首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
基于改进蜘蛛群集算法的木薯收获机块根拔起速度优化   总被引:1,自引:0,他引:1  
针对挖拔式木薯收获机由于较难获得块根拔起速度控制系统最优化控制参数,造成块根拔起速度控制精度较低,木薯块根收获拔断损失率较大的问题,开展拔起机构块根拔起速度控制系统控制参数优化的算法研究。该文以模糊PI作为块根拔起速度控制算法,采用多领域的动力学仿真技术,构建木薯收获机块根拔起机构控制系统的联合仿真模型,以较优块根拔起速度模型为控制目标,块根拔起阻力为条件,开展结合局部搜索算子的蜘蛛群集算法的模糊PI控制参数的优化研究,且进行了田间木薯块根拔起试验。结果表明,结合局部搜索的蜘蛛群集算法比蜘蛛群集算法具有较快的收敛速度和较高的搜索精度,模糊PI控制参数的优化结果,控制参数K_p为0.841,K_i为0.203 9,在优化的控制参数条件下,块根拔起速度能较好跟随较优块根拔起速度,木薯块根的垂直拔起速度与块根拔起较优速度的平均相对误差为4.5%,滑块位移与理论值的平均相对误差为3.7%。  相似文献   

2.
木薯块根拔起力的力学模型和数学模型分析   总被引:4,自引:3,他引:1  
为了探讨不同块根拔起速度和块根生长状况对块根最大拔起力的影响规律,该文采用物理试验方法、ANSYS/LS-DYNA显式动力学仿真技术及土力学理论分析方法进行物理试验和力学分析,建立了考虑拔起速度影响的木薯块根拔起力的力学模型和数学模型,且对模型进行了试验验证。结果表明,假设木薯块根对土壤的作用为一圆盘和圆盘外延对土壤的共同作用的力学模型合理;圆盘最大拔起力的数学模型精度高,理论值与实测值的相对误差小于16%;木薯块根最大拔起力的数学模型对成圆盘状分布生长的木薯块根拔起力有较高的预测精度,对生长分布较不均匀的木薯块根拔起力的预测精度较低,但理论值与实测值的相对误差也小于27%;木薯块根最大拔起力随拔起速度、块根圆盘直径和圆盘深度的增大而增大;块根圆盘深度对木薯块根的最大拔起力的影响最大,其次是圆盘直径,最后是拔起速度。该文为挖拔式木薯收获机械块根拔起机构系统的设计提供依据。  相似文献   

3.
为了解决4UZL-1型甘薯联合收获机作业过程中损失率大、伤薯率高等问题,该研究在分析4UZL-1型甘薯联合收获机整机结构的基础上开展薯块交接输送机构设计。以薯块交接输送过程中伤薯率和损失率为主要评价指标,在单因素试验基础上运用Box-Benhnken试验方法,以挖掘输送机构角度、刮板链输送角度、挖掘输送机构速度、刮板链输送速度为试验因素,对4UZL-1型甘薯联合收获机薯块交接输送机构工作参数进行四因素三水平试验研究,建立了评价指标对各因素的多元回归模型,分析了各因素对作业质量的影响,并得到了最优结构和作业参数。试验结果表明:各因素对损失率从大到小的影响顺序为刮板链输送角度、挖掘输送机构速度、刮板链输送速度、挖掘输送机构角度;各因素对伤薯率从大到小的影响顺序为挖掘输送机构速度、挖掘输送机构角度、刮板链输送速度、刮板链输送角度;当机器前进速度为1 m/s,挖掘输送机构角度为20°、刮板链输送角度为68°、挖掘输送机构速度为1.2 m/s、刮板链输送速度0.67 m/s时,薯块损失率为1.12%、损伤率为0.94%,与预测值相比,误差分别为3.4%和1.1%。研究结果可为甘薯联合收获机的结构完善和作业参数优化提供参考。  相似文献   

