首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bimazubute, M., Cambier, C., Baert, K., Vanbelle, S., Chiap, P., Albert, A., Delporte, J. P., Gustin, P. Penetration of enrofloxacin into the nasal secretions and relationship between nasal secretions and plasma enrofloxacin concentrations after intramuscular administration in healthy pigs. J. vet. Pharmacol. Therap. 33 , 183–188. The pharmacokinetic behaviour of enrofloxacin (ENRO) in plasma and nasal secretions of healthy pigs was investigated, after a single‐dose intramuscular administration of 2.5 mg/kg body weight of the drug. Blood samples and nasal secretions were collected at predetermined times after drug administration. Concentrations of ENRO and its active metabolite ciprofloxacin (CIPRO) were determined in plasma and nasal secretions by high‐performance liquid chromatography (HPLC). CIPRO was not detected probably because we investigated young weaned pigs. The data collected in 12 pigs for ENRO were subjected to noncompartmental analysis. In plasma, the maximum concentration of drug (Cmax), the time at which this maximum concentration of drug (Tmax) was reached, the elimination half‐life (t½) and the area under the concentration vs. time curve (AUC) were, respectively, 694.7 ng/mL, 1.0 h, 9.3 h and 8903.2 ng·h/mL. In nasal secretions, Cmax, Tmax, t½ and AUC were, respectively, 871.4 ng/mL, 2.0 h, 12.5 h and 11 198.5 ng·h/mL. In a second experiment conducted in 10 piglets, the relationship between concentrations of ENRO measured in the plasma and the nasal secretions has been determined following single‐dose intramuscular administration of 2.5, 10 or 20 mg/kg body weight of the drug. It has been demonstrated that, among several variables, i.e., (1) the dose administered, (2) the time between intramuscular injection and blood sampling, (3) the age, (4) the sex, (5) the animal body weight and (6) the plasma concentration of the drug, only the latter influenced significantly the ENRO concentration in nasal secretions. Practically, using a generalized linear mixed model, ENRO concentrations in the nasal secretions (μg/mL) can be predicted taking into account the ENRO concentrations in plasma (μg/mL), according to the following equation:   相似文献   

2.
The present study aimed to characterize the pharmacokinetic profile of oxytetracycline long‐acting formulation (OTC‐LA) in Thai swamp buffaloes, Bubalus bubalis, following single intramuscular administration at two dosages of 20 and 30 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 504 h. The plasma concentrations of OTC were measured by high‐performance liquid chromatography (HPLC). The concentrations of OTC in the plasma were determined up to 264 h and 432 h after i.m. administration at doses of 20 and 30 mg/kg b.w., respectively. The Cmax values of OTC were 12.11 ± 1.87 μg/mL and 12.27 ± 1.92 μg/mL at doses of 20 and 30 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 52.00 ± 14.26 h and 66.80 ± 10.91 h at doses of 20 and 30 mg/kg b.w, respectively. Based on the pharmacokinetic data and PK–PD index (T > MIC), i.m. administration of OTC at a dose of 30 mg/kg b.w once per week might be appropriate for the treatment of susceptible bacterial infection in Thai swamp buffaloes.  相似文献   

3.
The giant river shrimp (Macrobrachium rosenbergii), a native species of Thailand, is either exported for commercial purposes or supplied to meet the local requirements in Thailand. Limited pharmacokinetic information of the major antibiotic, oxytetracycline (OTC), is available for this freshwater shrimp. The purpose of the present study was to investigate the muscle tissue kinetics of OTC in M. rosenbergii following either intramuscular (i.m.) or oral (p.o.) administration at two dosages of 11 and 22 mg/kg body weight (b.w.). The concentration of OTC in shrimp tissues was measured using high‐performance liquid chromatography (HPLC) equipped with a fluorescence detector. Muscle tissue concentrations were below the detection limit (LOD, 0.1 μg/g) after 96 and 120 h, following i.m. and p.o. administration, respectively. Peak muscle concentrations (Cmax) were 3.47 and 1.73 μg/g after i.m. and p.o. administration at a single dose of 11 mg/kg b.w. whereas they were 6.03 and 2.51 μg/g at a single dose of 22 mg/kg b.w., respectively. A noncompartment model was developed to describe the pharmacokinetics of OTC in the giant freshwater shrimp. The terminal half‐lives of OTC were 28.68 and 28.09 h after i.m. and p.o. administration at a single dose of 11 mg/kg b.w., but 29.95 and 27.03 h at a single dose of 22 mg/kg b.w., respectively. The relative bioavailability was 82.32 and 64.67% following i.m. and p.o. administration, respectively. Based on the pharmacokinetic data, i.m. and p.o. administration with OTC at a dose of 11 mg/kg b.w. would be appropriate for use in giant freshwater shrimp farming. To avoid the OTC residue in shrimp muscle, it should take at least seven half‐lives (8 days) to wash out the drug from the muscle of M. rosenbergii.  相似文献   

