首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soils frequently develop from mixtures of different parent materials. We quantified the contributions of different parent materials to the substrate for recent soil development using trace metal concentrations and Pb isotope ratios as input data for end‐member mixing analyses (EMMAs). We examined six transects (320–775 m) at two sites in the Rhenish Slate Mountains. Soil types ranged from acid Cambisols to stagnic Luvisols developed from periglacial cover‐beds. Sixteen O, 11 A, 120 B and 10 C horizons were analysed for total trace metal concentrations and partly also 206Pb:207Pb ratios. Most metal concentrations in the B horizons were in the background range, except for Pb, which partly had elevated concentrations of up to 135 mg kg−1. The depth distribution of metal concentrations and 206Pb:207Pb ratios suggested that metals deposited from the atmosphere had hardly reached the B horizons. A principal component analysis (PCA) of the trace element concentrations in the 120 B horizons identified four main metal sources of the B horizons, which we interpreted as bedrock (slate), loess, Laacher See tephra (LST) resulting from the last volcanic eruption in the Eifel mountains and ore veins. The slate was characterized by Cr and Zn, the loess by Zr, the LST by Nb and the ore veins by Pb. Based on EMMAs with four end‐members using two different sets of tracers (Set 1: concentration ratios of Zr:Cr, Nb:Cr, Pb:Cr, Set 2: Zr:Zn, Nb:Zn, and Pb:Zn), slate, loess and LST contributed, on average, 39–40, 22–24 and 37–38%, respectively, at Site 1 and 19–21, 53–63 and 18–26%, respectively, at Site 2. In contrast, the ore contribution was consistently estimated at 0%. An additional EMMA with two end‐members based on the 206Pb:207Pb ratios estimated the contribution of the ore at 0.02%. We conclude that EMMAs based on trace element concentrations and isotope ratios provide a tool for determining the contribution of different parent materials to the substrate from which soils develop, at least at a small regional scale and if an appropriate tracer that distinguishes all the considered substrates is found.  相似文献   

2.
Isotope ratios of Pb may provide the opportunity to determine the contribution of Pb from a point source to Pb concentrations in soil. Our objective was to quantify the contribution of anthropogenic Pb to total Pb and chemical Pb fractions in contaminated soil profiles with the help of 206Pb/207Pb isotope ratios. We sampled 5 forest and 5 arable Cambisols along a transect from a Cu smelter and determined Pb concentrations and 206Pb/207Pb isotope ratios in total digests of all horizons and in 7 chemical fractions of the A horizons. In the organic layer under forest, Pb concentrations decreased from 2155 mg kg—1 at 1.1 km distance from the smelter to 402 mg kg—1 at 8 km distance; in the Ap horizons, it decreased from 126 to 72 mg kg—1. In the total digests, 206Pb/207Pb isotope ratios could be explained by simple mixing of smelter‐ and background‐Pb as indicated by the correlation between the inverse of the Pb concentration and the 206Pb/207Pb ratio (r = 0.93). The mean proportion of smelter‐Pb in soil horizons decreased with depth from 87% (Oi) to 21% (C) under forest and from 64% (A) to 30% (B) in the arable soils. The smelter‐Pb proportions in the B horizons ranged from 6 to 66% and were independent of the distance from the smelter indicating variable leaching rates. The 206Pb/207Pb ratios in the chemical fractions could not be explained by a simple mixing model. Thus, the 206Pb/207Pb ratios may be used to determine the contribution of anthropogenic Pb in total digests but not in chemical Pb fractions.  相似文献   

