首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the epidemiological situation of swine influenza virus (SIV) infections in different wild boar populations in Germany based on a serological surveillance in some Bundeslaender (federal states) in connection with virological investigations in wild boar shot in Northern Germany (Mecklenburg-Western Pomerania, district of Nordvorpommern). Altogether, 1245 sera from wild boar were tested using the hemagglutination inhibition test. The established seroprevalence rate was low (on average 5.2%). Antibodies were only detected against the subtypes H1N1 and H3N2 showing differences between wild boar populations and age classes. The virological investigation of samples derived from lungs of wild boar shot in Mecklenburg-Western Pomerania, district of Nordvorpommern (n=242), revealed that the virus prevalence (two virologically positive animals, 0.8%) was very low. Based on serological typing, the isolated SIV was identified as subtype H3N2. Molecular biological investigations of the hemagglutinin (HA) and neuraminidase (NA) genes confirmed this result. This study suggests that SIV infections in wild boar seem to be no serious threat for domestic pigs.  相似文献   

2.
Classical swine fever (CSF) is a highly contagious multi-systemic haemorrhagic viral disease of pigs. Not only domestic pigs, but also wild boar appear to play a crucial role in the epidemiology of CSF. Spleen (n = 739) and blood coagulum (n = 562) sampled from wild boars (Sus scrofa) shot in 2002, and serum samples from 746 wild boar shot in 2003 and 2004, were tested throughout Slovenia. In 2002, 17 samples were positive on enzyme-linked immunosorbent assay (ELISA) test for antibodies against classical swine fever virus (CSFV). Positive ELISA test was confirmed by a virus neutralization test. All other samples were negative. This is the first report that describes the epidemiology of CSFV from 2002 on, and the monitoring of the wild boar population in Slovenia at present.  相似文献   

3.
Influenza is a viral disease that affects human and several animal species. In Brazil, H1N1, H3N2 and 2009 pandemic H1N1 A(H1N1)pdm09 influenza A viruses (IAV) circulate in domestic swine herds. Wild boars are also susceptible to IAV infection but in Brazil until this moment there are no reports of IAV infection in wild boars or in captive wild boars populations. Herein the occurrence of IAV in captive wild boars with the presence of lung consolidation lesions during slaughter was investigated. Lung samples were screened by RT-PCR for IAV detection. IAV positive samples were further analyzed by quantitative real-time PCR (qRRT-PCR), virus isolation, genomic sequencing, histopathology and immunohistochemistry (IHC). Eleven out of 60 lungs (18.3%) were positive for IAV by RT-PCR and seven out of the eleven were also positive for A(H1N1)pdm09 by qRRT-PCR. Chronic diffuse bronchopneumonia was observed in all samples and IHC analysis was negative for influenza A antigen. Full genes segments of H1N2 IAV were sequenced using Illumina's genome analyzer platform (MiSeq). The genomic analysis revealed that the HA and NA genes clustered with IAVs of the human lineage and the six internal genes were derived from the H1N1pdm09 IAV. This is the first report of a reassortant human-like H1N2 influenza virus infection in captive wild boars in Brazil and indicates the need to monitor IAV evolution in Suidae populations.  相似文献   

4.
The knowledge of the genome constellation in pandemic influenza A virus H1N1 2009 from different countries and different hosts is valuable for monitoring and understanding of the evolution and migration of these strains. The complete genome sequences of selected worldwide distributed influenza A viruses are publicly available and there have been few longitudinal genome studies of human, avian and swine influenza A viruses. All possible to download SIV sequences of influenza A viruses available at GISAID Platform (Global Initiative on Sharing Avian Influenza Data) were analyzed firstly through the web servers of the Influenza Virus Resource in NCBI. Phylogenetic study of circulating human pandemic H1N1 virus indicated that the new variant possesses a distinctive evolutionary trait. There is no one way the pandemic H1N1 have acquired new genes from other distinguishable viruses circulating recently in local human, pig or domestic poultry populations from various geographic regions. The extensive genetic diversity among whole segments present in pandemic H1N1 genome suggests that multiple introduction of virus have taken place during the period 1999-2009. The initial interspecies transmission could have occurred in the long-range past and after it the reassortants steps lead to three lineages: classical SIV prevalent in the North America, avian-like SIV in Europe and avian-like related SIV in Asia. This analysis contributes to the evidence that pigs are not the only hosts playing the role of "mixing vessel", as it was suggested for many years.  相似文献   

