首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
Serological detection of Citrus psorosis virus (CPsV) by direct tissue blot immunoassay (DTBIA) and by double (DAS) and triple (TAS) antibody sandwich ELISA, was compared in samples from various citrus varieties growing in the glasshouse and in the field. In young shoots and leaves, CPsV was readily detected by the three procedures, whereas DTBIA detection in old leaves was less consistent. DTBIA detection and ELISA readings in nine different citrus varieties were similar, suggesting that CPsV accumulates to equivalent levels in all of them. In infected field trees from Spain or Italy, CPsV was consistently detected by TAS ELISA, even in samples of old leaves in winter, whereas DTBIA detection in the same trees was reliable only when using young shoots. Detection of CPsV by DTBIA and by DAS and TAS ELISA in previously untested field trees correlated perfectly with psorosis diagnostics based on biological indexing, specifically with the capacity of those sources to cross-protect against challenge inoculation with psorosis B. Some trees without bark scaling were shown to be psorosis-infected by biological indexing and to contain CPsV by serological tests; other trees showing psorosis-like bark or leaf symptoms in the field were shown to be psorosis-free by biological indexing and also CPsV-free by serology. This is the first time that the presence of CPsV has been correlated with psorosis infection as diagnosed by biological indexing.  相似文献   

2.
Citrus psorosis virus (CPsV), the type species of genus Ophiovirus, is the presumed causal agent of a bark scaling disease in citrus plants. CPsV virions are kinked filaments composed of three negative‐strand RNA molecules and a ~48‐kDa coat protein. The virus induces two different syndromes: psorosis A (PsA), characterized by limited bark scaling lesions in the trunk and main limbs, and a more aggressive form of the disease called psorosis B (PsB) with rampant bark lesions affecting even thin branches and chlorotic blotches in old leaves. In the greenhouse, the PsA and PsB syndromes can be induced by graft inoculating healthy citrus seedlings with non‐lesion or with lesion bark inoculum from PsA‐affected field trees. PsA‐ and PsB‐inducing CPsV sub‐isolates obtained by this procedure from the same tree showed identical single‐strand conformation polymorphism (SSCP) profiles in homologous segments of the RNAs 1 and 3, whereas segments of the RNA 2 enabled discrimination between PsA‐ and PsB‐associated sequence variants. SSCP analysis of the RNA 2 population present in different tissues of psorosis‐infected plants showed that: (i) PsA‐inducing isolates contain PsB‐associated sequence variants at low frequency, (ii) the PsB‐associated sequence variant is predominant in blistered twigs and gummy pustules affecting old leaves, characteristic of PsB isolates, and (iii) the PsB‐associated sequence variant accumulates preferentially in bark lesions of the trunk and limbs. SSCP analysis of the RNA 2 population also enabled monitoring of interference between PsA‐ and PsB‐associated variants in plants co‐inoculated with both psorosis types.  相似文献   

3.
2005年5月到2006年4月逐月采样,运用一步法RT-PCR检测Citrus psorosis virus(CPV)在Dweet橘橙苗木叶片和枝皮中的分布。保存在控温温室中的Dweet橘橙病株中老叶、老皮、嫩叶和嫩皮全年都可以检测出CPV;保存在网室中的Dweet橘橙病株中老叶、老皮全年均能检测到CPV,而夏梢的嫩叶、嫩皮不能稳定地检测出CPV,春、秋梢的嫩叶、嫩皮均可检测到CPV,表明一步法RT-PCR检测CPV最佳取样部位为老叶和老皮。  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号