首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In data collected at 19 sites in Western Europe during 1981-83. two patterns of development of Septoria nodorum and S. tritici on foliage of winter wheal were distinguished. In sudden outbreaks, lesions appeared simultaneously on the upper leaf layers of crops, usually after the end of stem extension; these outbreaks were ascribed to short, heavy rain storms in which pycnidiospore inoculum in basal leaves was elevated up to 60 cm through the crop canopy. Gradual epidemics were characterized by disease arising on successive leaf layers as they appeared during sustained periods of weather suitable for inoculum transport and infection.
The data indicate incubation periods of 2-4 weeks for S. nodorum and 3-5 weeks for S. tritici. it is suggested that a leaf layer cannot normally sustain more than one pathogen generation and that its infection arises from inoculum borne on leaves older than in the layer situated immediately below it. The potential level of disease in a crop may relate to the amount of inoculum present in spring. The proportions of disease caused by the two Septoria species varied greatly between sites and years, but the data provided no explanation.
It is concluded that a septoria forecast scheme needs to recognise the importance of sudden disease outbreaks and to include not only weather but also host growth and inoculum factors.  相似文献   

2.
The disease septoria tritici blotch of wheat is initiated by ascospores of the teleomorph Mycosphaerella graminicola or pycnidiospores of the anamorph Septoria tritici. We report for the first time the presence of the teleomorph, M. graminicola, in Denmark. With the objective of elucidating the importance of the teleomorph for the development of septoria tritici blotch, data on the occurrence of fruit bodies of the anamorph (pycnidia) and the teleomorph (pseudothecia) stages were collected over three growing seasons. Pseudothecia were present in the springs, however, high numbers of pseudothecia compared to pycnidia were not observed until July, too late to influence the epidemic. On an individual leaf layer, pycnidia were observed well before pseudothecia. As the leaves aged, progressively higher proportions of fruit bodies were observed to be pseudothecia. The period from the appearance of pycnidia to detection of pseudothecia was estimated as 29–53 days. At harvest, high proportions of sporulating fruit bodies in the crop were pseudothecia, suggesting that the primary source of inoculum for new emerging wheat crops in autumn is likely to be ascospores.  相似文献   

3.
Interactions between Erysiphe graminis f.sp. tritici and Septoria nodorum on wheat were studied in the greenhouse and in a 2-year field experiment using artificial inoculation. The integrated form of the logistic growth model dy/dt = ry (1 -y/K ), with infection rate r and final accumulated disease K , was fitted to the disease progress data. Septoria nodorum substantially reduced the disease severities of E. graminis , and caused significant reductions of at least 60% in final accumulated disease K of E. graminis. In the field trials, E. graminis increased the final accumulated disease K of S. nodorum. Owing to the extremely low severity of E. graminis , the increase of S. nodorum severity was small, and significance was given in one of the two years only, with an increase in K of roughly 30%. In the pot experiment, final accumulated disease K of S. nodorum remained unchanged, but there was a significant 30% increase in the infection rate r of S. nodorum. The difference between field and pot trials was explained by the climatic conditions in the greenhouse which excluded secondary infections of 5. nodorum , and which are important factors for disease progress in the field.  相似文献   

4.
In some crops of winter wheat selected from a range monitored in Western Europe during 1981-83, Septoria nodovum and S . tritici were spatially very uniformly distributed from the beginning of the growing season onwards. A cube root transformation produced a constant variance in lesion numbers per leaf, similar for both pathogens at about 0.5. This permits the sample size needed for a given accuracy to be estimated. Counts of conidia washed from leaves by a standard procedure had a constant coefficient of variation, independent of disease level. Large samples would be necessary for accurate counts, particularly if leaves from different layers were examined separately. The pattern of lesion numbers on leaves was best described by a negative binomial distribution: this predicts an incidence-severity curve to which the data conformed closely. Hence incidence estimates can be used to estimate severity, which may be more economical of sampling effort. Correlations between lesion counts on different leaves of the same tiller were negative and highly significant for S. nodorum in 1982, but positive and significant for S. tritici in 1983. The causes of this difference are unknown.  相似文献   

5.
The pattern and extent of primary infection by Septoria tritici were compared over a period of 3 years in winter wheat grown at sites with differing histories and from seed stocks obtained in different countries, in the open, under airtight cover and in sterilized soil. Only the airtight cover altered the number of lesions found, substantially reducing it. Lesions were evenly distributed. Lesions were found throughout the autumn and occasionally in the winter and spring on wheat seedlings exposed in trays to the open air for periods of 1 week, then given good conditions for infection to occur. This was true even at a site 0.4 km distant from wheat residues. The results show that the main source of primary infection of winter wheat in these experiments was evenly dispersed and airborne. It probably consisted mainly of ascospores of Mycosphaerella graminicola.  相似文献   