3.
Soils in urban areas are often artificially formed and preserved as cultural layers in which soil materials are mixed with artifacts. The vertical change of soil properties denotes the historical change of human activities, and therefore, urban soil can be considered as a record of history of urban development. We studied a deep profile of urban soil (600 cm) in Nanjing, China, by intensively sampling at every 5 cm. Soil samples were analyzed for lead content. Charcoal from several layers was found and was dated using 14C to recognize archaeological cultural layers that might be formed in different Chinese dynasties. Pb isotope ratios were determined by thermal ionization mass spectrometry (TIMS) technology. The study found that artificial deposition, i.e., the formation of cultural layer started about 1700 years ago and lasted until recently. All cultural layers above the original loess were heavily contaminated by Pb with total content varying from 100 mg kg− 1 to more than 2000 mg kg− 1. There were several historical periods in which Pb content peaked, indicating significant contamination by human activities, such as ancient ore smelting for various purposes and use of Pb-containing materials for handicraft manufacture. Various Pb isotope ratios of the cultural layers differed substantially from that of the original undisturbed loess in the deepest position. 206Pb/207Pb value decreased gradually from the bottom layer to top layer, although with occasional exceptions, indicating a long-lasting mixing of extraneous sources of Pb during the entire history since ca. 300 A.D. In comparison with the isotope ratios of lead ores of different sources and that of aerosols, it was illustrated that the source of Pb in cultural layers might come from lead ores of southern China in the earlier dynasties, while Pb from north China might have contributed to the Pb source in the more recent years, suggested by the lowering of 206Pb/207Pb ratio in the near-surface cultural layers. However, the impact of petrol burning on cultural layers was basically excluded, considering the relatively short history of petroleum use in this area.  相似文献   

4.
The composition of tree rings and soils was studied at several locations affected by smelting and transportation in the vicinity of Kitwe (Copperbelt, Zambia). The contents of cobalt (Co), copper (Cu), manganese (Mn), and lead (Pb) and the 206Pb/207Pb isotope ratios in the tree rings were interpreted in relation to potential sources of contamination such as smelter production, acidification of the environment, soil composition, raw material processing, and atmospheric suspended particulate matter (SPM). The highest Co contents in the tree rings correspond to maximum ore production in the mid-1970s. Acidification through SO2 emissions is documented in the increased Mn contents from the mid-1980s. The isotopic composition of the tree rings of the studied tree species varies in the interval 1.16?C1.34 and the youngest parts of all the studied trees exhibit a low 206Pb/207Pb ratio (<1.17). The soil isotope composition varies in the range 206Pb/207Pb?=?1.18?C1.35. The Pb isotope composition in the soils and tree rings was formed by a combination of lithogenic Pb (206Pb/207Pb????1.3), Pb in processed ores (206Pb/207Pb????1.2), and SPM (automobile) Pb (206Pb/207Pb??1.1). As the soils in the distant region have high 206Pb/207Pb ratios (>1.3) in the whole profile and simultaneously the youngest parts of the tree rings of tree species growing in this soil have a low 206Pb/207Pb ratio (<1.17), it can be assumed that the Pb in the youngest parts of the tree species is derived from absorption of SPM Pb through the bark rather than root uptake. The absence of Pb with a low 206Pb/207Pb ratio in soils in the distant area is probably affected by fires in the herbaceous and bush undergrowth and plant litter, which prevents Pb from biomass from entering the soil and mobilize it back into the atmosphere.  相似文献   

5.
The content of Pb, Cd, Mn, K, Ca, Mg and 206Pb/207Pb isotope ratios in spruce tree rings (Picea abies) and peat cores from the Brdy Hills area (10 km W of the Pb smelter) were compared with those in spruce tree rings in the vicinity of the Pb smelter. Maximum Pb content in tree rings (up to 60 mg kg?1 Pb) corresponds to a peak of metallurgical production in the mid 1970s and highest smelter emissions in the early 1970s. The Pb concentration curves obtained from peat deposit profiles closely correlate with the Pb concentrations in tree rings at both sampling sites. The small differences between the individual tree cores, with the identical general trend, may be attributed to the difference in distance from the smelter and the altitude of each sampling site. Similar behaviour to Pb can be observed for Cd and Ca. Lead isotope composition in tree rings (206Pb/207Pb ~1.143–1.174) is controlled mainly by the smelter emissions (206Pb/207Pb ~1.16–1.17), with the exception of the youngest segments from the more distant locality from the smelter, which yield isotopic signatures corresponding to car-emission Pb (206Pb/207Pb ~1.143–1.150). Higher content of Mn, Mg and Ca in tree rings corresponding to the 1970s and 1980s may be related to soil chemistry changes caused by acid deposition. In addition, an increase in K, Mg (and in some cases also Mn) in the youngest part of wood cores corresponds to the physiological processes in sapwood, and may be influenced by a decrease in Pb in organic soil horizons, which limited the cycling of basic inorganic nutrients.  相似文献   