4.
The penetration of oxytetracycline (OTC) into the oral fluid and plasma of pigs and correlation between oral fluid and plasma were evaluated after a single intramuscular (i.m.) dose of 20 mg/kg body weight of long‐acting formulation. The OTC was detectable both in oral fluid and plasma from 1 hr up to 21 day after drug administration. The maximum concentrations (Cmax) of drug with values of 4021 ± 836 ng/ml in oral fluid and 4447 ± 735 ng/ml in plasma were reached (Tmax) at 2 and 1 hr after drug administration respectively. The area under concentration–time curve (AUC), mean residence time (MRT) and the elimination half‐life (t1/2β) were, respectively, 75613 ng × hr/ml, 62.8 hr and 117 hr in oral fluid and 115314 ng × hr/ml, 31.4 hr and 59.2 hr in plasma. The OTC concentrations were remained higher in plasma for 48 hr. After this time, OTC reached greater level in oral fluid. The strong correlation (= .92) between oral fluid and plasma OTC concentrations was observed. Concentrations of OTC were within the therapeutic levels for most sensitive micro‐organism in pigs (above MIC values) for 48 hr after drug administration, both in the plasma and in oral fluid.  相似文献   

5.
The pharmacokinetics of a long‐acting oxytetracycline (OTC) formulation (Liquamycin® LA‐200®) injected intramuscularly (i.m.) at a dose of 20 mg/kg were determined in four calves and 24 sheep to determine if the approved label dose for cattle provided a similar serum time/concentration profile in sheep. The AUC for the calves was 168±14.6 (μg ? h/mL) and was significantly less than the AUC for sheep (209±43 μg ? h/mL). Using the standard two‐stage approach and a one‐compartment model, the mean Cmax for the calves was 5.2±0.8 μg/mL, and for the sheep was 6.1±1.3 μg/mL. The mean terminal phase rate constants were 0.031 and 0.033 h, and the Vdss were 3.3 and 3.08 L/kg for the calves and sheep respectively. Analysis of the data using the standard two‐stage approach, the naive pooled‐data approach and a population model gave very similar results for both the cattle and sheep data. Sheep tissue residues of OTC in serum, liver, kidney, fat, muscle and injection site were measured at 1, 2, 3, 5, 7 and 14 days after a single i.m. injection of 20 mg/kg OTC. Half‐lives of OTC residues in the tissues were 38.6, 33.4, 28.6, 25.4, 21.3, and 19.9 h for injection site, kidney, muscle, liver, mesenteric fat and renal fat, respectively. The ratio of tissue to serum concentration was fairly consistent at all slaughter times, except for the fat and injection sites. The mean ratios were 1.72, 4.19, 0.11, 0.061, 0.84 and 827 for the liver, kidney, renal fat, mesenteric fat, muscle and injection sites, respectively. The tissue concentrations of OTC residues were below the established cattle tolerances for OTC in liver (6 p.p.m.), muscle (2 p.p.m.) and kidney (12 p.p.m.) by 48 h, and in injection site muscle by 14 days after the single i.m. injection of 20 mg/kg.  相似文献   