4.
定量铺放自走式大葱联合收获机研制   总被引:3,自引:3,他引:0  
为了提高大葱的机械化收获水平,该文结合大葱种植模式和农艺制度,设计了一种自走式大葱联合收获机。该机能够一次完成大葱的挖掘、抖土、喂入、夹持输送、二次去土清杂、收集、成堆铺放作业,主要由挖掘抖土装置、柔性夹持输送装置、收集卸料装置等关键部件组成。通过作业过程的理论分析和计算,确定了各关键部件参数。运用Box-Behnken中心组合试验方法,以整机前进速度、挖掘铲水平倾角、抖土频率、气缸伸缩周期作为试验因素,以大葱含杂率和损伤率为评价指标,开展了四因素三水平正交试验。通过Design-Export 8.0.6.1数据分析软件,建立各试验因素与评价指标的数学回归模型,分析各试验因素对大葱含杂率和损伤率的影响,并对试验因素进行参数优化。试验结果表明:影响大葱含杂率的各因素显著性顺序为整机前进速度>抖土频率>挖掘铲水平倾角>气缸伸缩周期,影响大葱损伤率的各因素显著性顺序为挖掘铲水平倾角>抖土频率>气缸伸缩周期>整机前进速度;最优工作参数组合为整机前进速度0.7 m/s,挖掘铲水平倾角35°,抖土频率4.3 Hz,气缸伸缩周期2.5 s,此时大葱含杂率的模型预测值为3.00%、损伤率为1.66%,田间试验的大葱含杂率为3.14%、损伤率为1.74%,与模型预测值的相对误差均小于5%。研究结果可为自走式大葱联合收获的结构完善和作业性能优化提供参考。  相似文献   

5.
单垄单行甘薯联合收获机薯秧分离机构设计与参数优化   总被引:4,自引:3,他引:1  
针对中国甘薯联合收获机作业薯秧分离机构分离不彻底、甘薯损伤数量多、茎秆缠绕机具部件等亟待解决的问题,该文基于自走式甘薯联合收获机设计了一种结构简单、摘净率高、伤薯率低以及防茎秆缠绕的薯秧分离机构。根据设计计算确定了分离机构结构参数,其中挖掘输送装置总长度为2050mm,水平倾角为24°;主动轴和摘辊半径分别为18、36 mm;输送装置下层杆条与摘辊间距为27 mm,最上端与摘辊之间距离为251 mm。经过理论分析明确了甘薯的运动特性及其影响作业质量的主要工作参数机具前进速度、主动轴转速、输送装置水平倾角。通过薯秧分离试验发现在甘薯收获期薯秧分离力与其含水率变化规律符合二次函数关系,进一步开展田间试验借助Box-BenhnKen的中心组合设计方法选取主要工作参数对摘净率和损伤率的影响并作试验设计,以此为基础开展三因素三水平一次回归正交试验。在DESIGNEXPERT中使用响应曲面法分析各因素对摘净率和损伤率影响效应并对回归模型的参数进行优化。当田间试验取最优参数组合机具前进速度1.2 m/s、主动轴转速895 r/min、输送装置水平倾角24°时,摘净率和损伤率分别为98.14%、2.76%,分离效果满足甘薯收获要求。该研究也为其他土下果实联合收获作业果秧分离机构提供思路。  相似文献   

6.
针对现有根茎类作物收获机用于藠头收获时存在的果土分离不彻底、埋果率高、地形适应性差等问题,该研究研制了基于"杆筛式振动碎土+拨辊推送式多级分离"技术的自走式藠头收获机。对挖掘和果土分离过程中的物料状态和作业机理进行了分析,建立模型计算得到了挖掘装置的位置和深度、杆筛式振动装置的振幅和曲柄转速、拨辊的尺寸和位置等关键参数,基于可调式挖掘装置、杆筛式振动装置、拨辊推送式多级分离装置组成加工了藠头收获机样机。针对研究内容设计了田间挖掘试验和整机性能试验,对以上装置及整机的作业性能进行验证。田间试验表明:该机实际挖掘深度稳定,漏挖率、埋果率、总伤果率分别为0.31%、3.20%、5.87%,有效收获率为93.23%。整机结构及布局合理,性能稳定,能够满足当前丘陵山区条件下藠头机械化收获的需求。  相似文献   