6.
The effect of foliar-applied potassium chloride on Septoria tritici , the anamorph of Mycosphaerella graminicola , was quantified and possible modes of action investigated during controlled-environment and field experiments. A field experiment in harvest year 1997 showed c . 50% reduction in the area of leaf 2 of winter wheat plants affected by septoria leaf blotch after foliar application of potassium chloride, compared with untreated controls. Similarly, in harvest year 1998 potassium chloride reduced, by about one-third, the area of the flag and penultimate leaf affected by S. tritici . However, a significant yield increase was not observed, although grains m−2 did show an increase of borderline significance. Applications of epoxiconazole reduced the area of leaf 4 affected by S. tritici compared with untreated controls, whereas applications of chlorothalonil, potassium chloride or polyethylene glycol proved ineffective against disease development. This may suggest that potassium chloride is relatively immobile and possesses contact activity similar to that of chlorothalonil. In 1998, similar reductions in leaf area affected were observed with the inert osmoticum polyethylene glycol in the field, suggesting that the control provided by potassium chloride may be achieved by adverse osmotic effects on the pathogen. Scanning electron microscopy of germinating conidia on wheat plants showed inhibition of conidial germination by both potassium chloride and polyethylene glycol at the same calculated osmotic potential on the leaf surface.  相似文献   

7.
The effects of different populations of volunteer winter wheal and their control with ethofumesate and TCA on growth, seed yield and yield components of S.24 perennial ryegrass were investigated in lield experiments in 1978 and 1979. Reductions in ryegrass seed yield due to the presence of wheat depended on the density of wheat and the number and dry weight of ryegrass tillers. The greatest percentage reduction in ryegrass seed yield occurred at high densities of wheat (300 plants m?2) when the number of ear-bearing tillers and 1000 seed weight of ryegrass were reduced. When Ihe density of wheat was low (80 plants m?2) a smaller reduction in ryegrass seed yield occurred and the number of live wheat plants remaining gradually decreased. Within the range of wheat densities in these experiments (0–300 plants m ?2) a 1% loss in ryegrass seed yield occurred for every 10 wheal plants m?2 present in the crop post winter. Both herbicides caused a reduction in number of ryegrass tillers during growth but, except where TCA was applied at 12 kg ha?1 in November, ryegrass seed yields were not significantly reduced (in comparison with a wheat-free control) and were always greater than those obtained in the presence of wheat where no herbicides had been applied. Levels of volunteer infestation of 300 wheat plants m?2 were controlled with minimum risk of crop damage by applications of 6 kg ha?1 TCA in either October or November, or by application of 1–9 kg ha?1 ethofumesate in November.  相似文献   

8.
Grass species were grown in plots, as pure stands or mixed with wheat, after a sequence of wheat crops in which take-all ( Gaeumannomyces graminis var. tritici ) had developed. Annual brome grasses maintained take-all inoculum in the soil as well as wheat (grown as a continuous sequence), and much better than cultivated species with a perennial habit. Take-all developed more in wheat grown after Anisantha sterilis (barren brome) or Bromus secalinus (rye brome), with or without wheat, than in continuous grass-free wheat in the same year, where take-all decline was apparently occurring. It was equally or more severe, however, in wheat grown after Lolium perenne (rye-grass) or Festuca arundinacea (tall fescue), despite these species having left the least inoculum in the soil. It was most severe in plots where these two grasses had been grown as mixtures with wheat. It is postulated that the presence of these grasses inhibited the development of take-all-suppressive microbiota that had developed in the grass-free wheat crops. The effects of the grasses appeared to be temporary, as amounts of take-all in a second subsequent winter wheat test crop were similar after all treatments. These results have important implications for take-all risk in wheat and, perhaps, other cereal crops grown after grass weed-infested cereals or after set-aside or similar 1-year covers containing weeds or sown grasses, especially in combination with cereal volunteers. They also indicate that grasses might be used experimentally in wheat crop sequences for investigating the mechanisms of suppression of, and conduciveness to, take-all.  相似文献   

9.
Generally, it is recognized that inocula of Septoria tritici present on the basal leaves of winter wheat crops are spread towards the top of the canopy by splashy rainfall. This mechanism of inoculum dispersal is commonly accepted to be a key limit on disease progression. Therefore, attempts to forecast epidemics of S. tritici often quantify rainfall by some means, but largely ignore measurement of pathogen and host variables. In the present study, we show that new wheat leaves emerge initially at a height below established leaves that can contain sporulating lesions of S. tritici . This presents the possibility of horizontal inoculum transfer, even without splashy rainfall. The extent and duration of overlap between emergent and established leaves was found to differ considerably with cultivar and sowing date. Nitrogen application had little effect on overlap, because differences in crop phenology, e.g. leaf area and nodal length, were relative. However, estimates of raindrop penetration to the base of crop canopies suggested that vertical movement of inoculum is affected by nitrogen application. Crops receiving more nitrogen are denser, and therefore less rainfall reaches the base of the canopy. The interactions between crop and pathogen development are discussed with reference to the implications for predicting disease risk. In particular, cultivar traits that promote disease escape are quantified.  相似文献   

