首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A partial sequence of Oat mosaic virus (OMV) has been obtained for four isolates of the virus from four European countries. This represents the first available sequence data for this important disease of winter-sown oats. The longest clone of 1699 nucleotides was obtained from infected English oats using a degenerate primer, designed to members of the Potyviridae family. Alignment of the predicted amino acid sequence with members of the Potyviridae showed closest identity with viruses of the Bymovirus genus. The predicted amino acid sequence has one open reading frame corresponding to part of the NIb and capsid protein, with a 3 untranslated region of 351 nucleotides, followed by a poly(A) tail. PCR primers were designed to the coat protein and NIb gene of members of the Bymovirus genus and used to obtain partial sequences of 1441 nucleotides at the 3 end of infected oats from both Wales and France. A specific primer set designed to the English isolate was used to generate a product of 701 nucleotides from OMV-infected oat leaves from Ireland. All four isolates are highly conserved at the amino acid level.The first two authors contributed equally to the work  相似文献   

2.
Southern bean mosaic virus (SBMV) has been identified as the cause of a new disease in greenhouse-cultivated common bean (Phaseolus vulgaris), in the south-east of Spain. The identification was based on host range comparisons, morphological and serological characteristics of the virus, the size of its dsRNA species and the nucleotide sequence of an 810-bp fragment from ORF2. The virus could be clearly discriminated from the related sobemovirus Southern cowpea mosaic virus. This is the first report of SBMV in Spain.  相似文献   

3.
4.
5.
引起甘蔗花叶病的病原分子生物学进展   总被引:2,自引:1,他引:1  
花叶病是最主要的甘蔗病毒病害之一,在全球种植甘蔗的国家或地区普遍发生,可导致甘蔗产量下降,糖分减少,给甘蔗生产带来严重的经济损失。引起甘蔗花叶病的病毒主要有甘蔗花叶病毒(Sugarcane mosaic virus,SCMV)、高粱花叶病毒(Sorghum mosaic virus,Sr MV)和甘蔗条纹花叶病毒(Sugarcane streak mosaic virus,SCSMV)。本文综述了这3种病毒的生物学特性、鉴定与检测、基因组结构与基因功能、遗传变异与分子进化等方面的研究进展,并讨论了对甘蔗花叶病的生态防控措施。  相似文献   

6.
To detect Japanese yam mosaic virus (JYMV) and Yam mild mosaic virus (YMMV) in yam plants in Japan, we developed a duplex RT-PCR assay consisting of a tube-capture procedure followed by one-step RT-PCR with two primer pairs. A 241-bp fragment of the coat protein region of JYMV and a 174-bp fragment of the nuclear inclusion protein b region of YMMV were amplified, thus identifying the two viruses from yam plants cultivated in Yamaguchi Prefecture in 2007. All water yam plants examined were infected with YMMV alone. All the Japanese yam and Chinese yam plants were infected with either JYMV alone or both JYMV and YMMV, suggesting that YMMV and JYMV are prevalent among field-grown yam plants.  相似文献   

7.
为了解新疆番茄上病毒病的发生情况,利用一步法RT-PCR技术检测了南北疆番茄上南方番茄病毒(Southern tomato virus,STV)、黄瓜花叶病毒(Cucumber mosaic virus,CMV)、番茄花叶病毒(Tomato mosaic virus,ToMV)以及马铃薯Y病毒(Potato virus Y,PVY)的感染情况,并利用分段克隆的方法进行全基因组测序,通过RT-PCR方法检测健康植株与携带病毒植株杂交育种的F1代植株带毒率以分析STV的种子传播特性。结果显示,新疆番茄上CMV、STV、ToMV和PVY在北疆的检出率分别为52%、37%、27%和14%;在南疆的检出率分别为79%、60%、69%和0;且以STV、CMV及ToMV的复合侵染为主。从我国加工番茄上首次获得了长3 437 nt的STV SHZ-1核苷酸序列,序列比对分析发现其与已报道STV只有1~9个核苷酸的变异,且序列变异与地域无相关性。分析杂交F1代加工番茄植株上STV的传播特性,发现其除可由种子传播外,也可通过花粉传播。表明STV是侵染新疆番茄的主要病毒之一,且该病毒可通过种子或杂交育种途径进行传播。  相似文献   