7.
4CL-1型自走式大葱联合收获机的研制   总被引:2,自引:2,他引:0  
针对大葱收获劳动力短缺和有效收获机具匮乏的问题,该文结合国内大葱种植的农艺要求和种植模式,设计了一种自走式大葱联合收获机。该机由行走系统、传动系统、组合挖掘装置、链杆清送装置、除土装置、夹送装置、扭铺装置等组成,可一次性完成大葱的挖掘、清土、升运、铺放等作业。整机传动系统分为机械传动部分和液压传动部分。机械传动部分实现收获机行走系统及挖掘收获系统的动力协调,液压传动实现挖掘收获系统的位置调整、夹送装置的转速控制、扭铺装置的转速控制;旋松刀组与V型挖掘铲组成的挖掘装置,实现对土壤的分层松碎及挖掘;杆式输送链完成大葱输送及其黏附土壤的初次清理及抬升,清土辊完成大葱根部残余土壤的二次清除;柔性夹持输送带与清土装置配合,完成大葱的有效喂入及柔性夹持;扭送机构及铺放机构实现大葱由竖直向水平方向的改变,并完成大葱的有序铺放。田间试验结果表明,试验条件下的收净率为99.50%,损伤率为1.40%,损失率为0.70%,生产效率为0.049 hm2/h,约为人工收获的12倍。该机工作性能稳定可靠、作业效果好,可为大葱收获技术及装备的研发提供参考。  相似文献   

8.
为解决平作花生联合收获易产生挖掘铲前壅土的问题,该文设计了一种动力圆盘挖掘装置,并对该挖掘装置中的动力圆盘进行了研究。通过设计和试验分析确定了该圆盘的结构和最优工作参数:圆盘直径为320 mm,动力轴间距370 mm,转速145 r/min;作业时,动力圆盘挖掘装置与地面前倾夹角为22°的角度入土,稳定后与地面夹角为5°的角度进行挖掘收获。通过对动力圆盘挖掘装置与普通固定式挖掘装置的挖掘收获效果进行对比试验,结果表明:该动力圆盘挖掘装置可减少机组前进阻力,在提高挖掘率、送秧率和降低挖掘铲前壅土方面具有较好的性能,更加适合平作花生的联合收获。  相似文献   

9.
4B-1200型平贝母药材收获机的设计与试验   总被引:1,自引:2,他引:1  
针对山区丘陵平贝母收获费时费工、机械化水平不高等现状,设计了一种与手扶拖拉机相配套的平贝母药材收获机。该机主要由刮土机构、挖掘铲、振动筛、筛下分贝土机构、装袋装置等组成。利用解析作图法对振动筛串联四杆机构进行分析,确定平贝母和土壤混合物能顺利通过筛面的驱动轴转速范围240~535 r/min;对反向螺旋叶片上的平贝母进行受力分析得出减小平贝母碰撞破损的筛下分土机构螺旋叶片转速小于4 m/s;平贝母收获试验样机田间试验表明:该机作业顺畅、性能稳定,匹配动力为13.2 k W的手扶拖拉机,平贝母损失率小于4.9%、损伤率小于4.1%,满足行业标准规定,筛后贝土输送螺旋能顺畅地将贝土分至畦面两侧。该研究为产品级平贝母药材收获机的研制提供技术参考。  相似文献   

10.
木薯收获机土薯抖动分离装置性能仿真及试验   总被引:1,自引:4,他引:1  
为了考察木薯收获机块根拔起时弹簧式土薯抖动分离装置的土薯分离机理和因素对分离性能的影响规律,优化性能影响因素,进行弹簧式土薯抖动分离装置动力学仿真试验.采用光滑粒子流体动力学和有限元的耦合方法及二次回归通用旋转设计方法,构建土壤-木薯-抖动分离装置系统的动力学仿真模型和影响土薯分离性能的回归数学模型,研究了木薯块根拔起时土薯抖动的分离机理及各影响因素对土薯分离性能的影响规律,同时,采用MATLAB优化工具箱中的fmincon函数,对性能影响因素进行了优化.结果表明,因素的优组合为:长孔长度2.68 cm、弹簧刚度20.04 kN/cm、弹簧预紧力335.2 N,相应的干净度为0.778,碰撞力为320 N,试验验证的干净度为0.698,与理论结果的相对误差较小,约为10%,理论结果与验证结果较一致,表明建立的回归数学模型及优化结果合理.研究结果可为土薯分离质量高的挖拔式木薯收获机弹簧式土薯抖动分离装置的设计提供参考.  相似文献   