6.
The target of the present study was to investigate the plasma disposition kinetics of levofloxacin in stallions (n = 6) following a single intravenous (i.v.) bolus or intramuscular (i.m.) injection at a dose rate of 4 mg/kg bwt, using a two‐phase crossover design with 15 days as an interval period. Plasma samples were collected at appropriate times during a 48‐h administration interval, and were analyzed using a microbiological assay method. The plasma levofloxacin disposition was best fitted to a two‐compartment open model after i.v. dosing. The half‐lives of distribution and elimination were 0.21 ± 0.13 and 2.58 ± 0.51 h, respectively. The volume of distribution at steady‐state was 0.81 ± 0.26 L/kg, the total body clearance (Cltot) was 0.21 ± 0.18 L/h/kg, and the areas under the concentration–time curves (AUCs) were 18.79 ± 4.57 μg.h/mL. Following i.m. administration, the mean t1/2el and AUC values were 2.94 ± 0.78 h and 17.21 ± 4.36 μg.h/mL. The bioavailability was high (91.76% ± 12.68%), with a peak plasma mean concentration (Cmax) of 2.85 ± 0.89 μg/mL attained at 1.56 ± 0.71 h (Tmax). The in vitro protein binding percentage was 27.84%. Calculation of efficacy predictors showed that levofloxacin might have a good therapeutic profile against Gram‐negative and Gram‐positive bacteria, with an MIC ≤ 0.1 μg/mL.  相似文献   

7.
Summary

The pharmacokinetics of oxytetracycline (OTC) in three weaned piglets was studied following three routes of administration: intravenously, orally as drench, both at a dose of 20 mg/kg, and orally as medicated (400 ppm OTC) pelleted feed administered during 3 consecutive days. Analysis of the intravenous data according to the three compartment pharmacokinetic model revealed that OTC was well distributed in the body (Vie 1.621/kg), had an overall body clearance of 0.25 litre/kg/h, and the elimination half‐lives were in the range between 11.6 and 17.2 hrs.

The mean OTC binding to plasma proteins was 75.5 ± 4%. Following the drench route of administration the maximum plasma OTC concentration was achieved between 1 and 5 h post application and ranged between 1.18 and 1.41 μg/ml. The mean maximum plasma OTC concentration during medicated feed administration was 0.20 ± 0.06 μg/ml, which was achieved approximately 30 hours after the onset of the administration. A steady state OTC plasma level (approximately 0.2 μg/ml) was maintained till the end of the trial. Within 48 hours after cessation of medicated feed administration the plasma OTC levels were beneath 0.06 μg/ml. The mean OTC bioavailabilities of the oral routes were low: after the drench route of administration 9.0 ± 0.67%, and after medicated pelleted feed administration 3.69 ± 0.8%.

The mean OTC renal clearances of each piglet ranged between 10.1 and 13.9 ml/min/kg (based on free OTC plasma fractions). The renal OTC clearance values were urine flow dependent in all piglets and significantly correlated with the renal creatinine clearance (P< 0.005), being 3–5 times higher than the latter. It is concluded that in piglets OTC is excreted mainly by glomerular filtration and partly by tubular secretion. The potential clinical efficacy of 400 ppm OTC as medicated feed with respect to treatment, e.g. atrophic rhinitis, is discussed.  相似文献   

8.
Malreddy, P. R., Coetzee, J. F., KuKanich, B., Gehring, R. Pharmacokinetics and milk secretion of gabapentin and meloxicam co‐administered orally in Holstein‐Friesian cows. J. vet. Pharmacol. Therap.  36 , 14–20. Management of neuropathic pain in dairy cattle could be achieved by combination therapy of gabapentin, a GABA analog and meloxicam, an nonsteroidal anti‐inflammatory drug. This study was designed to determine specifically the depletion of these drugs into milk. Six animals received meloxicam at 1 mg/kg and gabapentin at 10 mg/kg, while another group (n = 6) received meloxicam at 1 mg/kg and gabapentin at 20 mg/kg. Plasma and milk drug concentrations were determined over 7 days postadministration by HPLC/MS followed by noncompartmental pharmacokinetic analyses. The mean (±SD) plasma Cmax and Tmax for meloxicam (2.89 ± 0.48 μg/mL and 11.33 ± 4.12 h) were not much different from gabapentin at 10 mg/kg (2.87 ± 0.2 μg/mL and 8 ± 0 h). The mean (±SD) milk Cmax for meloxicam (0.41 ± 80.16 μg/mL) was comparable to gabapentin at 10 mg/kg (0.63 ± 0.13 μg/mL and 12 ± 6.69 h). The mean plasma and milk Cmax for gabapentin at 20 mg/kg P.O. were almost double the values at 10 mg/kg. The mean (±SD) milk to plasma ratio for meloxicam (0.14 ± 0.04) was lower than for gabapentin (0.23 ± 0.06). The results of this study suggest that milk from treated cows will have low drug residue concentration soon after plasma drug concentrations have fallen below effective levels.  相似文献   