8.
<正>RNA沉默(RNA silencing)是一种在真核生物体内普遍保守的基于核酸序列特异性抑制基因表达的调控机制[1]。2009年Kreuze等[2]发现病毒特异的小RNA(small RNA,sRNA)在序列上是重叠的,因此推测通过深度测序技术获得的大量sRNA序列能用来组装病毒的基因组并用来鉴定和发现新病毒。利用sRNA深度测序技术已在作物和昆虫上鉴定发现多种病毒[3、4],但在木本植物上还未见报道。  相似文献   

9.
10.
为明确我国黄瓜花叶病毒株系分化及系统进化基本情况,从湖南、新疆、青海和海南4省区采集1 367个样品对其进行酶联免疫和RT-PCR检测,并对分离获得的15个黄瓜花叶病毒(Cucumber mosaic virus,CMV)纯化分离物CP、MP、2b核苷酸序列进行相似性和进化树分析及生物学性状比较。结果表明,辣椒、龙葵和黄瓜的CMV阳性检出率较高,分别为54.13%、29.19%和18.46%。进化树分析显示CMV-Q5与CMV亚组II的亲缘性较高;CMV-N7为新发现的重组株系,其CP、2b基因属于CMV亚组IB,MP基因却属于CMV亚组II;其余13个分离物均属于CMV亚组IB。CMV-N7和CMV-Q5在系统寄主心叶烟和枯斑寄主苋色藜上引发的症状相似,但比对照株系CMV-P3613(IB)的发病时间要晚1~2 d,系统花叶较温和,枯斑较小。表明在以上4省区常见农作物上广泛流行的CMV存在分子变异。  相似文献   

11.
12.
Replicase-mediated tobacco plants are highly resistant to the Fny strain of Cucumber mosaic virus (CMV) and closely related subgroup IA strains. Two of these subgroup IA strains, Fny- and M-CMV, were co-inoculated with different resistance breaking cucumoviruses to nontransformed and transformed tobacco plants. RT-PCR analyses of single CMV RNAs were performed to study potential complementation of the subgroup IA strains by the resistance breaking cucumoviruses. After co-inoculation of M-CMV with PII-CMV, RNAs 1, 2 and 3 from M-CMV were detected in systemically infected leaves of control plants, whereas in noninoculated parts of replicase-mediated resistant plants only M-CMV RNAs 1 and 3 were found. Western blot studies confirmed the expression of M-CMV coat protein after co-inoculation with PII-CMV in leaves of transgenic plants. These plants also exhibited M-CMV typical yellow spots. M-CMV/TAV co-inoculated transgenic plants contained only M-CMV RNA 3, but no M-CMV RNAs 1 and 2. No M-CMV typical yellow spots were observed in these plants. Our data suggest different types of complementation of M-CMV in replicase-mediated resistant plants by PII-CMV and TAV in trans potentially leading to new RNA combinations in transformed plants compared to nontransformed plants.  相似文献   

13.
Alstroemeria plants were surveyed for viruses in Japan from 2002 to 2004. Seventy-two Alstroemeria plants were collected from Aichi, Nagano, and Hokkaido prefectures and 54.2% were infected with some species of virus. The predominant virus was Alstroemeria mosaic virus, followed by Tomato spotted wilt virus, Youcai mosaic virus (YoMV), Cucumber mosaic virus (CMV), Alstroemeria virus X and Broad bean wilt virus-2 (BBWV-2). On the basis of nucleotide sequence of the coat protein genes, all four CMV isolates belong to subgroup IA. CMV isolates induced mosaic and/or necrosis on Alstroemeria. YoMV and BBWV-2 were newly identified by traits such as host range, particle morphology, and nucleotide sequence as viruses infecting Alstroemeria. A BBWV-2 isolate also induced mosaic symptoms on Alstroemeria seedlings.  相似文献   