5.
This study investigated the disease status of Saskatchewan’s feral wild boar population. Whole carcasses, tissue samples, and/or serum from 81 hunter-killed boars from Saskatchewan were submitted to the Canadian Wildlife Health Cooperative (CWHC) between 2009 and 2014. Serological tests were negative for PRRS, H1N1, and H3N2 swine influenza, PCV-2, and TGE/PRCV in 22/22 boars and for Toxoplasma gondii and Mycoplasma hyopneumoniae in 20/20 boars. Of 20 boars whose sera were tested 20 were positive for Actinobacillus pleuropneumoniae, with 7 positive for, among other strains, serotype 14; 16 were positive for Lawsonia intracellularis, 1 was positive and 6 were suspicious for Salmonella spp. Polymerase chain reaction tests were negative for PRRS and PCV2 in 58/58 boars and positive for Torque teno virus in 1/8 boars. Digestion assays were negative for Trichinella spp. in 22/22 boars. The high seroprevalence of A. pleuropneumoniae serotype 14 is noteworthy as this serotype has not been previously reported in North America.  相似文献   

6.
为了解猪流感病毒(SIV)的变异情况,我们2009年11月从河北某养殖场采集呈流感症状的猪鼻拭子40份,接种10日龄SPF鸡胚,分离到一株猪流感病毒,通过RT-PCR和血凝抑制试验鉴定为H1N1亚型,命名为A/swine/Hebei/15/2009(H1N1),其全基因序列测定及同源性分析发现,8个基因片段均与2000年左右H1N1人流感病毒有较高的同源性。系统遗传演化显示,该病毒分离株是由2000年人源H1N1流感病毒A/Dunedin/2/2000(H1N1)进化而来。抗原性分析显示该株与甲型H1N1流感病毒和经典H1N1病毒株抗原性差异较大。对小鼠致病性试验表明该病毒株可以直接感染小鼠并导致小鼠轻微临床症状和组织病理学变化,但不致死小鼠,表现为低致病性。  相似文献   

7.
Recently a commercial enzyme-linked immunosorbent assay (ELISA) kit for detecting antibody against H1N1 swine influenza virus (SIV) has been made available to diagnosticians and veterinary practitioners. Because the hemagglutination inhibition (HI) test has been considered the standard test for SIV serology, diagnostic performance of the new ELISA was evaluated using positive (n = 60) and negative (n = 188) serum samples from young pigs with known status of SIV infection and compared with that of the HI test. Both ELISA and HI test identified all negative animals correctly. None of the serum samples (n = 64) from pigs inoculated with H3N2 SIV was positive by ELISA for SIV antibody. The H1N1 SIV antibody detectable by ELISA appears to develop more slowly in comparison with antibody detectable by HI test. Although antibody was detected by HI test in all inoculated animals (n = 20) by day 7 postinoculation (PI), antibody was detected by ELISA in 0%, 75%, and 100% of the inoculated animals on days 7, 14, and 28 PI, respectively. Discrepancy in test results between the 2 serologic tests appeared to be because of differences in antibody isotypes detected by each test. Enzyme-linked immunosorbent assay mainly detected IgG antibody, whereas the HI test detects IgM antibody very efficiently as well as IgG antibody. Collectively, the commercial ELISA is highly specific for antibody to H1N1 SIV but may not identify positive animals at the early stage of infection as effectively as the HI test, particularly when SIV is introduced to a na?ve swine population.  相似文献   