6.
More than 30 epiphytic lichens, collected in Agadir (Morroco) and along a 150-km transect from the Atlantic Ocean eastward, were analyzed for their metal content and lead isotopic composition. This dataset was used to evaluate atmospheric metal contamination and the impact of the city on the surrounding area. The concentrations of Cu, Pb, and Zn (average ± 1 SD) were 20.9 ± 15.2 μg g−1, 13.8 ± 9.0 μg g−1, and 56.6 ± 26.6 μg g−1, respectively, with the highest values observed in lichens collected within the urban area. The 206Pb/207Pb and 208Pb/207Pb ratios in the lichens varied from 1.146 to 1.186 and from 2.423 to 2.460, respectively. Alkyllead-gasoline sold in Morocco by the major petrol companies gave isotopic ratios of 206Pb/207Pb = 1.076–1.081 and 208Pb/207Pb = 2.348–2.360. These new, homogeneous values for gasoline-derived lead improve and update the scarce isotopic database of potential lead sources in Morocco, and may be of great value to future environmental surveys on the presence of lead in natural reservoirs, where it persists over time (e.g., soils and sediments). The interest of normalizing metal concentrations in lichens to concentrations of a lithogenic element is demonstrated by the consistency of the results thus obtained with lead isotopic ratios. Leaded gasoline contributed less than 50% of the total amount of lead accumulated in lichens, even in areas subject to high vehicular traffic. This strongly suggests that the recent banishment of leaded gasoline in Morocco will not trigger a drastic improvement in air quality, at least in Agadir.  相似文献   

7.

Purpose

The metal concentrations and Pb isotopic composition in sediments and plants from the Xiangjiang River, China, were investigated to understand the contamination and potential toxicity of metals in sediments; to determine the accumulation and distribution of metals in plant tissues; and to trace the possible pollution source of Pb in sediments and plants.

Materials and methods

Sediments and plants were collected from 43 sampling sites in the study region. After sediments were air-dried and passed through a 63-??m sieve, they were acid-digested and DTPA-extracted for determination of total and bioavailable metals. The plants were separated into roots, leaves, and stems; dried; cut into pieces; and digested with HNO3?CH2O2. Metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) and Pb isotopic composition were analyzed by inductively coupled plasma-mass spectrometry.

Results and discussion

Maximum As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in sediments were 47.18, 55.81, 129.5, 161.6, 160.4, 430.7, and 1,098.8?mg?kg?1, respectively. The bioavailable fractions of As, Cd, Cu, Pb, and Zn had significant linear relationship with their corresponding total contents in sediments while no significant relationship was observed between bioavailable and total contents of Cr and Ni. In general, plant tissues showed higher As, Cd, Cu, Pb, and Zn concentrations and lower Cr and Ni concentrations compared with sediments. The 206Pb/207Pb ratios decreased in the order of total > bioavailable > stems ?? leaves > roots. A strong linear correlation was observed between the 208Pb/206Pb and 206Pb/207Pb ratios of the plant tissues, sediments, and the possible pollution sources of Pb in the Xiangjiang River.

Conclusions

As, Cd, Cu, Pb, and Zn demonstrated higher contamination levels in sediments and plants compared with Cr and Ni. Cd had highest potential ecological risk. The Pb from anthropogenic sources with low 206Pb/207Pb ratios was preferentially associated with the bioavailable fractions in sediments and accumulated in roots. The Pb in plant tissues is mainly derived from the Pb in sediment and is taken up through the sediment-to-root pathway.  相似文献   