14.
Cucumber cotyledons inoculated with Cucumber mosaic virus (CMV, Pepo strain) or Zucchini yellow mosaic virus (ZYMV, Z5-1 isolate) developed either mild chlorotic spots or no symptoms. Cotyledons treated with CMV plus ZYMV also developed mild chlorotic spots. However, plants ZYMV-inoculated cotyledons had veinal yellowing and gradual cell death by 20 days postinoculation (dpi) when co-inoculated with CMV on the other cotyledon. When analyzing this synergism, an enzyme-linked immunosorbent assay showed that CMV gradually increased in CMV-inoculated cotyledons of plants, with the other cotyledon mock- or ZYMV-inoculated. However, CMV significantly increased at 9 to 14 dpi in the ZYMV-inoculated cotyledons of plants co-infected with CMV. ZYMV similarly increased in cotyledon pairs of both co-infected and singly infected plants. Inoculation with PepoΔ2b, a modified Pepo-CMV that lacks translation of the 2b protein, revealed that PepoΔ2b without the 2b protein systemically infected cucumber but induced no symptoms on cotyledons or true leaves. Plants with a ZYMV-inoculated cotyledon and co-infected with PepoΔ2b did not undergo cell death; nevertheless, PepoΔ2b was at high levels comparable to levels of CMV in the ZYMV-inoculated cotyledon. The 2b protein thus seems essential for induction of the novel gradual cell death in ZYMV-inoculated cotyledons of cucumbers co-infected with CMV.  相似文献   

15.
柑橘黄化脉明病毒巢式RT-PCR检测方法的建立及应用   总被引:1,自引:0,他引:1  
为探索柑橘黄化脉明病毒(Citrus yellow vein clearing virus,CYVCV)引起的柑橘新病害—柑橘黄脉病的早期快速检测技术,针对CYVCV核酸结合蛋白基因的保守序列设计2对特异性引物,通过优化退火温度,建立了CYVCV巢式RT-PCR检测方法,并对采自不同柑橘品种的54个CYVCV疑似样品进行了检测。结果表明,CYVCV巢式RT-PCR检测中,以55℃和60℃分别作为第1轮和第2轮扩增的退火温度时检测效果最佳;该方法检测样品中病毒总核酸的最低浓度为2.40μg/L,灵敏度较RT-PCR提高100倍。在CYVCV疑似样品检测中,巢式RT-PCR和RT-PCR的阳性检出率分别为59.26%和57.41%,前者更适用于检测不同来源的CYVCV。当尤力克柠檬、锦橙北碚-447、天草和台湾椪柑嫁接接种CYVCV后,巢式RT-PCR比RT-PCR提前10~30 d检测出病毒。表明所建立的CYVCV巢式RT-PCR检测方法适用于田间病树的早期诊断。  相似文献   

16.
苹果花叶病毒的RT-PCR检测及其在我国苹果产区的分布   总被引:1,自引:1,他引:0  
为了开发苹果花叶病毒(Apple mosaic virus,ApMV)田间样本RT-PCR检测方法和揭示我国ApMV的发生情况,以田间染病苹果组织为材料,对ApMV RT-PCR检测体系中总RNA提取方法、反应体系及程序进行了选择和优化,并利用优化的检测方法对我国苹果主产区13个省的23个市(县)ApMV发生情况进行了检测。以RNA提取改良法提取的田间样本总RNA为模板,RT-PCR优化体系的灵敏度达到能够检测15μg田间样本组织中的ApMV,且在果树整个生长发育时期能够检测1年生枝条树皮组织的带毒情况;ApMV在我国普遍发生,13个省的23个市(县)均检测到了ApMV,采集的327个样本带毒率为80.1%,其中未显花叶症状样本205个,ApMV阳性率为68.3%;在23个地区中,只有河北张家口、河南三门峡和陕西白水样本带毒率低于50%。  相似文献   