8.
There is a possibility that classical swine fever (CSF) virus outbreak has negative impacts on wild boar. To adequately manage native wild boar populations, wildlife managers need to gather the field data on wild boar and implement population management practices. We aimed to report the relative abundance index of wild boar before and after this outbreak. Our results showed that relative abundance index declined from 2017 (8.88 wild boars/100 trap days) to 2019 (2.03 wild boars/100 trap days), because of the negative impact of this virus and continuous culling programs. Although the eradication risk from the synergistic effect is low, wildlife managers need to consider the relationship between the trade-off between the risk of CSF and the conservation ecology risk of native species eradication.  相似文献   

9.
In early 1992, a CSF epizootic was clinically recognised in a wild boar population of approximately 1300 animals within an area of 250km(2) located in the east of France. In order to check the CSF situation in wild boars outside this area, a serological survey was carried out in the rest of France, for 8 consecutive years (1991-1998). This paper reports on the results obtained during this survey which included wild boars shot during the hunting period but also boars reared within fences. Around 1000-2700 sera a year were tested for the presence of antibodies to classical swine fever virus (CSFV) and also to Aujeszky's disease virus (ADV). Out of 12025 sera tested over the whole period, 80 wild boars were found positive for CSF antibodies. Sixty of them were collected on wild boars shot during the years 1992-1994 in the epizootic area located in east of France and 10 were collected in Corsica during the years 1994-1996. The last four positive samples were single reactors coming from areas or farms, which were thereafter confirmed to be serologically negative. These results together with the fact that no disease has been reported so far illustrate that the French wild boar population is probably not concerned by CSF infection (excepted in the east of France where the disease has now become enzootic). Two hundred and forty nine sera were initially detected as CSF positive but confirmed secondarily as positive for border disease (BD) antibodies. This finding shows that wild boars are also susceptible to infection by ruminant pestiviruses. Four hundred and twenty three wild boars have been found positive for ADV antibodies. In addition, from 1993 to 1995, 909 samples were tested for the presence of antibodies to porcine reproductive and respiratory syndrome virus (PRRSV). Thirty three of them were positive. The results on AD and PRRS antibody detection show that wild boars may constitute a reservoir for various infectious diseases of pigs.  相似文献   

10.
Sera collected from hunter-killed wild boars (Sus scrofa) during 1999-2005 from seven different regions of the Czech Republic were assayed for antibodies to Toxoplasma gondii by indirect fluorescence antibody test and to Neospora caninum by competitive-inhibition enzyme-linked immunosorbent assay and by indirect fluorescence antibody test. Antibodies to T. gondii were detected in 148 (26.2%) of 565 wild boars with serum dilutions of 1:40 in 40, 1:80 in 40, 1:160 in 27, 1:320 in 19, 1:640 in 18 and 1:1280 in 4 wild boars. Antibodies to N. caninum were detected in 102 (18.1%) of 565 wild boars with 30.1-94.6% inhibition in ELISA; statistical significant differences were observed between sampling regions, ranging from 0% to 31.8%. Sera, positive in ELISA, were examined in IFAT; 58 of 102 (56.9%) were positive with titres 1:40-1:160. Mixed infection (concurrent presence of both T. gondii and N. caninum antibodies) was found in 38 wild boars. It is the first report of antibodies to N. caninum in wild boar. Serological results indicate a common exposure to T. gondii and to N. caninum among wild boars in the Czech Republic.  相似文献   

11.
From May 2013 to April 2014, 15 swine family‐run farms (17 pig litters) in two districts in Hung Yen province, near Hanoi, were virologically and epizootiologically monitored for swine influenza viruses (SIV) monthly. No SIV was isolated from nasal swabs. Maternal antibodies were detected in 10 litters, and seroconversion against SIV was detected in six litters. There was a marked difference in patterns of SIV transmission in the two districts. Van Lam district which has low density of swine with mainly smallholder farms had low intensity of SIV, with much of the infection caused by H1N1 2009 pandemic‐like viruses A(H1N1)pdm09, likely originated from humans. In contrast, Van Giang district, which has high swine density and larger farms, had high levels of typical SIV (triple reassortants H3N2 and H3N2 Binh Duong lineage viruses) circulating within swine. With one exception, the SIV lineages detected were those we concurrently isolated from studies in a large central abattoir in Hanoi. Influenza‐like illness symptoms reported by farmers were poorly correlated with serological evidence of SIV infection.  相似文献   

