首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Serum concentrations of cefepime (BMY-28142) were determined for four dosing regimes, 10 mg/kg or 20 mg/kg, given as single subcutaneous (SC) or intramuscular injections (IM) to dogs. Serial serum samples were analyzed for the presence of cefepime by high-performance liquid chromatography. In experiment 1, the overall mean (+/- SEM) serum concentration (for a 12-hour period) after a dose of 20 mg/kg for SC and IM routes (4.9 +/- 0.74 micrograms/ml and 5.5 +/- 0.63 micrograms/ml, respectively) was twice that for the 10 mg/kg dose given either SC or IM (2.2 +/- 0.31 micrograms/ml and 2.8 +/- 0.47 micrograms/ml, respectively). There was no significant difference (p greater than 0.05) in mean serum concentrations for SC and IM routes of administration at the same dosage. In subsequent experiments, 5 doses of cefepime (20 mg/kg) were administered IM at 12-hour (experiment 2) or 24-hour (experiment 3) intervals. The mean (+/- SEM) peak serum concentration was 12.1 +/- 1.59 micrograms/ml, 2 hours after the 2nd injection in experiment 2. In experiment 3, the mean (+/- SEM) peak serum concentration was 10.9 +/- 1.34 micrograms/ml, 4 hours after the 1st injection. Mean trough concentrations in experiment 2 were greater than or equal to 0.5 microgram/ml and less than or equal to 0.5 in experiment 3. Multiple IM doses produced transient edema at the injection site and mild lameness in all dogs. Cefepime was highly active against single canine isolates of Staphylococcus intermedius, Pseudomonas aeruginosa and Escherichia coli, with minimum inhibitory concentrations of 0.125 microgram/ml, 1 microgram/ml and 0.3 microgram/ml, respectively.  相似文献   

2.
Five healthy adult Merino ewes were each given 2 g of cefotaxime by the IV, IM, and subcutaneous (SC) routes. The serial plasma samples collected after each treatment were analyzed for cefotaxime by a new high-pressure liquid chromatographic method. Plasma concentration time profiles were characterized by a linear 2-compartment model after IV administration and the following mean values (+/- SD) were found: biological half-life, 23 +/- 8 minutes; apparent volume of distribution, 5.5 +/- 1.3 L; plasma clearance, 0.37 +/- 0.09 L/min; elimination rate constant, 0.066 +/- 0.014 minute-1; rate of diffusion into tissue, 0.013 +/- 0.013 minute-1; and out of tissue, 0.035 +/- 0.017 minute-1. Plasma cefotaxime concentrations in the ewes given the drug by the IV, IM, and SC routes were 113 +/- 32, 71 +/- 20, and 38 +/- 11 micrograms/ml, respectively, at 15 minutes; 2.31 +/- 0.82, 11.3 +/- 6.6, and 16.4 +/- 3.7 micrograms/ml at 120 minutes; and 1.05 +/- 1.22, 9.3 +/- 5.2, and 14.9 +/- 1.27 micrograms/ml at 150 minutes. After cefotaxime was given SC and IM, plasma values were higher for a longer time than they were after the drug was given IV, probably due to a slower release of drug from the former injection sites.  相似文献   

3.
Healthy adult mixed-breed dogs, assigned to 2 groups of 6 dogs each, were given 3 mg of gentamicin sulfate/kg of body weight on 3 injection days 7 days apart. Group 1 was given gentamicin by rapid IV injection, by injection into the belly of the longissimus muscle at the first lumbar vertebrae (IM site 1), and by injection in the belly of the biceps femoris muscle (IM site 2). Group 2 was given gentamicin by rapid IV injection, by SC injection into the space over the cranial angle of the scapula on the midline (SC site 1), and by SC injection just caudal to the crest of the ilium (SC site 2). Pharmacokinetic values (mean +/- SD) from 12 dogs given gentamicin IV were 54.4 +/- 15.4 minutes for the effective half life, 2.29 +/- 0.48 ml/kg/min for clearance, and 172 +/- 25.4 ml/kg for volume of distribution at steady state. Bioavailability (93.92 to 96.65%) and peak plasma gentamicin concentration (9.43 to 10.89 micrograms/ml) were independent of injection site, but time to peak concentration when gentamicin was given at SC site 2 (43.33 minutes) was significantly (P less than 0.05) longer than that when gentamicin was given at IM site 1 (27.50 minutes). Absorption half-life was shorter after injections were given at both IM sites (8.9 and 9.8 minutes) than after injection was given at SC site 2 (18 minutes).  相似文献   

