首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kisspeptin neurons in the arcuate nucleus (ARC), which co-express neurokinin B (NKB) and dynorphin A, are termed KNDy neurons. These neurons are candidates for the intrinsic gonadotropin-releasing hormone (GnRH) pulse generator. The central and peripheral administration of NKB or its receptor (NK3R) agonist evokes GnRH pulse generator activity and the subsequent pulsatile GnRH/luteinizing hormone (LH) secretion. However, the mechanism responsible for neural activation of the GnRH pulse generator in goats is unclear. We conducted electrophysiological and histochemical experiments to test the hypothesis that KNDy neurons receive NKB and that the signal is transmitted bilaterally to a population of KNDy neurons. Bilateral electrodes aimed at a cluster of KNDy neurons were inserted into the ovariectomized goat ARC. We observed the GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA volleys). The unilateral administration of NKB or vehicle in the close vicinity of KNDy neurons under simultaneous MUA recording from both sides revealed that only NKB evoked MUA volley(s) immediately after administration. The timing of the MUA volley(s) evoked on the ipsilateral side was synchronized to that on the contralateral side. The double-labeled ISH for KISS1 and TACR3, which encode kisspeptin and NK3R, respectively, revealed that most KNDy neurons co-expressed TACR3. Therefore, NKB could directly stimulate KNDy neurons, following which the stimulatory signal is immediately transmitted to the entire population of KNDy neurons via connection with their fibers. This mechanism helps synchronize burst activity among KNDy neurons, thereby generating neural signals that govern pulsatile GnRH secretion.  相似文献   

2.
Neurons in the arcuate nucleus (ARC) that concomitantly express kisspeptin, neurokinin B (NKB) and dynorphin A are termed KNDy neurons and are likely candidates for the intrinsic gonadotropin-releasing hormone (GnRH) pulse generator. Our hypothesis is that KNDy neurons are functionally and anatomically interconnected to generate discrete neural signals that govern pulsatile GnRH secretion. Our goal was to address this hypothesis using electrophysiological and anatomical experiments in goats. Bilateral electrodes targeting KNDy neurons were implanted into ovariectomized goats, and GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA volleys), was measured. Spontaneous and pheromone- or senktide (an NKB receptor agonist)-induced MUA volleys were simultaneously recorded from both sides of the ARC. An anterograde tracer, biotinylated dextran amine (BDA), was also injected unilaterally into the ARC of castrated male goats, and the distribution of fibers containing both BDA and NKB was examined using dual-labeling histochemistry. The results showed that MUA volleys, regardless of origin (spontaneous or experimentally induced), occur simultaneously between the right and left sides of the ARC. Tract tracing indicated that axons projecting from NKB neurons in the ARC were directly apposed to other NKB neuronal cells located bilaterally in the ARC. These results demonstrate that GnRH pulse generator activity occurs synchronously between both sides of the ARC in goats and that KNDy neurons are bilaterally interconnected in the ARC via NKB-containing fibers. Taken together, the results suggest that KNDy neurons form a neuronal circuit to synchronize burst activity among KNDy neurons and thereby generate discrete neural signals that govern pulsatile GnRH secretion.  相似文献   

3.
Puberty in mammals is timed by an increase in gonadotropin-releasing hormone (GnRH) secretion. Previous studies have shown involvement of the two neuropeptides, kisspeptin and neurokinin B (NKB), in controlling puberty onset. Little is known about the role of the other key neuropeptide, dynorphin, in controlling puberty onset, although these three neuropeptides colocalize in the arcuate kisspeptin neurons. The arcuate kisspeptin neuron, which is also referred to as the KNDy neuron, has recently been considered to play a role as an intrinsic source of the GnRH pulse generator. The present study aimed to determine if attenuation of inhibitory dynorphin-kappa-opioid receptor (KOR) signaling triggers the initiation of puberty in normal developing female rats. The present study also determined if stimulatory NKB-neurokinin 3 receptor (NK3R) signaling advances puberty onset. Female Wistar-Imamichi rats were weaned and intraperitoneally implanted with osmotic minipumps filled with nor-binaltorphimine (nor-BNI), a KOR antagonist, or senktide, a NK3R agonist, at 20 days of age. Fourteen days of intraperitoneal infusion of nor-BNI or senktide advanced puberty onset, manifested as vaginal opening and the first vaginal estrus in female rats. Frequent blood sampling showed that nor-BNI significantly increased luteinizing hormone (LH) pulse frequency at 29 days of age compared with vehicle-treated controls. Senktide tended to increase this frequency, but its effect was not statistically significant. The present results suggest that the inhibitory input of dynorphin-KOR signaling plays a role in the prepubertal restraint of GnRH/LH secretion in normal developing female rats and that attenuation of dynorphin-KOR signaling and increase in NKB-NK3R signaling trigger the onset of puberty in female rats.  相似文献   