8.
Arsenic (As), lead (Pb), copper (Cu) and zinc (Zn) can be found in large concentrations in mine spills of central and northern Mexico. Interest in these heavy metals has increased recently as they contaminate drinking water and aquifers in large parts of the world and severely affect human health, but little is known about how they affect biological functioning of soil. Soils were sampled in seven locations along a gradient of heavy metal contamination with distance from a mine in San Luis Potosí (Mexico), active since about 1800 AD. C mineralization and N2O production were monitored in an aerobic incubation experiment. Concentrations of As in the top 0-10 cm soil layer ranged from 8 to 22,992 mg kg−1, from 31 to 1845 mg kg−1 for Pb, from 27 to 1620 mg kg−1 for Cu and from 81 to 4218 mg kg−1 for Zn. There was a significant negative correlation between production rates of CO2 and concentrations of As, Pb, Cu and Zn, and there was a significant positive correlation with pH, water holding capacity (WHC), total N and soil organic C. There was a significant negative correlation (P<0.05) between production rate of nitrous oxide (N2O) attributed to nitrification by the inhibition method in soil incubated at 50% WHC and total concentrations of Pb and Zn, and there was a significant positive correlation (P<0.05) with pH and total N content. There was a significant negative correlation (P<0.05) between the production rate of N2O attributed to denitrification by the inhibition method in soil incubated at 100% WHC and total concentrations of Pb, Cu and Zn, and a significant positive correlation (P<0.01) with pH; there was a significant positive correlation (P<0.05) between the production of N2O attributed to other processes by the inhibition method and WHC, inorganic C and clay content. A negative value for production rate of N2O attributed to nitrifier denitrification by the inhibition method was obtained at 100% WHC. The large concentrations of heavy metals in soil inhibited microbial activity and the production rate of N2O attributed to nitrification by the inhibition method when soil was incubated at 50% WHC and denitrification when soil was incubated at 100% WHC. The inhibitor/suppression technique used appeared to be flawed, as negative values for nitrifier denitrification were obtained and as the production rate of N2O through denitrification increased when soil was incubated with C2H2.  相似文献   

9.
Seventy-five samples of six soil profiles from forests on different substrates plus one next to a motorway were analyzed for the variation of Pb concentration and isotopic composition with depth. A substantial fraction of the anthropogenic Pb (peak concentrations between 74 and 300 ppm) is still stored in the organic top soil, and seldom penetrates deeper than 20–30 cm. In (208Pb/206Pb) vs. (207Pb/206Pb)-diagrams the Pb in the uppermost layers of the profiles plots on an excellent correlation line (R = 0.99) indicating essentially a two-component mixing system. Values for the dust on Scottish plants, Norwegian and Swiss bogs as well as for aerosols collected over the North Atlantic (data from the literature) plot on the same correlation line showing that the Pb was deposited from a continent-wide mixing system with two apparent end members: The radiogenic one is similar to geogenic Pb and could consist of contributions from certain European ore deposits and from different soil components (e.g. silicates and Fe-oxides), power plants and cement factories. The less radiogenic component must contain or consist of Pb from Proterozoic or even Archaic ore deposits. However, the sources of this Pb remain somewhat elusive. In any case, this isotopic pattern is so consistent all over Europe that the correlation line may serve as a line of reference for quasi normal or European Standard Lead Pollution (ESLP). The gasoline derived Pb in the soils is swamped by Pb of other provenances.  相似文献   

10.
The fate of organic matter (OM) in large-scale infiltration basins used for wastewater treatment by the soil aquifer treatment (SAT) system was investigated. Measured changes in the organic matter concentrations in the soil profiles of the infiltration basins and detailed long-term records of OM concentrations in the recharged effluent and in the observation wells and recovery wells water, were used to calculate OM material balances in the SHAFDAN wastewater treatment plant, serving the City of Tel-Aviv, Israel, since 1977. The average annual total organic matter (TOM) load delivered by the effluents to the soil was ~ 5 kg m− 2 y− 1. Soil OM concentrations increased from 0.11% in the pristine soil to ~ 0.8% and ~ 0.6%, in the 0-0.15 m and 0.15-0.30 m soil layers, respectively, after ~ 20 y of effluent recharge, but did not change significantly in the 1.80-2.10 m deep layer. The OM accumulation rates in the top two soil layers were fast initially, then declined slowly and the OM concentrations approached a steady state following 10-15 y of effluent recharge. This suggests that stabilization of the ‘active biofilm’ layer in the infiltration basins' soils is a relatively slow process. Material-balance calculations showed, that accumulated OM in the top 0-2.1 m soil layer amounted to only ~ 4% of the TOM added by the effluents during ~ 20 y of recharge. Along the flow pathway of the effluent through the vertical 50-100 m thick soil-sediment column, DOC concentrations decreased by 70-90% (from ~ 18.9 mg L− 1 to ~ 3.7 mg L− 1). Continued flow in the aquifer from the observation wells to the recovery wells further decreased DOC concentrations by about 50% (from ~ 3.7 to ~ 1.5 mg L− 1).  相似文献   