4.
Four healthy adult mares were each given a single injection of sodium cefoxitin (20 mg/kg of body weight, IV), and serum cefoxitin concentrations were measured serially during a 6-hour period. The mean elimination rate constant was 1.08/hour and the elimination half-life was 0.82 hour. The apparent volume of distribution (at steady state) and the clearance of the drug were estimated at 0.12 L/kg and 259 ml/hr/kg, respectively. Each mare and 2 additional mares were then given 4 consecutive IM injections of sodium cefoxitin (400 mg/ml) at a dosage of 20 mg/kg. Cefoxitin concentrations in serum, synovial fluid, peritoneal fluid, CSF, urine, and endometrium were measured serially. After IM administration, the highest mean serum concentration was 23.1 micrograms/ml 30 minutes after the 2nd injection. The highest mean synovial concentration was 11.4 micrograms/ml 1 hour after the 4th injection. The highest mean peritoneal concentration was 10.4 micrograms/ml 2 hours after the 4th injection. The highest mean endometrial concentration was 4.5 micrograms/g 4 hours after the 4th injection. Mean urine concentrations reached 11,645 micrograms/ml. Cefoxitin did not readily penetrate the CSF. Bioavailability of cefoxitin given IM was 65% to 89% (mean +/- SEM = 77% +/- 5.9%). One of the 6 mares developed acute laminitis during the IM experiment.  相似文献   

5.
Pharmacokinetics of cefotaxime in the domestic cat   总被引:1,自引:0,他引:1  
Cefotaxime was administered as single IV or IM dose for the purpose of examining its pharmacokinetics in healthy cats. The mean predicted plasma concentration of cefotaxime in 6 cats at 0 time after a single IV dosage of 10 mg/kg of body weight was 88.9 micrograms/ml. The mean plasma concentrations decreased to 10.8 micrograms/ml at 2 hours, 3.7 micrograms/ml at 3 hours, and 0.5 microgram/ml at 6 hours. The half-life was 0.98 +/- 0.25 hour (mean +/- SD), and the total body clearance was determined to be 2.76 +/- 1.25 ml/min/kg. After a single IM injection of 10 mg/kg of body weight, the mean maximum observed plasma concentration was 36.2 micrograms/ml at 0.75 hour. The mean absorption half-life was 0.24 hour. In 2 animals, the bioavailability of an IM injection was 98.2% and 93.0%.  相似文献   

6.
Six healthy adult horse mares were each given a single injection of sodium cephapirin (20 mg/kg of body weight, IV), and serum cephapirin concentrations were measured serially over a 6-hour period. The mean elimination rate constant was 0.78 hour-1 and the elimination half-life was 0.92 hours. The apparent volume of distribution (at steady state) and the clearance of the drug were estimated at 0.17 L/kg and 598 ml/hour/kg, respectively. Each mare was then given 4 consecutive IM injections of sodium cephapirin (400 mg/ml) at a dosage level of 20 mg/kg. Cephapirin concentrations in serum, synovial fluid, peritoneal fluid, CSF, urine, and endometrium were measured serially. After IM administration, the highest mean serum concentration was 14.8 micrograms/ml 25 minutes after the 4th injection. The highest mean synovial and peritoneal concentrations were 4.6 micrograms/ml and 5.0 micrograms/ml, respectively, 2 hours after the 4th injection. The highest mean endometrial concentration was 2.2 micrograms/g 4 hours after the 4th injection. Mean urine concentrations reached 7,421 micrograms/ml. Cephapirin did not readily penetrate the CSF. When cephapirin was given IM at the same dose, but in a less concentrated solution (250 mg/ml), serum concentrations peaked at 25.0 micrograms/ml 20 minutes after injection, but the area under the serum concentration-time curve was not significantly different (P greater than 0.05). The bioavailability of the drug was greater than or equal to 95% after IM injection.  相似文献   