10.
Cover crops grown in the period between two main crops have potential as an important component of a system‐oriented ecological weed management strategy. In late summer and autumn, the cover crop can suppress growth and seed production of weeds, whereas the incorporation of cover crop residues in spring may reduce or retard weed emergence. Based on these two criteria, six cover crop species were evaluated for their weed suppressive potential in 2 years of experimentation in the Netherlands. Fodder radish, winter oilseed rape and winter rye had the strongest competitive ability in autumn; the competitive strength of Italian ryegrass was intermediate and white lupin and lucerne were poor competitors. Competitiveness was strongly correlated to early light interception. Surprisingly, doubling the recommended sowing density did not increase weed suppressive ability. Although a poor competitor in the fall, after incorporation in spring, lucerne had the strongest inhibitory effect on seedling establishment, followed by winter oilseed rape and white lupin. Winter rye and fodder radish did not affect seedling establishment, whereas Italian ryegrass was not evaluated because of re‐growth after incorporation. Competition in autumn and subsequent residue‐mediated suppression of weed establishment in spring varied among the cover crop species, with winter oilseed rape offering relatively strong effects during both periods.  相似文献   

11.
Yellow or tan spot (caused by Pyrenophora tritici-repentis) and septoria nodorum blotch (caused by Phaeosphaeria nodorum) occur together and are a constraint to wheat yields in Australia. Recently, higher crop yields and lower fungicide costs have made fungicides an attractive management tool against these diseases. Yield-loss under different rates of progress of yellow spot and septoria nodorum blotch was examined in four experiments over three years to define the relationship between disease severity and yield. In these experiments, differences in disease were first promoted by inoculations either with P. tritici-repentis-infected stubble or aqueous spore suspensions of P. nodorum. Disease progress was further manipulated with foliar application of fungicide. The pattern of disease development varied in each year under the influence of different rainfall patterns. The inoculation and fungicide treatments produced differences in disease levels after flag leaf emergence. The infection of yellow spot or septoria nodorum blotch caused similar losses in grain yield, ranging from 18% to 31%. The infection by either disease on the flag or penultimate leaf provided a good indication of yield-loss. Disease severity on flag leaves during the milk stage of the crop or an integration of disease as area under the disease progress curve on the flag leaves based on thermal time explained more than 80% variance in yield in a simple regression model. The data provided information towards the development of disease management strategies for the control of septoria nodorum blotch and yellow spot.  相似文献   

12.
Stagonospora nodorum blotch, caused by Phaeosphaeria nodorum, is considered one of the most destructive foliar diseases of wheat in the United States. However, relatively little is known about the population biology of this fungus in the major wheat-growing regions of the central United States. To rectify this situation, 308 single-spore isolates of P. nodorum were analyzed from 12 populations, five from hard red spring wheat cultivars in Minnesota and North Dakota and seven from soft red winter wheat in Indiana and Ohio. The genetic structure of the sampled populations was determined by analyzing polymorphisms at five microsatellite or simple-sequence repeat (SSR) loci and the mating type locus. Although a few clones were identified, most P. nodorum populations had high levels of gene (H(S) = 0.175 to 0.519) and genotype (D = 0.600 to 0.972) diversity. Gene diversity was higher among isolates collected from spring wheat cultivars in North Dakota and Minnesota (mean H(S) = 0.503) than in those from winter wheat cultivars in Indiana and Ohio (H(S) = 0.269). Analyses of clone-corrected data sets showed equal frequencies of both mating types in both regional and local populations, indicating that sexual recombination may occur regularly. However, significant gametic disequilibrium occurred in three of the four populations from North Dakota, and there was genetic differentiation both within and among locations. Genetic differentiation between the hard red spring and soft red winter wheat production regions was moderate (F(ST) = 0.168), but whether this is due to differences in wheat production or to geographical variation cannot be determined. These results suggest that sexual reproduction occurs in P. nodorum populations in the major wheat-growing regions of the central United States, and that geographically separated populations can be genetically differentiated, reflecting either restrictions on gene flow or selection.  相似文献   