9.
Objective— To estimate maximum plasma concentration (Cmax) and time to maximum plasma (tmax) bupivacaine concentration after intra‐articular administration of bupivacaine for single injection (SI) and injection followed by continuous infusion (CI) in normal dogs. Study Design— Cross‐over design with a 2‐week washout period. Animals— Healthy Coon Hound dogs (n=8). Methods— Using gas chromatography/mass spectrometry, canine plasma bupivacaine concentration was measured before and after SI (1.5 mg/kg) and CI (1.5 mg/kg and 0.3 mg/kg/h). Software was used to establish plasma concentration–time curves and estimate Cmax, Tmax and other pharmacokinetic variables for comparison of SI and CI. Results— Bupivacaine plasma concentration after SI and CI best fit a 3 exponential model. For SI, mean maximum concentration (Cmax, 1.33±0.954 μg/mL) occurred at 11.37±4.546 minutes. For CI, mean Cmax (1.13±0.509 μg/mL) occurred at 10.37±4.109 minutes. The area under the concentration–time curve was smaller for SI (143.59±118.390 μg/mL × min) than for CI (626.502±423.653 μg/mL × min, P=.02) and half‐life was shorter for SI (61.33±77.706 minutes) than for CI (245.363±104.415 minutes, P=.01). The highest plasma bupivacaine concentration for any dog was 3.2 μg/mL for SI and 2.3 μg/mL for CI. Conclusion— Intra‐articular bupivacaine administration results in delayed absorption from the stifle into the systemic circulation with mean Cmax below that considered toxic and no systemic drug accumulation. Clinical Relevance— Intra‐articular bupivacaine can be administered with small risk of reaching toxic plasma concentrations in dogs, though toxic concentrations may be approached. Caution should be exercised with multimodal bupivacaine administration because plasma drug concentration may rise higher than with single intra‐articular injection.  相似文献   

10.
Feng, Q., Wu, G. H., Liang, T. M., Ji, H. Y., Jiang, X. J., Gu, W., Wang, W. Pharmacokinetics of oxytetracycline in hemolymph from the Chinese mitten crab, Eriocheir sinensis. J. vet. Pharmacol. Therap. 34 , 51–57. The purpose of this study was to investigate the hemolymph kinetics and depuration time of oxytetracycline following intramuscular administration at doses of 2, 8 and 40 mg/kg body weight, respectively. The concentration of OTC in hemolymph was assayed using solid phase extraction and high performance liquid chromatography. The elimination half‐life of the terminal part of the elimination phase (t1/2β) ranged from 87.9 to 114.3 h. The total body clearance (CLb) was 0.0430 L/kg/h at the lower dose, 0.0123 L/kg/h at the medium dose and 0.0013 L/kg/h at the higher dose. The apparent volume of the central compartment (Vc) was found to be 1.383, 0.699 and 0.143 L/kg respectively. The depuration time for each dose was 13.6, 29.6 and 57.6 days, respectively. Results from the present study suggest that the 40 mg/kg dose might have the best therapeutic efficacy following intramuscular administration.  相似文献   