7.
The pharmacokinetics of chloramphenicol were studied in sheep after 3 single intravenous (IV), intramuscular (IM) and subcutaneous (SC) administrations (30 mg/kg). The two extravascular routes were studied during a crossover trial for a bioequivalence test. After IV and SC administrations, the plasma-concentration time graphs were characteristic of a two-compartment model, and after IM administration it was characteristic of a monocompartment model. The two routes of absorption were not bioequivalent. Using the kinetic values, multidose regimens to maintain the therapeutic chloramphenicol blood level (5 micrograms/ml) were proposed: 60 mg/kg every 12 hours for 72 hours for the IM administration and 45 mg/kg administered subcutaneously according to the same regimen. A study of the chloramphenicol residues in tissues was carried out. Chloramphenicol residues remained at the injection site, and 400 hours would be necessary to obtain the level of 10 micrograms/kg. Determination of the creatinine phosphokinase serum values showed that the subcutaneous route induced less damage to muscle than the intramuscular route.  相似文献   

8.
Six mares were given 5 IM injections (at 12-hour intervals between doses) of amikacin sulfate at a dosage of 7 mg/kg of body weight. Serum amikacin concentrations were measured serially throughout the study; synovial, peritoneal, endometrial, and urine concentrations were determined after the last injection. Amikacin concentrations of the CSF were measured serially in 3 of the 6 mares; 1 of the 3 mares had septic meningitis. Mean serum amikacin concentrations peaked at 1 to 2 hours after IM injection. The highest mean serum concentration was 19.2 micrograms/ml (1.5 hours after the 5th injection). The highest mean synovial concentration was 10.8 micrograms/ml at 2 hours after the 5th injection; the highest mean peritoneal concentration was 16.2 micrograms/ml at 3 hours after the 5th injection. The mean endometrial amikacin concentration was 2.5 micrograms/g (1.5 hours after the 5th injection). Amikacin reached a CSF concentration of 0.97 micrograms/ml in the mare with meningitis, but amikacin was not detected in CSF of healthy mares. Urine concentrations reached 1,458 micrograms/ml. Pharmacokinetic values were estimated after the 1st injection (elimination rate constant = 0.31/hour; half-life = 2.3 hours; apparent volume of distribution = 0.26 L/kg), and after the 5th injection (elimination rate constant = 0.28/hour; half-life = 2.6 hours; apparent volume of distribution = 0.30 L/kg); significant differences were not observed.  相似文献   

9.
Pharmacokinetics of cefotaxime in the dog   总被引:1,自引:0,他引:1  
Each of five dogs was given cefotaxime at a dose rate of 50 mg/kg by intravenous, intramuscular and subcutaneous routes, in three separate treatments. Plasma concentration time profiles were characterised by a linear two-compartment model after the intravenous administration. After intravenous, intramuscular and subcutaneous injections the mean biological half-lives were 0.74, 0.83 and 1.71 hours, respectively. The apparent steady state volume of distribution was 0.48 litre/kg and body clearance after intravenous injection was approximately 0.63 litre/hour/kg. After intramuscular and subcutaneous injections peak plasma cefotaxime concentrations were 47 +/- 15 and 29.6 +/- 16 micrograms/ml at 0.5 and 0.8 hours, respectively. The average bioavailability of cefotaxime given by intramuscular injection was 86.5 per cent and for cefotaxime given subcutaneously it was approximately 100 per cent. After two hours, the cefotaxime plasma concentration remained higher after subcutaneous than after intramuscular administration.  相似文献   

10.
Pharmacokinetics of sodium cephapirin in lactating dairy cows   总被引:1,自引:0,他引:1  
Sodium cephapirin was administered (10 mg/kg of body weight, IM) at 8-hour intervals in 4 consecutive doses to each of 6 lactating dairy cows. Blood, normal milk, mastitic milk, urine, and endometrial tissue samples were collected serially. Mean peak cephapirin concentrations in serum were 13.3 micrograms/ml 10 minutes after the 1st injection and were 15.8 micrograms/ml 20 minutes after the 4th injection (post[initial]injection hour [PIH] 24.33). The overall elimination rate constant value was 0.66/h and plasma clearance was 760 ml/h/kg. Mean peak cephapirin concentration in normal milk was 0.11 microgram/ml at PIH 2 and mean peak cephapirin concentration in mastitic milk was 0.18 microgram/ml at PIH 4. Cephapirin was not detected in the endometrium. The highest concentration of cephapirin in urine was 452 micrograms/ml, 2 hours after the 4th dose (PIH 26).  相似文献   