4.
It has recently been shown that neurokinin B, a tachykinin, is associated with GnRH pulse generation in sheep and goats. The aim of the present study was to clarify the role of tachykinin receptors in the control of LH secretion in rats. To this end, we evaluated the effect of CS-003, an antagonist for all three neurokinin receptors (NK1, NK2 and NK3 receptors), on pulsatile LH secretion in both sexes of rats with different routes of administration. Both oral and third ventricular administration of CS-003 suppressed LH secretion in both sexes of gonadectomized animals. Furthermore, intact male rats with oral administration of CS-003 showed decreased serum testosterone levels, which might be due to suppressed LH secretion. None of the three subtype-specific neurokinin receptor antagonists showed a significant effect on LH secretion in ovariectomized rats when each antagonist was singly administered. The present results suggest that neurokinins play a role in the control of pulsatile GnRH/LH secretion via multiple neurokinin receptors in both male and female rats.  相似文献   

5.
Exposure of females to the male pheromone induces pulsatile release of gonadotropin-releasing hormone (GnRH) in goats. Recently, kisspeptin neurons in the arcuate nucleus (ARC) have been suggested to represent the proximate source of the GnRH pulse generator. In this study, we examined the effects of the pheromone on multiple-unit activity (MUA) in female goats fitted with recording electrodes aimed at the ARC kisspeptin neurons. In all eight goats, periodic bursts in MUA (MUA volleys), which were considered to be electrophysiological manifestations of the GnRH pulse generator, were observed. The mean intervolley interval (T) during the control period was calculated in each goat that was then exposed to the male pheromone for 1 sec at timings of 1/4 T, 1/2 T or 3/4 T after one regularly occurring MUA volley. An instantaneous rise in MUA was observed immediately after the exposure regardless of timing. Exposure at a timing of 3/4 T resulted in an MUA volley within 60 sec following the instantaneous rise in all goats. In contrast, an MUA volley was induced in only 2 goats by exposure at 1/2 T, while exposure at 1/4 T failed to induce an MUA volley in any goats. These results suggest that transmission of the pheromone signal to the ARC, represented by an instantaneous rise, activates the GnRH pulse generator. Moreover, the timing-dependent pheromone action in inducing an MUA volley indicates that the GnRH pulse generator has a refractory period for the pheromone signal after the burst.  相似文献   

6.
The time course of GnRH pulse generator activity and plasma concentrations of energy substrates and insulin were simultaneously observed in female goats during 4-day fasting and subsequent refeeding in the presence or absence of estrogen for a better understanding of the mechanism of energetic control of gonadotropin secretion in ruminants. The GnRH pulse generator activity was electrophysiologically assessed with the intervals of characteristic increases in multiple-unit activity (MUA volleys) in the mediobasal hypothalamus. In estradiol-treated ovariectomized (OVX+E2) goats, the MUA volley intervals increased as fasting progressed. Plasma concentrations of non-esterified fatty acid and ketone body increased, while those of acetic acid and insulin decreased during fasting. The MUA volley intervals and plasma concentrations of those metabolites and insulin were restored to pre-fasting levels after subsequent refeeding. In ovariectomized (OVX) goats, changes in plasma metabolites and insulin concentrations were similar to those in OVX+E2 goats, but the MUA volley intervals were not altered. The present results demonstrated that fasting suppressed GnRH pulse generator activity in an estrogen-dependent manner. Changes in plasma concentrations of energy substrates and insulin during fasting were associated with the GnRH pulse generator activity in the presence of estrogen, but not in the absence of the steroid in female goats.  相似文献   

7.
Accumulating evidence suggests that the arcuate nucleus (ARC) kisspeptin/neurokinin B (NKB)/dynorphin (KNDy) neurons play a role in estrogen negative feedback action on pulsatile gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release. The present study aimed to determine if dynorphin (Dyn) is involved in estrogen negative feedback on pulsatile GnRH/LH release. The effect of the injection of nor-binaltorphimine (nor-BNI), a kappa-opioid receptor (KOR) antagonist, into the third cerebroventricle (3V) on LH pulses was determined in ovariectomized (OVX) adult female rats with/without replacement of negative feedback levels of estradiol (low E2). The mean LH concentrations and baseline levels of LH secretion in nor-BNI-injected, low E2-treated rats were significantly higher compared with vehicle-treated controls. On the other hand, the nor-BNI treatment failed to affect any LH pulse parameters in OVX rats without low E2 treatment. These results suggest that Dyn is involved in the estrogen negative feedback regulation of pulsatile GnRH/LH release. The low E2 treatment had no significant effect on the numbers of ARC Pdyn (Dyn gene)-,Kiss1- and Tac2 (NKB gene)-expressing cells. The treatment also did not affect mRNA levels of Pdyn and Oprk1 (KOR gene) in the ARC-median eminence region, but significantly increased the ARC kisspeptin immunoreactivity. These findings suggest that the negative feedback level of estrogen suppresses kisspeptin release from the ARC KNDy neurons through an unknown mechanism without affecting the Dyn and KOR expressions in the ARC. Taken together, the present result suggests that Dyn-KOR signaling is a part of estrogen negative feedback action on GnRH/LH pulses by reducing the kisspeptin release in female rats.  相似文献   