11.
Current and past industrial pollution leaves many traces in the environment, in particular along rivers in industrial and urban areas. The isotopic analysis of the lead found in soils and tree rings offers a kind of environmental archive for presenting a portrait of the pollutant distribution in the environment in both spatial and temporal terms. This study is an attempt to identify and compare the source of contamination found in soils and tree rings located along two rivers affected by pollution over several years. Specifically, the focus is on the pattern of lead concentrations and lead isotopic signatures (206Pb/207Pb, 208Pb/206Pb, and 206Pb/204Pb) detected in soils and tree rings located on polluted floodplains. The concentration of Pb in overbank sediments does not rise with the increasing distance downstream from the point source (mining area), suggesting that significant fluvial transport of the pollutant particles over 80 km is involved. For the soil profiles, Pb concentration levels range between 12.32 and 149.13 mg/kg, with the highest concentrations found at the base of the profiles (>1 m). For the lead isotope ratios in the soil profiles, the values obtained range from 0.851 to 0.872 (206Pb/207Pb), 2.081 to 2.111 (208Pb/206Pb), and 0.547 to 0.562 (206Pb/204Pb). The tree ring analysis of red ash (Fraxinus pennsylvanica Marsh.) shows average lead concentrations of 0.63 μg/g, and the lead values of all the tree specimens range between 0.03 and 11.38 μg/g. Pb concentrations varied greatly between the specimens in selected sites and lead isotope ratios in the tree rings showed a strong variability in the time series, particularly from 1945 to 1970. The greater number of variations in the lead concentration rates and isotopic ratios suggest that many more events associated with pollution and contamination have in fact occurred in this area. The study demonstrates the utility of combining stable isotope analyses (soils and tree rings) to examine the source and dispersion of contaminant Pb in fluvial systems by providing reliable and robust indicators for the detection of environmental changes on a local and regional scale.  相似文献   

12.
The concentrations of Zn, Cd, Pb and Cu in earthworm tissues were compared with the total and DTPA-extractable contents of these heavy metals in contaminated soils. Samples were taken from a pasture polluted by waste from a metallurgic industry over 70 y ago. Three individuals of Aporrectodea caliginosa and Lumbricus rubellus and soil samples were collected at six points along a gradient of increasing pollution. Total metal contents of earthworms, soil, and metals extracted by DTPA from the soil were measured. Total heavy metal contents of the soils ranged from 165.7 to 1231.7 mg Zn kg−1, 2.7 to 5.2 mg Cd kg−1, 45.8 to 465.5 mg Pb kg−1 and 30.0 to 107.5 mg Cu kg−1. Their correlations with metals extracted by DTPA were highly significant. Contents of the metals in earthworm tissues were higher in A. caliginosa than in L. rubellus, with values ranging from 556 to 3381 mg Zn kg−1, 11.6 to 102.9 mg Cd kg−1, 1.9 to 182.8 mg Pb kg−1 and 17.9 to 35.9 mg Cu kg−1 in A. caliginosa, and from 667.9 to 2645 mg Zn kg−1, 7.7 to 26.3 mg Cd kg−1, 0.5 to 37.9 mg Pb kg−1 and 16.0 to 37.6 mg Cu kg−1 in L. rubellus, respectively. Correlations between body loads in earthworms with either total or DTPA-extractable contents of soil metals were significant, except for Cd in L. rubellus and Cu in A. caliginosa. Considering its simple analytical procedure, DTPA-extractable fraction may be preferable to total metal content as a predictor of bio-concentrations of heavy metals in earthworms. Biota-to-Soil Accumulation Factor (BSAF) of these four metals are Cd>Zn>Cu>Pb, with range of mean values between: Cd (6.18-17.02), Zn (1.95-7.91), Cu (0.27-0.89) and Pb (0.08-0.38) in A. caliginosa, and Cd (3.64-6.34), Zn (1.5-6.35), Cu (0.29-0.87) and Pb (0.04-0.13) in L. rubellus. The BSAF of Ca, Fe and Mn are Ca>Mn>Fe, with mean values of: Ca (0.46-1.31), Mn (0.041-0.111), Fe (0.017-0.07) in A. caliginosa and Ca (0.98-2.13), Mn (0.14-0.23), Fe (0.019-0.048) in L. rubellus, respectively. Results of principal component analysis showed that the two earthworm species differ in the pattern of metal bioaccumulation which is related to their ecological roles in contaminated soils.  相似文献   