11.
Five healthy adult dogs were given a single IV dose (40 mg/kg of body weight) of ticarcillin disodium. Serum concentrations were measured serially over a period of 12 hours. Five days later, the drug was administered IM to the dogs at the same dose rate, and serum concentrations were measured serially for 12 hours. The mean peak serum concentration after IM administration was 120.5 micrograms/ml at 1.5 hours. Pharmacokinetic values following IV administration were (i) elimination rate constant = 0.8/hour-1, (ii) half-life = 0.8 hour, (iii) serum clearance = 292 ml/hr/kg, and (iv) apparent volume of distribution = 347 ml/kg. Estimated values after IM administration were (i) elimination rate constant = 0.6/hour, (ii) half-life = 1.1 hours, (iii) serum clearance = 218 ml/hr/kg, and (iv) apparent volume of distribution = 345 ml/kg; only the elimination rate constants were significantly different between the 2 routes of administration.  相似文献   

12.
Six calves with suppurative arthritis were given a single IM injection of sodium cephapirin at a dosage of 10 mg/kg of body weight. Cephapirin concentrations were serially measured in serum and in normal and suppurative synovial fluid over a 24-hour period. Mean peak serum concentration was 6.33 microliters/ml at 20 minutes after injection. The highest cephapirin concentrations in normal and suppurative synovial fluid were 1.68 and 1.96 micrograms/ml, respectively, 30 minutes after injection. Overall mean cephapirin concentration in normal synovial fluid for the first 4 hours (1.04 +/- 0.612 micrograms/ml) was not significantly different from that in suppurative synovial fluid (0.88 +/- 0.495 micrograms/ml; P greater than 0.05). Elimination half-life was 0.60 hours and clearance was 1,593 ml/h/kg.  相似文献   

13.
Pharmacokinetics of amikacin in cats   总被引:1,自引:0,他引:1  
Six mixed-breed adult cats were given 5 mg of amikacin sulfate/kg of body weight by rapid IV, IM, and SC routes of administration. The serum concentration-vs-time data were analyzed, using a noncompartmental model. The harmonic mean +/- pseudo-SD of the effective half-life of amikacin was 78.8 +/- 19.3 minutes after IV administration, 118.7 +/- 14.4 minutes after IM administration, and 117.7 +/- 12.8 minutes after SC administration. The arithmetic mean +/- SD of mean residence time was 118.3 +/- 21.7 minutes, 173.4 +/- 19.9 minutes, and 171.7 +/- 19.1 minutes after IV, IM, and SC drug administration, respectively. The mean apparent volume of distribution at steady state was 0.17 +/- 0.02 L/kg, and the mean total body clearance was 1.46 +/- 0.26 ml/min/kg. Mean bioavailability was 95 +/- 20% after IM administration and 123 +/- 33% after SC drug administration. A recommended dosage of 10 mg/kg, q 8 h can be expected to provide a therapeutic serum concentration of amikacin with a mean steady-state concentration of 14 micrograms/ml. The SC route of administration is preferred, because of rapid absorption, good bioavailability, and ease of administration.  相似文献   