11.
The purpose of this study was to determine whether Japanese quail (Coturnix japonica) would serve as a pharmacokinetic animal model for two small companion parrots: cockatiels (Nymphicus hollandicus) and Poicephalus parrots. Oxytetracycline (OTC) was the pharmacologic agent chosen for this study as it is eliminated primarily by renal glomerular filtration and undergoes minimal metabolism. A single intravenous injection of 20 mg/kg oxytetracycline hydrochloride was administered to the three study groups and blood samples were obtained at 5, 10, 15, and 30 min post-OTC injection as well as 1, 2, 4, 8, 12 and 24 h post-OTC injection. Quantification of plasma OTC was accomplished using a standardized microbial inhibition assay. Naïve-pooled data (NPD) analysis of the plasma concentration–time profile of OTC best fit a two-compartment open model for all three avian species. Noncompartmental analysis of the mean data yielded the following parameters for quail, cockatiels and Poicephalus parrots respectively: λz = 3.14, 4.57, 3.71 h; AUC = 38.9, 42.7, 49.6 μg·h/mL; and Cl = 514, 468, 403 mL/h/kg. Based on the similarity of these pharmacokinetic parameters, it appears that quail could be used as a model species to predict the appropriate OTC dosing regimen for small psittacine birds. A bootstrap procedure was also applied to these sparse data sets for both compartmental and noncompartmental analysis. The bootstrap procedure allowed for the calculation of variability of parameters; however, the estimates of the parameters were very similar to those calculated using the NPD and the data mean values.  相似文献   

12.
Three asymptomatic koalas serologically positive for cryptococcosis and two symptomatic koalas were treated with 10 mg/kg fluconazole orally, twice daily for at least 2 weeks. The median plasma Cmax and AUC0‐8 h for asymptomatic animals were 0.9 μg/mL and 4.9 μg/mL·h, respectively; and for symptomatic animals 3.2 μg/mL and 17.3 μg/mL·h, respectively. An additional symptomatic koala was treated with fluconazole (10 mg/kg twice daily) and a subcutaneous amphotericin B infusion twice weekly. After 2 weeks the fluconazole Cmax was 3.7 μg/mL and the AUC0‐8 h was 25.8 μg/mL*h. An additional three koalas were treated with fluconazole 15 mg/kg twice daily for at least 2 weeks, with the same subcutaneous amphotericin protocol co‐administered to two of these koalas (Cmax: 5.0 μg/mL; mean AUC0‐8 h: 18.1 μg/mL*h). For all koalas, the fluconazole plasma Cmax failed to reach the MIC90 (16 μg/mL) to inhibit C. gattii. Fluconazole administered orally at either 10 or 15 mg/kg twice daily in conjunction with amphotericin is unlikely to attain therapeutic plasma concentrations. Suggestions to improve treatment of systemic cryptococcosis include testing pathogen susceptibility to fluconazole, monitoring plasma fluconazole concentrations, and administration of 20–25 mg/kg fluconazole orally, twice daily, with an amphotericin subcutaneous infusion twice weekly.  相似文献   

13.
Holmes, K., Bedenice, D., Papich, M. G. Florfenicol pharmacokinetics in healthy adult alpacas after subcutaneous and intramuscular injection. J. vet. Pharmacol. Therap.  35 , 382–388. A single dose of florfenicol (Nuflor®) was administered to eight healthy adult alpacas at 20 mg/kg intramuscular (i.m.) and 40 mg/kg subcutaneous (s.c.) using a randomized, cross‐over design, and 28‐day washout period. Subsequently, 40 mg/kg florfenicol was injected s.c. every other day for 10 doses to evaluate long‐term effects. Maximum plasma florfenicol concentrations (Cmax, measured via high‐performance liquid chromatography) were achieved rapidly, leading to a higher Cmax of 4.31 ± 3.03 μg/mL following administration of 20 mg/kg i.m. than 40 mg/kg s.c. (Cmax: 1.95 ± 0.94 μg/mL). Multiple s.c. dosing at 48 h intervals achieved a Cmax of 4.48 ± 1.28 μg/mL at steady state. The area under the curve and terminal elimination half‐lives were 51.83 ± 11.72 μg/mL·h and 17.59 ± 11.69 h after single 20 mg/kg i.m. dose, as well as 99.78 ± 23.58 μg/mL·h and 99.67 ± 59.89 h following 40 mg/kg injection of florfenicol s.c., respectively. Florfenicol decreased the following hematological parameters after repeated administration between weeks 0 and 3: total protein (6.38 vs. 5.61 g/dL, P < 0.0001), globulin (2.76 vs. 2.16 g/dL, P < 0.0003), albumin (3.61 vs. 3.48 g/dL, P = 0.0038), white blood cell count (11.89 vs. 9.66 × 103/μL, P < 0.044), and hematocrit (27.25 vs. 24.88%, P < 0.0349). Significant clinical illness was observed in one alpaca. The lowest effective dose of florfenicol should thus be used in alpacas and limited to treatment of highly susceptible pathogens.  相似文献   