11.
针对当前中国自走式蓝莓采收机作业通过性差等问题,建立轮壤接触力学模型,分析车轮驱动力矩、负载、沉陷量及挂钩牵引力等力学行为,得到车轮通过性影响因素为土壤属性、车轮结构参数和行走速度。采用离散元法建立蓝莓采收机轮壤接触模型,以车轮结构参数(宽度195、205、215 mm,直径615、627、639 mm)、行走速度0~11 km/h为试验因素,车轮结构参数或行走速度增加时,车轮阻力矩和土壤波动速度随之增加。依据车轮阻力矩设计行走驱动系统,采用闭式静液压四轮行走驱动系统,通过工况适应性仿真验证各车轮输出特性一致,稳定行走;系统可以克服车轮沉陷,平稳越障。通过样机田间试验得到行走驱动系统满足行驶速度范围0~11 km/h要求,运行平稳;车轮沉陷越障时无非目的性转向偏移,越障时间为3.3 s,与仿真结果一致;行走驱动系统与采收系统匹配性良好,采收效率为7.01 kg/min,果树采净率为92%,果树损伤率为11.5%。研究表明建立的轮壤接触模型可靠,行走驱动系统作业通过性效果好,可为蓝莓采收机研发提供参考。  相似文献   

12.
现阶段国内大豆联合收获机收获作业时由于脱粒、清选系统作业参数调整不当而导致大豆机收损失率、破碎率、含杂率较高。为解决这一问题,该文对影响大豆机收作业质量的相关参数开展田间试验研究,探索各参数对大豆机收作业质量的影响规律,探寻最佳作业参数组合。以机收损失率、破碎率、含杂率为目标,选择脱粒清选系统对作业质量影响较大的前进速度、滚筒转速、脱粒段脱粒间隙、分离段脱粒间隙、导流板角度、分风板角度、风机转速、上筛前部开度、上筛后部开度共9个因素,利用Box-Behnken中心组合试验方法,进行九因素三水平响应面试验,使用Design-Expert对试验结果进行响应面分析,探索各因素对试验指标的影响规律,并构建相关数学模型。试验结果表明:对大豆收获损失率影响较为显著的因素为风机转速、脱粒段脱粒间隙、前进速度、脱粒滚筒转速;对破碎率影响较为显著的因素为脱粒滚筒转速、脱粒段脱粒间隙、前进速度、导流板角度;对含杂率影响较为显著的因素为导流板角度、风机转速、分风板角度、上筛后部开度。通过多目标参数优化,确定最佳工作参数组合为前进速度6 km/h、脱粒滚筒转速450 r/min、脱粒段脱粒间隙25 mm、分离段脱粒间隙20 mm、导流板角度26?、风机转速1 260 r/min、分风板角度11.5?、上筛前部开度19 mm、上筛后部开度11 mm,此时损失率为0.24%、破碎率为0.90%、含杂率为0.14%,田间试验实测损失率、破碎率和含杂率平均值分别为0.24%、0.90%和0.14%,与优化值相对误差分别为0、4.7%和7.7%。研究结果可为大豆联合收获机结构改进和作业参数控制提供参考。  相似文献   

13.
为了解决黏重土壤条件下百合收获时果土分离效果差、埋果率高、破碎率高的问题,设计了一种适合黏重土壤条件下作业的抛送辊式百合收获机。结合百合生长状况以及种植农艺要求,对果土混合物在振动输送装置、抛送辊组上的运动过程及分离作业机理进行分析,构建了黏重土块在抛送辊上抛掷碎土、碰撞碎土的动力学模型,通过分析得到了振动输送装置结构及最大摆动角度、抛送辊组级数、抛送辊轮齿数、抛送辊轮直径及轮廓尺寸等参数。根据设计结果搭建了样机并进行了作业参数的多因素试验,以果土分离机构前进速度、抛送辊转速、挖掘深度为试验因素,百合埋果率、破碎率为试验指标,运用Box-Benhnken试验方法,建立因素与试验指标的回归方程,并得到因素对百合收获指标的影响规律。当试验取最优参数组合为果土分离机构前进速度为0.6 m/s,抛送辊转速为90 r/min、挖掘深度为170 mm时,百合埋果率、百合破碎率的田间试验值分别为6.3%和7.1%。机具各项性能符合设计要求,该研究成果可为百合机械化收获技术及装备研究提供参考。  相似文献   