14.
Cephapirin (20 mg/kg of body weight, IV) was administered before and after 3 doses of probenecid (25, 50, or 75 mg/kg, intragastrically, at 12-hour intervals) to 2 mares. Clearance and apparent volume of distribution, based on area under the curve, were negatively correlated with probenecid dose. Clearance of cephapirin was decreased by approximately 50% by administration of 50 mg of probenecid/kg. Serum, synovial fluid, peritoneal fluid, CSF, urinary, and endometrial concentrations of cephapirin were determined after 5 doses of cephapirin (20 mg/kg, IM, at 12-hour intervals) without and with concurrently administered probenecid (50 mg/kg, intragastrically) to 6 mares, including the 2 mares given cephapirin, IV. Highest mean serum cephapirin concentrations were 16.1 +/- 2.16 micrograms/ml at 0.5 hour after the 5th cephapirin dose [postinjection (initial) hour (PIH) 48.5] in mares not given probenecid and 23.7 +/- 1.30 micrograms/ml at 1.5 hours after the 5th cephapirin dose (PIH 49.5) in mares given probenecid. Mean peak peritoneal fluid and synovial fluid cephapirin concentrations were 6.2 +/- 0.57 micrograms/ml and 6.6 +/- 0.58 micrograms/ml, respectively, without probenecid administration and 12.3 +/- 0.46 micrograms/ml and 10 +/- 0.78 micrograms/ml, respectively, with concurrent probenecid administration. Mean trough cephapirin concentrations for peritoneal and synovial fluids in mares given probenecid were 2 to 3 times higher than trough concentrations in mares not given probenecid. Overall mean cephapirin concentrations were significantly higher for serum, peritoneal fluid, synovial fluid, and endometrium when probenecid was administered concurrently with cephapirin (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Twenty-nine healthy 17- to 29-day-old unweaned Israeli-Friesian male calves were each given a single IV or IM injection of 10 or 20 mg of moxalactam disodium/kg of body weight. Serum concentrations were measured serially during a 12-hour period. Serum concentration vs time profiles were analyzed by use of linear least-squares regression analysis and the statistical moment theory. The elimination half-lives after IV administration were 143.7 +/- 30.2 minutes and 155.5 +/- 10.5 minutes (harmonic mean +/- SD) at dosages of 10 and 20 mg of moxalactam/kg of body weight, respectively. Corresponding mean residence time values were 153.1 +/- 26.8 minutes and 169.9 +/- 19.3 minutes (arithmetic mean +/- SD). Mean residence time values after IM administration were 200.4 +/- 17.5 minutes and 198.4 +/- 19.9 minutes at dosages of 10 and 20 mg/kg, respectively. The volumes of distribution at steady state were 0.285 +/- 0.073 L/kg and 0.313 +/- 0.020 L/kg and total body clearance values were 1.96 +/- 0.69 ml/min/kg and 1.86 +/- 0.18 ml/min/kg after administration of dosages of 10 and 20 mg/kg, respectively. Moxalactam was rapidly absorbed from the IM injection site and peak serum concentrations occurred at 1 hour. The estimated bioavailability ranged from 69.8 to 79.1%. The amount of serum protein binding was 53.4, 55.0, and 61.5% when a concentration of moxalactam was at 50, 10, and 2 micrograms/ml, respectively. The minimal inhibitory concentrations of moxalactam ranged from 0.01 to 0.2 micrograms/ml against Salmonella and Escherichia coli strains and from 0.005 to 6.25 micrograms/ml against Pasteurella multocida strains.  相似文献   

16.
Pharmacokinetic values of sodium amoxicillin (22 mg/kg of body weight) in foals were determined after a single IM injection in 6 Quarter Horse foals at 3, 10, and 30 days of age. Serum amoxicillin concentrations were measured serially over a 24-hour period. The absorption of amoxicillin was rapid and followed a 1st-order elimination. Mean peak serum concentrations occurred 30 minutes after the injection in foals at all ages and were 17.31 +/- 9.59 micrograms/ml when the foals were 3 days old, 23.28 +/- 9.86 micrograms/ml when the foals were 10 days old, and 21.35 +/- 6.39 micrograms/ml when the foals were 30 days old. Serum samples collected beyond 8 hours after administration contained amoxicillin concentrations less than 0.05 micrograms/ml. The elimination rate constant increased with increasing age (0.5265 +/- 0.0891 hour-1 when the foals were 3 days old, 0.6494 +/- 0.1114 hour-1 when the foals were 10 days old, and 0.7112 +/- 0.1016 hour-1 when the foals were 30 days old). Serum clearance increased with increasing age (498.4 +/- 82.6 ml/hr/kg at 3 days, 631.6 +/- 170.5 ml/hr/kg at 10 days, and 691.2 +/- 127.3 ml/hr/kg at 30 days). Serum half-life decreased with increasing age (1.34 +/-0.243 hour at 3 days, 1.10 +/- 0.239 hour at 10 days, and 0.991 +/- 0.139 hour at 30 days), whereas the extrapolated concentration at time zero and apparent volume of distribution did not change during the first 30 days of age.  相似文献   