14.
The purpose of this study was to determine an oral dosing regimen of zonisamide in healthy dogs such that therapeutic concentrations would be safely reached and maintained at steady‐state. Adult hound dogs (n = 8) received a single IV (6.9) and an oral (PO) dose (10.3 mg/kg) using a randomized cross‐over design. Zonisamide was then administered at 10.3 mg/kg PO every 12 h for 8 weeks. Zonisamide was quantitated in blood compartments or urine by HPLC and data were subjected to noncompartmental pharmacokinetic analysis. Comparisons were made among blood compartments (one‐way anova ; P ≤ 0.05). Differences among blood compartments occurred in all derived pharmacokinetic paramenters for each route of administration after single and multiple dosing. After single PO dosing, plasma Cmax was 14.4 ± 2.3 mcg/mL and elimination half‐life was 17.2 ± 3.6 h. After IV dosing, volume of distribution was 1.1 ± 0.25 L/kg, clearance was 58 ± 11 mL/h/kg and elimination t1/2 was 12.9 ± 3.6 h. Oral bioavailability was 68 ± 12%; fraction of unbound drug approximated 60%. At steady‐state (4 days), differences occurred for for all parameters except Cmax and Cmin. Plasma Cmax at steady‐state was 56 ± 12 mcg/mL, with 10% fluctuation between Cmax and Cmin. Plasma t1/2 (h) was 23.52 ± 5.76 h. Clinical laboratory tests remained normal, with the exception of total T4, which was below normal limits at study end. In conclusion, 10 mg/kg twice daily results in peak plasma zonisamide which exceeds the recommended human therapeutic range (10 to 40 μg/mL) and is associated with suppression of thyroid hormone synthesis. A reasonable b.i.d starting dose for canine epileptics would be 3 mg/kg. Zonisamide monitored in either serum or plasma should be implemented at approximately 7 days.  相似文献   

15.
A long-acting, biodegradable, controlled-release formulation of oxytetracycline (CR-OTC) was evaluated in 18 adult Japanese quail (Coturnix coturnix japonica) following a single subcutaneous (s.c.) injection. Prior to characterizing the release of oxytetracycline (OTC) from the CR-OTC, the pharmacokinetic parameters of intravenously (i.v.) administered OTC were determined. Concentrations of free OTC were measured using a bioassay. The plasma concentration-time profile of OTC after a single i.v. injection at 20 mg/kg was best fit to an open two-compartmental model, with the following pharmacokinetic parameters: area under the curve (AUC) = 36.72 mg. h/L, terminal elimination half-life = 2.34 h, clearance (Cl) = 0.545 L/kg/h. Plasma [OTC] was >1.0 micro g/mL for at least 4 h following i.v. injection. The CR-OTC gel was well tolerated at a dosage of 1500 mg/kg s.c. Plasma [OTC] rose to >1.0 micro g/mL within 24 h; it remained >1.0 micro g/mL for at least 10 days in all birds sampled at that time point (n = 9) and for at least 18 days in two of nine birds. Using a deconvolution technique, it was determined that approximately 54.8% of the administered OTC was released from the CR-OTC over the 45-day observation period. This long-acting, biodegradable controlled-release OTC formulation may have potential for the treatment of chlamydophila infections and other OTC-sensitive bacteria in Japanese quail, however further studies are necessary to determine its safety and clinical application.  相似文献   