12.
In order to investigate the relationships between Italian wild boar and major pig breeds, we studied the genetic variability of four wild boar populations in Italy (Arezzo, Pisa, Parma, Bergamo) using a 533-bp fragment of the mitochondrial control region. Sixty-nine wild boar samples were analysed, allowing the identification of 10 distinct haplotypes, which involve a total of 15 single nucleotide polymorphisms. Phylogenetic and network analyses were performed also considering several sequences of wild and domesticated forms available in the databases. The Bayesian phylogenetic tree and the Median-Joining network analyses show three main groups: the Italian (IT), European (EU) and Asian (AS) clades. The IT clade corresponds to the Maremma endemic wild boar population and also includes Sardinian individuals, while the EU and AS groups include wild boars as well as domestic pig breeds. Only two individuals from Pisa cluster in the IT group, whereas two haplotypes from Bergamo cluster in the AS group and all other samples cluster in the EU clade. These findings suggest that in Italy wild boar populations have a mixed origin, both EU and AS, and that an interbreeding between wild and domesticated strains has probably occurred. Eight of the 10 wild boars coming from the Migliarino-San Rossore-Massaciuccoli Regional Park (Pisa) belong to H2 and H3 haplotypes, and cluster into the EU clade, suggesting that this regional park is not anymore exclusive of the endemic Maremma wild boar.  相似文献   

13.
本试验旨在研究猪肉质性状功能基因突变位点在野猪群体里面的遗传变异规律。以MC4R基因(D298N G>A)、RYR1基因(c.1843 C>T)、PRKAG3基因(1849 G>A)和IGF2基因(3072 G>A)突变位点为基础,通过PCR-RFLP、PCR-SSCP技术,对72头圈养野猪群体进行突变位点的多态性检测和群体遗传变异分析。结果表明,RYR1基因在c.1843 C>T突变位点的CC基因型为野猪群体内的优势基因型,等位基因C是野猪群体内的优势基因,没有TT基因型,该突变位点处于不平衡状态(P<0.01和P<0.05)。在MC4R基因D298N G>A突变位点上,GG基因型为野猪群体内的优势基因型,等位基因G是野猪群体内的优势基因。而PRKAG3基因(1849 G>A)的突变位点检测结果是GG基因型为野猪群体内的优势基因型,等位基因G是野猪群体内的优势基因,没有发现AA基因型。IGF2基因3072 G>A在野猪群体内没有发现多态性,经测序验证全部为GG基因型。这3个基因突变都处于Hardy-Weinberg平衡状态(P>0.05)。本研究得出该野猪种群体遗传多样性和变异较小,符合其品种特性。  相似文献   

14.
There has been a worldwide increase in the number and geographical spread of wild boar populations in recent decades leading to an increase in both the circulation of disease agents and greater contact with domestic animals and humans. Diseases affect the population dynamics of wildlife but the effects of most viral diseases on the European wild boar are largely unknown. Many viral diseases present in domestic pig populations are also present in wild boars where they can provide a disease reservoir, as is clearly the case with classical swine fever, but little is known about other viral diseases such as porcine circovirus diseases or hepatitis E. This review considers the current scientific knowledge of the effects of viral diseases on wild boar populations and their r?le as potential disease reservoirs. The focus is on those viral diseases of domestic swine and wild boars that are included as notifiable by the Office International des Epizooties (OIE).  相似文献   