13.
Ascocarps of Mycosphaerella graminicola regularly developed in debris of wheat crops from eastern England after natural weathering. Identity with the Septoria tritici anamorph and pathogenicity to wheat were demonstrated by isolation and inoculation. Ascospores were present from autumn onwards and were most frequent in December and January. They may contribute to the primary inoculum for epidemics on autumn-sown wheat.  相似文献   

14.
Over a period of three crop seasons the spatial patterns of some common diseases of winter wheat were investigated at growth stages (GS) 31/33 and 59/61. A large-scale sampling procedure, using randomly positioned transects and based on the theory of autocorrelation analysis, is described. This novel technique enables valid tests of significance to be made on the autocorrelation coefficients calculated. The most complete data obtained were for Septoria tritici blotch which was found to have a near random pattern on scales between 31 cm and 31 m at the growth stages investigated. However, the severity of S. tritici blotch was found to be autocorrelated at scales below 1 m in some fields. With the exceptions of powdery mildew at GS 31/33 and yellow rust at GS 59/61, the other diseases also exhibited a near random pattern. Therefore, almost any convenient sampling pattern, with reasonable overall coverage, will be adequate to obtain samples for monitoring winter wheat at growth stages 31 and 59.  相似文献   

15.
Drechslera tritici-repentis , anamorph of Pyrenophora tritici-repentis , was found in diamond-shaped, dark-brown lesions on leaves of several winter wheat crops in England and Wales. Lesions were darker than the otherwise similar lesions caused by Septoria nodorum.  相似文献   

16.
Climatic variation in the U.S. Pacific Northwest (PNW) affects epidemics of wheat stripe rust caused by Puccinia striiformis f. sp. tritici. Previous models only estimated disease severity at the flowering stage, which may not predict the actual yield loss. To identify weather factors correlated to stripe rust epidemics and develop models for predicting potential yield loss, correlation and regression analyses were conducted using weather parameters and historical yield loss data from 1993 to 2007 for winter wheat and 1995 to 2007 for spring wheat. Among 1,376 weather variables, 54 were correlated to yield loss of winter wheat and 18 to yield loss of spring wheat. Among the seasons, winter temperature variables were more highly correlated to wheat yield loss than the other seasons. The sum of daily temperatures and accumulated negative degree days of February were more highly correlated to winter wheat yield loss than the other monthly winter variables. In addition, the number of winter rainfall days was found correlated with yield loss. Six yield loss models were selected for each of winter and spring wheats based on their better correlation coefficients, time of weather data availability during the crop season, and better performance in validation tests. Compared with previous models, the new system of using a series of the selected models has advantages that should make it more suitable for forecasting and managing stripe rust in the major wheat growing areas in the U.S. PNW, where the weather conditions have become more favorable to stripe rust.  相似文献   

17.
Symptomless leaves of young wheat crops collected in January and February produced, after surface-sterilization and incubation on an agar medium, perithecia typical of Leptosphaeria nodorum. Single-ascospore cultures produced pycnidia typical of Septoria nodorum, whose conidia caused necrotic lesions to develop when sprayed on wheat seedlings.  相似文献   

18.
A review of Septoria diseases of wheat is given with particular emphasis on the resistance of this host to Septoria nodorum Berk. Following a general historical outline, the effects of glume blotch on the wheat plant are described, including symptoms and physiological changes. Brief reference is made to epidemiological studies, and then resistance breeding and genetic studies are discussed. The role of antifungal compounds in resistance is dealt with in more detail, and with reference to the author's own research results. It is concluded that no single mechanism of resistance of wheat to S. nodorum emerges and that the resistance factors appear to be varying quantitatively rather than qualitatively.  相似文献   

19.
ABSTRACT Two models for predicting Septoria tritici on winter wheat (cv. Riband) were developed using a program based on an iterative search of correlations between disease severity and weather. Data from four consecutive cropping seasons (1993/94 until 1996/97) at nine sites throughout England were used. A qualitative model predicted the presence or absence of Septoria tritici (at a 5% severity threshold within the top three leaf layers) using winter temperature (January/February) and wind speed to about the first node detectable growth stage. For sites above the disease threshold, a quantitative model predicted severity of Septoria tritici using rainfall during stem elongation. A test statistic was derived to test the validity of the iterative search used to obtain both models. This statistic was used in combination with bootstrap analyses in which the search program was rerun using weather data from previous years, therefore uncorrelated with the disease data, to investigate how likely correlations such as the ones found in our models would have been in the absence of genuine relationships.  相似文献   

20.
P. HALAMA 《Plant pathology》1996,45(1):135-138
Pseudothecia of Mycosphaerella graminicola , the teleomorph of Septoria tritici , were observed on wheat debris in France for the first time during autumn 1994. The colonies and conidia, derived from ascospores isolated by micromanipulation, conform to previously published data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号