14.
4UFD-1400型马铃薯联合收获机改进设计与试验   总被引:2,自引:10,他引:2  
针对4UFD-1400型马铃薯联合收获机田间收获试验中存在的传动速度偏高,输送系统易对薯块表皮造成擦伤,薯块输送和分级装袋自然流动不畅,有滞留堆积现象等问题,对该机传动系统、薯块输送系统进行了改进设计,并在平播旱地和全覆膜双垄播旱地进行了马铃薯收获试验。试验结果表明,改进机型土薯分离、薯秧分离、薯块输送、分级装袋等各部分的工作更协调、平稳、可靠,对全膜双垄播旱地和平播旱地马铃薯收获的质量和适应性好,对薯秧、杂草、地膜的分离能力强,可在不清除地膜、薯秧和杂草的条件下不缠绕、不堵塞地顺利作业;损失率、伤薯率、破皮率和含杂率分别低于0.8%、1.8%、2.9%和1.2%,较改进前显著降低,符合国家农业行业标准《NYT 1130-2006马铃薯收获机械》的规定;整机结构更紧凑,机组机动性更好,适用于土质松软、无板结的旱地(覆膜)种植马铃薯收获作业。  相似文献   

15.
自走式牧草青贮联合装袋机设计与试验   总被引:2,自引:1,他引:1  
针对目前中国牧草收贮设备不能将盛产期的牧草切割后直接装袋而造成的运输成本高、工序多、营养损失大等问题,提出了将牧草在田间进行收割、粉碎、装袋、扎口联合作业的青贮保存方法,并设计了一种自走式牧草青贮联合装袋机。该文描述了机器的总体设计方案,并对输送粉碎装置、牧草粉碎后螺旋挤压等装置进行了设计,确定了其关键参数值。该研究进行了含水率为78%的牧草试验,机器前进的平均速度为2.3 m/s、割茬高度为5~15 mm,螺旋压缩比为2:1,临界旋转速度为99 r/min,样机能够顺利工作,装袋的密度能达到320 kg/m3,装袋平均时间为30 s每袋。机型的设计不仅能够提高劳动生产率,方便取饲喂养,而且为青贮牧草的收获存储提供了新的方法。  相似文献   

16.
纵轴流脱粒装置水稻最佳脱粒分离参数预测与控制   总被引:1,自引:1,他引:0  
在水稻脱粒过程中,脱粒滚筒的转速、凹板间隙、齿间距等是脱粒籽粒损失率和脱粒功耗的重要影响因素。为获得水稻联合收割机上纵轴流脱粒滚筒的最佳脱粒参数组合及可控范围,在自行研制的切纵流脱粒分离试验台上开展了水稻脱粒分离性能试验研究。对纵轴流滚筒在不同脱粒滚筒转速、凹板间隙、齿间距参数组合下进行水稻脱粒性能台架试验研究,并对试验结果进行回归分析和置信度分析。将获得的最佳操作参数置信区间用于控制纵轴流滚筒的水稻脱粒性能并预测其最优参数组合,同时进行了验证。结果表明,为将纵轴流脱粒滚筒的总损失率控制在0.33%以内且将脱粒功耗控制在46.36 kW以内,则具有95%置信度的纵轴流滚筒转速为772.61~905.74 r/min、脱粒间隙为22.18~37.93mm、齿间距为104.96~170.17 mm,其相应的纵轴流滚筒最佳转速为839 r/min、凹板间隙为30 mm、齿间距为138 mm。该研究对于降低纵轴流滚筒的脱粒功耗和籽粒损失具有重要意义,同时可为水稻联合收割机纵轴流脱粒滚筒最佳结构及参数设计提供参考。  相似文献   

17.
大蒜联合收获切根试验台设计与试验   总被引:2,自引:1,他引:2  
为了提高大蒜联合收获切根作业性能,解决大蒜切根过程中根系一次清除率低、蒜头损伤率高等问题,该文设计了一种大蒜联合收获切根试验台,该试验台主要由毛刷辊、前旋转切刀、夹持输送机构、排序-对齐机构、浮动切根机构等组成,可一次性完成蒜株的根系清理和预切、蒜株排序和对齐、根系浮动切割等作业工序。该文确定了切根装置关键结构参数和作业参数,并对影响切根作业质量的主要因素开展了试验研究。试验结果表明,影响切根作业质量的主次作用因素为夹持输送速度、夹持角度、浮动切刀转速,较优参数组合方案为夹持输送速度1.05 m/s、夹持角度79°、浮动切刀转速2 200 r/min(切割线速度为17.3 m/s),此时根系去净率为96.1%,蒜头伤损率为2.39%,满足大蒜切根作业质量要求。该文研究结果可为大蒜联合收获切根装置的设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号