15.
本试验针对猪流感病毒(swine influenza virus,SIV)NP基因保守区域设计并合成6条引物,建立了SIV的环介导等温扩增(LAMP)检测方法,并进行了特异性、敏感性和重复性试验。结果显示,该方法可特异性检测H1N1、H1N2、H3N2、类禽H1N1亚型SIV及甲型H1N1流感病毒,但不能检测猪繁殖与呼吸综合征病毒、猪细小病毒、猪瘟病毒、猪伪狂犬病病毒、猪圆环病毒2型、日本乙型脑炎病毒;该方法的最低检测量为100拷贝/μL质粒DNA。结果表明建立的LAMP方法具有较高的敏感性和特异性,可用于SIV的快速检测。  相似文献   

16.
We describe the distribution of tuberculosis-like lesions (TBL) in wild boar (Sus scrofa) and red deer (Cervus elaphus) in Spain. Animals with TBL were confirmed in 84.21% of mixed populations (n=57) of red deer and wild boar and in 75% of populations of wild boar alone (n=8) in central and southern Spain (core area). The prevalence of TBL declined towards the periphery of this region. In the core area, the prevalence ranged up to 100% in local populations of wild boar (mean estate prevalence 42.51%) and up to 50% in red deer (mean estate prevalence 13.70%). We carried out exploratory statistical analyses to describe the epidemiology of TBL in both species throughout the core area. Prevalence of TBL increased with age in both species. Wild boar and red deer mean TBL prevalence at the estate level were positively associated, and lesion scores were consistently higher in wild boars than in red deer. The wild boar prevalence of TBL in wild boar did not differ between populations that were or were not cohabiting with red deer. Amongst the wild boars with TBL, 61.19% presented generalized lesions, and the proportion of generalized cases was similar between sex and age classes. In red deer, 57.14% of TBL-positive individuals presented generalized lesions, and the percentage of generalized cases increased with age class, but did not differ between the sexes. These results highlight the potential importance of wild boar and red deer in the maintenance of tuberculosis in south central Spain.  相似文献   

17.

Background

Swine influenza is an infectious acute respiratory disease of pigs caused by influenza A virus. We investigated the time of entry of swine influenza into the Finnish pig population. We also describe the molecular detection of two types of influenza A (H1N1) viruses in porcine samples submitted in 2009 and 2010.This retrospective study was based on three categories of samples: blood samples collected for disease monitoring from pigs at major slaughterhouses from 2007 to 2009; blood samples from pigs in farms with a special health status taken in 2008 and 2009; and diagnostic blood samples from pigs in farms with clinical signs of respiratory disease in 2008 and 2009. The blood samples were tested for influenza A antibodies with an antibody ELISA. Positive samples were further analyzed for H1N1, H3N2, and H1N2 antibodies with a hemagglutination inhibition test. Diagnostic samples for virus detection were subjected to influenza A M-gene-specific real-time RT-PCR and to pandemic influenza A H1N1-specific real-time RT-PCR. Positive samples were further analyzed with RT-PCRs designed for this purpose, and the PCR products were sequenced and sequences analyzed phylogenetically.

Results

In the blood samples from pigs in special health class farms producing replacement animals and in diagnostic blood samples, the first serologically positive samples originated from the period July–August 2008. In samples collected for disease monitoring, < 0.1%, 0% and 16% were positive for antibodies against influenza A H1N1 in the HI test in 2007, 2008, and 2009, respectively. Swine influenza A virus of avian-like H1N1 was first detected in diagnostic samples in February 2009. In 2009 and 2010, the avian-like H1N1 virus was detected on 12 and two farms, respectively. The pandemic H1N1 virus (A(H1N1)pdm09) was detected on one pig farm in 2009 and on two farms in 2010.