16.
Menge, M., Rose, M., Bohland, C., Zschiesche, E., Kilp, S., Metz, W., Allan, M., Röpke, R., Nürnberger, M. Pharmacokinetics of tildipirosin in bovine plasma, lung tissue, and bronchial fluid (from live, nonanesthetized cattle). J. vet. Pharmacol. Therap.  35 , 550–559. The pharmacokinetics of tildipirosin (Zuprevo® 180 mg/mL solution for injection for cattle), a novel 16‐membered macrolide for treatment, control, and prevention of bovine respiratory disease, were investigated in studies collecting blood plasma, lung tissue, and in vivo samples of bronchial fluid (BF) from cattle. After single subcutaneous (s.c.) injection at 4 mg/kg body weight, maximum plasma concentration (Cmax) was 0.7 μg/mL. Tmax was 23 min. Mean residence time from the time of dosing to the time of last measurable concentration (MRTlast) and terminal half‐life (T1/2) was 6 and 9 days, respectively. A strong dose–response relationship with no significant sex effect was shown for both Cmax and area under the plasma concentration–time curve from time 0 to the last sampling time with a quantifiable drug concentration (AUClast) over the range of doses up to 6 mg/kg. Absolute bioavailability was 78.9%. The volume of distribution based on the terminal phase (Vz) was 49.4 L/kg, and the plasma clearance was 144 mL/h/kg. The time–concentration profile of tildipirosin in BF and lung far exceeded those in blood plasma. In lung, tildipirosin concentrations reached 9.2 μg/g at 4 h, peaked at 14.8 μg/g at day 1, and slowly declined to 2.0 μg/g at day 28. In BF, the concentration of tildipirosin reached 1.5 and 3.0 μg/g at 4 and 10 h, maintained a plateau of about 3.5 μg/g between day 1 and 3, and slowly declined to 1.0 at day 21. T1/2 in lung and BF was approximately 10 and 11 days. Tildipirosin is rapidly and extensively distributed to the respiratory tract followed by slow elimination.  相似文献   

17.
KuKanich, B. Pharmacokinetics of acetaminophen, codeine, and the codeine metabolites morphine and codeine‐6‐glucuronide in healthy Greyhound dogs. J. vet. Pharmacol. Therap. 33 , 15–21. The purpose of this study was to determine the pharmacokinetics of codeine and the active metabolites morphine and codeine‐6‐glucuronide after i.v. codeine administration and the pharmacokinetics of acetaminophen (APAP), codeine, morphine, and codeine‐6‐glucuronide after oral administration of combination product containing acetaminophen and codeine to dogs. Six healthy Greyhound dogs were administered 0.734 mg/kg codeine i.v. and acetaminophen (10.46 mg/kg mean dose) with codeine (1.43 mg/kg mean dose) orally. Blood samples were collected at predetermined time points for the determination of codeine, morphine, and codeine‐6‐glucuronide plasma concentrations by LC/MS and acetaminophen by HPLC with UV detection. Codeine was rapidly eliminated after i.v. administration (T½ = 1.22 h; clearance = 29.94 mL/min/kg; volume of distribution = 3.17 L/kg) with negligible amounts of morphine present, but large amounts of codeine‐6‐glucuronide (Cmax = 735.75 ng/mL) were detected. The oral bioavailability of codeine was 4%, morphine concentrations were negligible, but large amounts of codeine‐6‐glucuronide (Cmax = 1952.86 ng/mL) were detected suggesting substantial first pass metabolism. Acetaminophen was rapidly absorbed (Cmax = 6.74 μg/mL; Tmax = 0.85 h) and eliminated (T½ = 0.96 h). In conclusion, the pharmacokinetics of codeine was similar to other opioids in dogs with a short half‐life, rapid clearance, large volume of distribution, and poor oral bioavailability. High concentrations of codeine‐6‐glucuronide were detected after i.v. and oral administration.  相似文献   

18.
Chaffin, M. K., Fajt, V., Martens, R. J., Arnold, C. E., Cohen, N. D., O’Conor, M., Taylor, R. J., Bernstein, L. R. Pharmacokinetics of an orally administered methylcellulose formulation of gallium maltolate in neonatal foals. J. vet. Pharmacol. Therap. doi: 10.1111/j.1365‐2885.2009.01150.x. Gallium is a trivalent semi‐metal with anti‐microbial effects because of its incorporation into crucial iron‐dependent reproductive enzyme systems. Gallium maltolate (GaM) provides significant gallium bioavailability to people and mice following oral administration and to neonatal foals following intragastric administration. To study the prophylactic and therapeutic effects of GaM against Rhodococcus equi pneumonia in foals, we developed a methylcellulose formulation of GaM (GaM‐MCF) for oral administration to neonatal foals. Normal neonatal foals were studied. Six foals received 20 mg/kg and another six foals received 40 mg/kg of GaM‐MCF orally. Serial serum samples were collected and serum gallium concentrations were determined using inductively coupled plasma mass spectroscopy. Gallium was rapidly absorbed (Tmax of 4 h), and a mean Cmax of 0.90 or 1.8 μg/mL was achieved in foals receiving 20 or 40 mg/kg respectively. Marked variability existed in Cmax among foals: only half of the foals receiving 20 mg/kg attained serum concentrations of >0.7 μg/mL, a level suggested to be therapeutic against R. equi by previous studies. Mean elimination half‐life was 32.8 or 32.4 h for foals receiving 20 or 40 mg/kg respectively. The results of this study suggest that at least 30 mg/kg orally every 24 h should be considered in future pharmacodynamic and efficacy studies.  相似文献   