13.
Ten soil colloids were obtained from three kinds of Fe-rich (> 50 g kg− 1) subtropical soil parent materials (Basalt, Sandshale, and Quaternary Period Red Earth) collected in nine sites in Guangdong of China. Effect of the Fe-rich soil colloids and adding Fe(II) and oxalic acid on reductive dechlorination transformation of pentachlorophenol (PCP) were studied on colloids interfaces of reaction suspension. Mineralogical properties and specific surface area of the soil colloids were characterized by X-ray powder diffraction and Brunauer-Emmett-Teller (BET) methods, respectively. A series of reductive experiments were designed to determine PCP transformation and chloride ion release, and to calculate rate constant (k values) of pseudo first-order kinetics. Our results showed that reductive transformation of PCP occurred with k values from 0.007 to 0.057 d− 1, and relevant chloride was released in the suspension of the ten soil colloids. Soil colloid developed from Basalt presented higher transformation rates (0.040-0.057 d− 1) than that from Sandshale (0.007-0.033 d− 1) and Quaternary Period red earth (0.012 d− 1). Two paddy soil colloids developed from Sandshale (0.032-0.033 d− 1) were more active than other three Sandshale soil colloids (0.007-0.011 d− 1). The k values were significantly and positively correlated to the BET surface area (P < 0.01, n = 10). Addition of oxalic acid (0.022-0.231 d− 1) or Fe(II) (0.029-0.256 d− 1) into suspension of soil colloids gave arise to increase by 1.2-9.4 times in the k values. The release of chloride ion was simultaneously elevated. The enhancement of oxalic acid or Fe(II) on reductive transformation of PCP was attributed to increase of surface-bound Fe(II), which possess high reductive reactivity. The k values adding 1.0 mM oxalic acid were significantly and positively correlated to BET surface area and soil pH (P < 0.01), while k values adding 1.0 mM Fe(II) were related to total Fe (P < 0.001). The results may give new insight to understand the contribution of PCP abiotic reductive transformation in subtropical and tropical soils, and also in permeable reactive barriers.  相似文献   

14.
Saturated hydraulic conductivity (Ks) is one of the soil properties used most often to predict soil behavior and suitability for a variety of uses. Because of the difficulty in Ks measurement and its variability with depth and across the landscape, Ks is commonly predicted from other more easily evaluated properties including texture, clay mineralogy, bulk density, pedogenic structure and cementation. Of these, texture and pedogenic structure are most commonly used to estimate Ks, but the reliability of these estimates has not been evaluated for common soils in the Southern Piedmont of Georgia. Thus, the objectives of this study were to evaluate Ks for major horizons in soils and landscapes in the Georgia Piedmont and to relate Ks to morphological properties of these horizons. Ten sites across the region were selected, and 21 pedons arranged in three transects were described from auger holes and pits. For each pedon, Ks was measured in upper Bt horizons, at 140 cm below the surface (Bt, BC, or C horizon), and at a depth intermediate between the shallow and deep measurements (Bt, BC, or C horizon) with a constant head permeameter. The Ks of individual horizons ranged from 1 × 10− 8 to 2 × 10− 5 m s− 1. At six of 10 sites evaluated, clayey upper Bt horizons had higher Ks than deeper horizons with less clay. This difference was attributed to weaker structure in the deeper BC horizons. Structural differences did not explain all variation in Ks with depth, however. Other soil and landscape properties including parent material composition, colluvium on lower slope positions, C horizon cementation, and depth of soil development also affected Ks of horizons in these soils and should be used to better estimate Ks.  相似文献   