17.
Healthy mature pony mares (n = 6) were given a single dose of gentamicin (5 mg/kg of body weight) IV or IM 8 days apart. Venous blood samples were collected at 0, 5, 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, 30, 36, 40, and 48 hours after IV injection of gentamicin, and at 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, and 30 hours after IM injection of gentamicin. Gentamicin serum concentration was determined by a liquid-phase radioimmunoassay. The combined data of IV and IM treatments were analyzed by a nonlinear least-square regression analysis program. The kinetic data were best fitted by a 2-compartment open model, as indicated by residual trends and improvements in the correlation of determination. The distribution phase half-life was 0.12 +/- 0.02 hour and postdistribution phase half-life was 1.82 +/- 0.22 hour. The volume of the central compartment was 115.8 +/- 6.0 ml/kg, volume of distribution at steady state was 188 +/- 9.9 ml/kg, and the total body clearance was 1.27 +/- 0.18 ml/min/kg. Intramuscular absorption was rapid with a half-life for absorption of 0.64 +/- 0.14 hour. The extent of absorption was 0.87 +/- 0.14. Kinetic calculations predicted that IM injections of 5 mg of gentamicin/kg every 8 hours would provide average steady-state serum concentrations of 7.0 micrograms/ml, with maximum and minimum steady-state concentrations of 16.8 and 1.1 micrograms/ml, respectively.  相似文献   

18.
Six healthy pony foals, from 2 to 11 days of age, were given a single IM injection of amikacin sulfate (250 mg/ml) at a dosage rate of 7 mg/kg of body weight. Serum amikacin concentrations were measured serially over a 24-hour period. The mean peak serum concentration was 14.7 micrograms/ml at 0.5 hour. The elimination rate constant for amikacin was 0.24/hour, the elimination half-life was 3.0 hours, and the apparent volume of distribution was 0.58 L/kg.  相似文献   

19.
The effect of probenecid given by intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) injection on the pharmacokinetics of cefotaxime was studied in six Merino ewes. When given intravenously, probenecid increased significantly (P less than 0.05) the plasma half-life of cefotaxime three-fold (to 0.94 +/- 0.32 h) and the area under the curve (AUC) approximately two-fold (to 41.1 +/- 16.8 micrograms.h/ml), and decreased plasma cefotaxime clearance (ClB) 45% (to 0.648 +/- 0.191 l/h/kg). When given with probenecid intravenously, renal clearance (ClR), volume of the central compartment (VC), volume of distribution steady state (Vd(ss], and the amount excreted in urine unchanged did not alter significantly. When given by i.m. injection, probenecid and cefotaxime were well tolerated and cefotaxime was well absorbed (101 +/- 45%). When given by s.c. injection, only 40 +/- 25% cefotaxime was absorbed. When given intramuscularly or subcutaneously, probenecid appeared to reduce the ClB and ClR of cefotaxime, probably because plasma probenecid concentrations are prolonged. Probenecid did not appear to affect the distribution of cefotaxime.  相似文献   

20.
Pharmacokinetic properties of enrofloxacin in rabbits.   总被引:4,自引:0,他引:4  
The pharmacokinetic properties of the fluoroquinolone antimicrobial enrofloxacin were studied in New Zealand White rabbits. Four rabbits were each given enrofloxacin as a single 5 mg/kg of body weight dosage by IV, SC, and oral routes over 4 weeks. Serum antimicrobial concentrations were determined for 24 hours after dosing. Compartmental modeling of the IV administration indicated that a 2-compartment open model best described the disposition of enrofloxacin in rabbits. Serum enrofloxacin concentrations after SC and oral dosing were best described by a 1- and 2-compartment model, respectively. Overall elimination half-lives for IV, SC, and oral routes of administration were 2.5, 1.71, and 2.41 hours, respectively. The half-life of absorption for oral dosing was 26 times the half-life of absorption after SC dosing (7.73 hours vs 0.3 hour). The observed time to maximal serum concentration was 0.9 hour after SC dosing and 2.3 hours after oral administration. The observed serum concentrations at these times were 2.07 and 0.452 micrograms/ml, respectively. Mean residence times were 1.55 hours for IV injections, 1.46 hours for SC dosing, and 8.46 hours for oral administration. Enrofloxacin was widely distributed in the rabbit as suggested by the volume of distribution value of 2.12 L/kg calculated from the IV study. The volume of distribution at steady-state was estimated at 0.93 L/kg. Compared with IV administration, bioavailability was 77% after SC dosing and 61% for gastrointestinal absorption. Estimates of predicted average steady-state serum concentrations were 0.359, 0.254, and 0.226 micrograms/ml for IV, SC, and oral administration, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号