19.
Flunixin meglumine (FM, 1.1 mg/kg) and phenylbutazone (PBZ, 4.4 mg/kg) were administered intravenously (i.v.) as a single dose to eight sheep prepared with subcutaneous (s.c.) tissue-cages in which an acute inflammatory reaction was stimulated with carrageenan. Pharmacokinetics of FM, PBZ and its active metabolite oxyphenbutazone (OPBZ) in plasma, exudate and transudate were investigated. Plasma kinetics showed that FM had an elimination half-life (t½β) of 2.48 ± 0.12 h and an area under the concentration – time curve (AUC) of 30.61 ± 3.41 μg/mL.h. Elimination of PBZ from plasma was slow (t½β = 17.92 ± 1.74 h, AUC = 968.04 ± μg/mL.h.). Both FM and PBZ distributed well into exudate and transudate although penetration was slow, indicated by maximal drug concentration (Cmax) for FM of 1.82 ± 0.22 μg/mL at 5.50 ± 0.73 h (exudate) and 1.58 ± 0.30 μg/mL at 8.00 h (transudate), and Cmax for PBZ of 22.32 ± 1.29 μg/mL at 9.50 ± 0.73 h (exudate) and 22.07 ± 1.57 μg/mL at 11.50 ± 1.92 h (transudate), and a high mean tissue-cage fluids:plasma AUClast ratio obtained in the FM and PBZ groups (80–98%). These values are higher than previous reports in horses and calves using the same or higher dose rates. Elimination of FM and PBZ from exudate and transudate was slower than from plasma. Consequently the drug concentrations in plasma were initially higher and subsequently lower than in exudate and transudate.  相似文献   

20.
Pharmacokinetic parameters of oxytetracycline were analysed in healthy preruminant veal calves after intravenous, intramuscular and oral administration. The serum half-lives in the β-elimination phase of both 10% and 20% solutions after i.v. injection of 10 mg/kg were similar (7.07 ± 1.36 h and 7.16 ± 1.17 h, mean ± SD), whereas the total body clearance and the apparent volume of distribution were higher for the 20% solution. Serum concentrations above 0.5 μg/ml were maintained with both formulations during 12–24 h but were only above 4 μg/ml to 5 h. Intramuscular administration of the 20% solution gave a complete absorption with two rate constants of absorption, a faster (t1/2a1= 0.27 h) and a slower one (t1/2a2= 10.90 h) responsible for the delayed elimination half-life after this route of application (t1/2β= 9.83 ± 1.35 h). Mean serum concentrations reached a maximum level of 3.01 ± 0.72 μg/ml at 4.01 ± 2.84 h and decreased to 0.5 μg/ml between 12 and 24 h. 50 mg/kg given orally with a milk replacer were found to have a mean bioavailability of 46.35%. A mean serum peak level of 4.99 ± 1.37 μg/ml was achieved at 9.16 ± 1.99 h and the mean concentration was still above 0.5 μg/ml after 48 h. The elimination half-life (t1/2β= 10.66 ± 3.15 h) reflected the slow absorption step (t1/2a2= 10.15 h) following that responsible for the initial faster absorption (t1/2a2= 1.99 h). Comparison of the area under the serum curves gave mean values of 117% for tetracycline and of 53% for chlortetracycline relative to oxytetracycline (arbitrarily fixed at 100%) after identical oral dosage of the three tetracyclines. We also propose and discuss a dosage schedule based on minimal inhibitory concentrations of different susceptible pathogens  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号