17.
Sugarcane yellow leaf virus (ScYLV) is widely distributed in Brazil and other sugarcane producing countries causing significant yield losses. Due to the high incidence of the aphid vector, the virus is widespread in the field and in parental clones used in sugarcane breeding programmes. Aiming to present a sensitive and reliable detection of ScYLV, we have adapted an AmpliDet RNA system, compared it with the currently available detection methods and discussed its applicability for routine diagnosis. AmpliDet RNA consists of nucleic acid sequence-based amplification (NASBA) of the target RNA with specific primers and simultaneous real-time detection of the amplification products with molecular beacons. The results showed that the system produced a detection level of at least 100fg of purified virus. Virus was readily detected in plant tissues with low levels of infection (without the need of previous RNA extraction) and in the hemolymph of aphids. The method showed to be virus-specific, testing negative for other species of the Luteoviridae. In conclusion, the system has potential to become a diagnostic method for the detection of sugarcane viruses.  相似文献   

18.
The multiplication of Soil-borne wheat mosaic virus (SBWMV) was studied in mixtures of two winter wheat (Triticum aestivum) cultivars, one susceptible (Soissons) and the other resistant (Trémie). Two seed mixtures of susceptible and resistant varieties in ratios of 1 : 1 and 1 : 3 and their component pure stands, i.e. each variety grown separately, were grown in a field infected with SBWMV. The presence of the virus was detected using DAS-ELISA from January to May. The resistant cultivar Trémie showed no foliar symptoms nor could the virus be detected in the leaves or roots. In May, about 88% of plants of susceptible cultivar Soissons grown in pure stands were infected. At this time, the disease reduction relative to pure stands was 32.2% in the 1 : 1 mixture and 39.8% in the 1 : 3 mixture. Optical density (OD) values from ELISA of the infected plants in the two mixtures were consistently lower than that of the infected plants in cultivar Soissons in pure stands. The ELISA index (EI) calculated using three scales of OD values was 65.5% in the susceptible cultivar in pure stands. The value for this index was 19.1% in the 1 : 1 mixture and 7.9% in the 1 : 3 mixture. The plants of the resistant cultivar Trémie infected in the same field and transferred in January to a growth cabinet at 15 °C multiplied the virus and produced viruliferous zoospores. These results show that the resistant cultivar Trémie plays a role in disease reduction in the cultivar mixtures in field conditions. Possible reasons for this are discussed.  相似文献   

19.
为探索从水母毒素中获取抗植物病毒物质的应用前景,采用半叶枯斑法、整株法和漂浮叶圆片法,对白色霞水母Cyanea nozakii Kishinouye刺细胞毒素的抗烟草花叶病毒(Tobacco mosaic virus,TMV)活性进行了检测。结果表明,白色霞水母刺细胞毒素对TMV具有很强的直接钝化作用,枯斑抑制率随钝化时间的延长而增大。0.99 mg/m L毒素体外钝化TMV 30 min,枯斑抑制率达98.85%,将TMV与0.80 mg/m L毒素体外混合后立即接种,枯斑抑制率仍达89.57%;20~70℃之间,毒素对TMV的钝化作用随温度升高而降低,但又表现出一定的高温耐受性,70℃下处理30min,1.33 mg/m L毒素对枯斑的抑制率为61.73%。毒素对病毒初侵染有一定的预防作用,并可抑制TMV的增殖;1.93 mg/m L毒素处理接种TMV的叶圆片2 d后,对TMV的增殖抑制率为49.41%;但该毒素对TMV所致病害的治疗效果不明显。该毒素还具有较强的蛋白水解酶活性,可能与其抗TMV活性相关。表明白色霞水母刺细胞毒素抗TMV作用明显,其抗植物病毒活性值得深入研究。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号