Conclusions

Based on our study, swine influenza of avian-like H1N1 virus was introduced into the Finnish pig population in 2008 and A(H1N1)pdm09 virus in 2009. The source of avian-like H1N1 infection could not be determined. Cases of pandemic H1N1 in pigs coincided with the period when the A(H1N1)pdm09 virus was spread in humans in Finland.  相似文献   

18.
Porcine circovirus type 2 (PCV2) is considered as the causative agent of postweaning multisystemic wasting syndrome (PMWS) in domestic pigs, where the virus is ubiquitous as evidenced by serological surveys. We present the results of the first nationwide sero-survey on the presence of PCV2 antibodies in European wild boars, and report the first PMWS case in a wild boar from Spain. Sera from 656 hunter harvested wild boars from 45 different geographical sites and 22 additional imported animals were analysed by means of an immunoperoxidase monolayer assay (IPMA). We also examined the tissues from 55 healthy and one diseased wild boars for the presence of PCV2 nucleic acid and PMWS lesions by in situ hybridisation and histopathology, respectively. Additionally, abundance estimates of wild boars and field interviews were carried out on 30 sampling sites. The prevalence of medium to high PCV2 serological titres among the examined wild boars was 47.89 +/- 1.9%. Seropositive wild boars appeared in all but one of the geographical regions analysed. Seroprevalence and titre of PCV2 antibodies were closely related to the management of the wild boar populations. Wild boars from intensively managed, farm-like populations had higher prevalence than wild boars living in more natural situations. The effect of wild boar abundance and management on PCV2 antibody prevalence was further evidenced by the high correlation existing between the relative abundance estimates of animals and the percentage of wild boars with medium to high levels of PCV2 antibodies. PCV2 nucleic acid was detected in the tissues of three wild boars. One of these was diagnosed as PMWS. The results, in addition to information on piglet mortalities, suggest a potential role of PMWS in piglet mortality in intensively managed wild boar populations.  相似文献   

19.
The first findings of classical swine fever in wild boar occurred in the rural district Ostprignitz-Ruppin of Brandenburg in March 1995. Up to this time the area was considered to be free of swine fever in domestic and wild boars. The swine fever cases were marked particularly by the occurence of dead games and clinically decreased individuals as well as by the involvement of young wild boars. (< 10 kg carcass weight). In Brandenburg, the eradication programme of classical swine fever was based on oral immunization with an attenuated type C vaccine (so called Dessauer wild boar lure) carried out within the frame of a field trial since 1995. The success of oral immunization was examined by the development of swine fever positive-findings within the swine fever endangered district and by the seroconversion in the entire vaccination area. Due to the oral immunization the classical swine fever prevalence decreased from 4.65% in March 1995 to 0.58% in December 1997. After the third immunization the seroconversion reached on average rates between 30% and 35%. The seroconversion increased with carcass weight and with number of subsequent immunization. During the investigation period the rate of seroconversion in wild boars up to 17 kg carcass weight was 13.2%, in wild boars from 18 to 28 kg carcass weight 23.1%, sub-adult wild boars from 29 to 56 kg carcass weight 33.2%, and the adult wild boars above 57 kg carcass weight 41.5%.  相似文献   

20.
Oral emergency vaccination against classical swine fever is a powerful tool to control disease outbreaks among European wild boar and thus to safeguard domestic pigs in affected regions. In the past, when virus detection was mainly done using virus isolation in cell culture or antigen enzyme-linked immunosorbent assays, modified live vaccine strains like C-strain "Riems", were barely detectable after oral vaccination campaigns. Nowadays, the use of highly sensitive molecular techniques has given rise to an increase in vaccine virus detections. This was also the case during the 2009 outbreak among German wild boar and the subsequent vaccination campaigns. To guarantee a rapid differentiation of truly infected from C-strain vaccinated animals, a combination of differentiating multiplex rRT-PCR assays with partial sequencing was implemented. Here, we report on the rational and use of this approach and the lessons learned during execution. It was shown that positive results in the recently developed vaccine strain (genotype) specific rRT-PCR assay can be taken as almost evidentiary whereas negative results should be confirmed by partial sequencing. Thus, combination of multiplex rRT-PCR assays as a first line differentiation with partial sequencing can be recommended for a genetic DIVA strategy in areas with oral vaccination against classical swine fever in wild boars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号