15.
In the Eastern Rif of N Morocco, soil conservation is seriously threatened by water erosion. Large areas of soil have reached an irreversible state of degradation. In this study, the 137Cs technique was used to quantify erosion rates and identify the main factors involved in the erosion process based on a representative catchment of the Eastern Rif. To estimate erosion rates in terms of the main factors affecting soil losses, samples were collected taking into account the lithology, slope and land use along six selected transects within the Boussouab catchment. The transects were representative of the main land uses and physiographic characteristics of that Rif sector. The reference inventory for the area was established at a stable, well preserved, matorral site (value of 4250 Bq m− 2). All the sampling sites were eroded and 137Cs inventories varied widely (between 245 and 3670 Bq m− 2). The effective soil losses were also highly variable (between 5.1 and 48.8 t ha− 1 yr− 1). Soil losses varied with land use. The lowest average values were on matorral and fallow land (10.5 and 15.2 t ha− 1 yr− 1, respectively) but much higher with alfa vegetation or cereal crops (31.6 and 27.3, respectively). The highest erosion rate was on a badland transect at the more eroded part of the catchment, with rates exceeding 40 t ha− 1 yr− 1 and reaching a maximum of 48.8 t ha− 1 yr− 1.The average soil losses increased by more than 100% when the slope increased from 10° (17.7 t ha− 1 yr− 1) to 25° (40. 8 t ha− 1 yr− 1). Similar results were obtained when comparing erosion rates in soils that were covered by matorral with respect to those under cultivation. Lithology was also a key factor affecting soil loss. Soils on marls were more erodible and the average erosion rates reached 29.36 t ha− 1 yr− 1, which was twice as high as soils on the glacis and old fluvial terraces (average rates of 14.98 t ha− 1 yr− 1). The radiometric approach was very useful to quantify erosion rates and to examine the pattern of soil movement. The analysis of main erosion factors can help to promote rational soil use and establish conservation strategies in the study area.  相似文献   

16.
The combined effects of isolation within an unfavourable matrix and vegetation development were studied in patches of scrub vegetation on a tropical inselberg (Nouragues, French Guiana). Three thickets ∼10 m2 area were sampled, located at ∼30 m distance from each other, in which the same vegetation types were present at less than 3 m distance: canopies of Clusia minor (Clusiaceae) and Myrcia saxatilis (Myrtaceae), two stages of thicket development, and zones of destruction by fire. The shallow organic soil was sampled over ∼2 dm2 and down to 10 cm. The matrix was comprised of granite without any soil development. Arthropods were classified into morphospecies and their food diets were characterized by optical methods. The effect of isolation (between-thicket variation) on morphospecies composition was negligible, while that of vegetation type and fire (within-thicket variation) was prominent, as ascertained by principal component analysis and tested by partial redundance analysis. The importance of keystone structures (stages of vegetation development) was stressed, and interpreted to the light of taxonomic and foodweb knowledge.  相似文献   

17.
Lead (Pb) pollution in and around Ulaanbaatar is of national concern, given that the Mongolian capital is home to nearly half of the country’s entire population. By comparison, Mongolian countryside is a pristine environment because of its sparse population and low industrial activity. The concentration of Pb in urban soils (average of 39.1 mg kg–1) was twice the values found (average 18.6 mg kg–1) in background territories (i.e., Mongolian rural sites). Furthermore, Pb contamination was examined by using Pb stable isotopic composition, and covariance of Pb isotopic ratios showed two groups between rural and urban soils as pristine and disturbed sites. The 206Pb/207Pb ratio, the most prominent fingerprint for Pb pollution, was 1.163–1.185 for the urban whereas values for rural soils (1.186–1.207) were analogue to the regional Pb isotopic signatures. Local coal sources and their combustion products, one of the potential Pb pollution sources in Ulaanbaatar, have significant radiogenic properties in terms of Pb isotopic composition and revealed an average of 1.25 for 206Pb/207Pb and 19.551 for 206Pb/204Pb ratios. Thus, contributions from coal firing activity to Pb pollution lower than it was assumed, and smaller range of these values measured in urban soils may be attributed to the mixing of less radiogenic Pb as a constituent of the leaded gasolines.  相似文献   

