。结果表明,水稻吸收的氮素来自肥料的比例为20.9%~49.6%,休闲-水稻轮作模式下水稻产量的获得更加依赖无机氮肥的大量投入。当季水稻对肥料氮的利用率为25.0%~41.5%,肥料氮的土壤残留率为13.4%~24.6%,其中90%以上的土壤残留肥料氮集中在0~20 cm土层,在土壤剖面中的残留率随土层深度增加而迅速降低,30~40 cm土层的肥料残留量仅占氮肥施用量的0.2%~0.7%。紫云英?水稻轮作和休闲?水稻轮作模式下氮肥利用率和土壤残留率均在施氮240 kg·hm?2时达到最大值,其氮肥利用率显著高于小麦?水稻轮作55.6%和66.0%。稻季施氮240 kg·hm?2时,小麦-水稻轮作模式下的氮肥利用率、土壤残留率以及总回收率显著最低,损失率显著最大;紫云英?水稻轮作模式下的氮肥损失率最小,分别小于休闲?水稻轮作和小麦-水稻轮作13.9%、39.2%。不同轮作模式下,水稻籽粒产量随施氮量的增加而增加,稻季施氮240 kg·hm?2时,紫云英?水稻轮作下水稻籽粒产量显著高于休闲?水稻轮作和小麦?水稻轮作,小麦?水稻轮作籽粒产量虽略高于休闲?水稻轮作,但没有达到显著水平。本研究认为,选择紫云英还田配施氮肥240 kg·hm?2,既可以保证水稻氮肥利用率而获得高产,又能减少氮肥损失而带来的环境风险,是一种值得在当地大力推广的耕作制度。  相似文献   

20.
Summary The common bean (Phaseolus vulgaris L.) is generally regarded as a poor N2 fixer. This study assessed the sources of N (fertilizer, soil, and fixed N), N partitioning and mobilization, and soil N balance under field conditions in an indeterminate-type climbing bean (P. vulgaris L. cv. Cipro) at the vegetative, early pod-filling, and physiological maturity stages, using the A-value approach. This involved the application of 10 and 100 kg N ha-1 of 15N-labelled ammonium sulphate to the climbing bean and a reference crop, maize (Zea mays L.). At the late pod-filling stage (75 days after planting) the climbing bean had accumulated 119 kg N ha-1, 84% being derived from fixation, 16% from soil, and only 0.2% from the 15N fertilizer. N2 fixation was generally high at all stages of plant growth, but the maximum fixation (74% of the total N2 fixed) occurred during the interval between early (55 days after planting) and late podfilling. The N2 fixed between 55 and 75 days after planting bas a major source (88%) of the N demand of the developing pod, and only about 11% was contributed from the soil. There was essentially no mobilization of N from the shoots or roots for pod development. The cultivation of common bean cultivars that maintain a high N2-fixing capacity especially during pod filling, satisfying almost all the N needs of the developing pod and thus requiring little or no mobilization of N from the shoots for pod development, may lead to a net positive soil N balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号