18.
Anthropogenic contributions of lead to the urban environment havebeen dominated by combustion of leaded gasoline. A number of studies have used lead concentrations in road deposited sediments(RDSs) to infer automobile contributions. However, few studies have combined concentration data, enrichment ratios, and lead isotope ratio data into a comprehensive picture of lead contamination of road sediments. An urban, non-industrialized basin, in Oahu, Hawaii, was selected for investigation. Twenty RDSsamples were collected throughout the 11 km2 system, with anundisturbed soil profile sampled to a depth of 30 cm to documentbackground lead levels.Median lead concentrations from a weak (cold) HCl digestion and a hot nitric acid digestion were 3 and 7 mg kg-1 for thebackground soil, and 256 and 303 mg kg-1 for RDSs. The median Pb enrichment ratio (HCl digestion) for RDSs was 129, witha range from 24 to 883. All the data collected point to a highlycontaminated environment.Lead isotope ratios from potential sources were examined relativeto those observed for RDSs in the system. Host geological rocks,paint, and long-range aerosol transport were ruled-out as significant sources based on an examination of isotope ratios andpotential loadings to road sediments. Leaded gasoline wasidentified as the major contributor to present-day road sedimentsbased on their radiogenic nature, with mean 206Pb/204Pb = 18.787 ± 0.096 (95% confidence interval), 207Pb/204Pb = 15.847± 0.074, 208Pb/204Pb= 38.836 ± 0.221, and 206Pb/207Pb = 1.184 ± 0.009. The contribution of gasoline additives to RDS for two periods, pre-1968 and post-1968, were estimated using 206Pb/207Pb ratios. The average contribution of post-1968 lead to RDSs was 59%, with a range from 32 to 81%. To explain the mixed age of lead in the RDSs, we suggest that erosional processes have mobilized sediment from roadside reservoirs in the basin that have accumulated automobile emissions primarily since the 1930s. The significant shift in useof radiogenic (J-type) ores, mostly from Missouri, USA, have allowed us to fingerprint and apportion lead in RDSs of thissystem.  相似文献   

19.
Spatial patterns of soil δ13C were quantified in a subtropical C3 woodland in the Rio Grande Plains of southern Texas, USA that developed during the past 100 yrs on a lowland site that was once C4 grassland. A 50 × 30 m plot and two transects were established, and soil cores (0–15 cm, n = 207) were collected, spatially referenced, and analyzed for δ13C, soil organic carbon (SOC), and soil particle size distribution. Cross-variogram analysis indicated that SOC remaining from the past C4 grassland community co-varied with soil texture over a distance of 23.7 m. In contrast, newer SOC derived from C3 woody plants was spatially correlated with root biomass within a range of 7.1 m. Although mesquite trees initiate grassland-to-woodland succession and create well-defined islands of soil modification in adjoining upland areas at this site, direct gradient and proximity analyses accounting for the number, size, and distance of mesquite plants in the vicinity of soil sample points failed to reveal any relationship between mesquite tree abundance and soil properties. Variogram analysis further indicated soil δ13C, texture and organic carbon content were spatially autocorrelated over distances (ranges = 15.6, 16.2 and 18.7 m, respectively) far greater than that of individual tree canopy diameters in these lowland communities. Cross-variogram analysis also revealed that δ13C – SOC and δ13C-texture relationships were spatially structured at distances much greater than that of mesquite canopies (range = 17.6 and 16.5 m, respectively). These results suggest fundamental differences in the functional nature and consequences of shrub encroachment between upland and lowland landscapes and challenge us to identify the earth system processes and ecosystem structures that are driving carbon cycling at these contrasting scales. Improvements in our understanding how controls over soil carbon cycling change with spatial scale will enhance our ability to design vegetation and soil sampling schemes; and to more effectively use soil δ13C as a tool to infer vegetation and soil organic carbon dynamics in ecosystems where C3–C4 transitions and changes in structure and function are occurring.  相似文献   

20.
Isotopic composition of lead is a very sensitive indicator allowing us to determine even very low contamination of soils by this element, which is not noticeable from the change in its concentration against the background of the natural variability. Isotopic composition of loosely bound lead fractions (exchangeable and specifically sorbed) changes in soils of the Kologrivskii Forest State Natural Reserve under the impact of global or regional atmospheric transport and deposition of contaminants, though these soils are not subjected to the local technogenic pollution. The maximum portion of lead bound with the soil organic matter in the upper organic horizons reaches 75% of the total lead content. The portion of lead bound with iron and manganese (hydr)oxides increases down the soil profile. The portion of the residual fraction of lead also increases significantly down the soil profile. The most pronounced changes are observed for the 206Pb/207Pb ratio, which decreases from 1.20–1.24 to 1.15–1.18 under the impact of global pollution. The technogenic compounds of lead migrate down the soil profile. In the gray-humus gley alluvial soil (Fluvic Gleysol), low values of the 206Pb/207Pb ratio are observed for the exchangeable and specifically sorbed lead fractions in the entire soil profile, which is explained by the worse conditions for lead fixation in the profile of this soil in comparison with those in the podzolic soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号