8.
Nutritionally induced anovulatory cows were ovariectomized and used to determine the relationships between dose, frequency, and duration of exogenous gonadotropin-releasing hormone (GnRH) pulses and amplitude, frequency, and concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in serum. In Experiment 1, cows were given pulses of saline (control) or 2 micrograms of GnRH infused i.v. during a 0.1-, 1.25-, 5-, 10-, or 20-min period. Concentrations of LH and FSH during 35 min after GnRH infusion were greater than in control cows (P < 0.01), and FSH concentrations were greater when GnRH infusions were for 10 min or less compared with 20 min. In Experiment 2, the effect of GnRH pulse frequency and dose on LH and FSH concentrations, pulse frequency, and pulse amplitude were determined. Exogenous GnRH (0, 2, or 4 micrograms) was infused in 5 min at frequencies of once every hour or once every 4th hr for 3 d. There was a dose of GnRH x frequency x day effect on LH and FSH concentrations (P < 0.01), indicating that gonadotropes are sensitive to changes in pulse frequency, dose, and time of exposure to GnRH. There were more LH pulses when GnRH was infused every hour, compared with an infusion every 4th hr (P < 0.04). Amplitudes of LH pulses were greater with increased GnRH dose (P < 0.05), and there was a frequency x dose x day effect on FSH pulse amplitude (P < 0.0006). We conclude that LH and FSH secretion in the bovine is differentially regulated by frequency and dose of GnRH infusions.  相似文献   

9.
The aims of the present study were to clarify the effect of kisspeptin‐10 (Kp10) on the secretion of luteinizing hormone (LH) and testosterone (T) in pre‐pubertal and post‐pubertal male ruminants. Four male goats (Shiba goats) were given an intravenous (i.v.) injection of Kp10 (5 µg/kg body weight (b.w.)), gonadotoropin‐releasing hormone (GnRH, 1 µg/kg b.w.), or 2 mL of saline as a control at the ages of 3 (pre‐pubertal) and 6 (post‐pubertal) months. A single i.v. injection of Kp10 significantly stimulated the release of LH and T in both groups. The area under the response curve (AUC) of LH for a 60‐min period after the i.v. injection of Kp10 was significantly greater in the pre‐pubertal goats (P < 0.05). The AUC of T for a 120 min period post‐injection did not differ between the two age groups. A single i.v. injection of GnRH also significantly stimulated the release of LH and T in both groups (P < 0.05). The secretory pattern of LH and T in response to GnRH resembled that in response to Kp10. These results show that the LH‐releasing response to Kp10 is greater in pre‐pubertal than post‐pubertal male goats. They also show that Kp10, as well as GnRH, is able to stimulate the release of T in male goats.  相似文献   

10.
The effect of metoclopramide (MC), a dopamine antagonist on luteinizing hormone (LH), was examined in anestrous primaparous cows. Metoclopramide has been found to be beneficial in overcoming fescue toxicosis; increasing LH secretion stimulates return to ovulatory function after parturition. Consequently, if MC had negative effect on LH secretion, it would indicate that administration of MC to reproducing animals might be limited. Of 14 postpartum (47 to 66 days) cows, 7 were given MC (4 mg/kg of body weight, IV), and 7 served as controls. Blood was obtained via jugular cannulas at 15-minute intervals for 8 hours; MC was given at the end of the first hour, and gonadotropin-releasing hormone (GnRH, 7 mg/kg), was given IV at the end of hour 7 as a challenge stimulus for LH secretion. Prior to GnRH administration, MC did not have significant effect on LH secretion, as judged by mean serum LH concentration, LH pulse frequency, and LH pulse amplitude. Administration of MC resulted in greater (P less than 0.05) LH response to GnRH, indicating enhanced secretory ability when the pituitary gland was challenged. Serum prolactin concentration was increased (P less than 0.01) by MC administration. Therefore, MC did not have adverse effect on LH secretion in postpartum cows.  相似文献   

11.
It has long been recognised that steroids can have both organisational and activational effects on the reproductive neuroendocrine axis of many species, including the sheep. Specifically, if the ovine foetus is exposed to testosterone during a relatively short 'window' of in utero development (from approximately day 30-90 of a 147 day pregnancy) the neural mechanisms regulating gonadotrophin releasing hormone (GnRH) secretion become organised in a male-specific manner. In post-natal life the consequences of foetal androgen exposure are sexually differentiated responses of the GnRH neuronal network to activation by factors such as photoperiod and ovarian steroid hormones. Studies in the gonadectomized lamb have demonstrated that elevated concentrations of oestrogen (E) are unable to trigger a preovulatory-like GnRH surge in the male and the androgenized ewe lamb. Further, these animals have markedly reduced sensitivity to the inhibitory actions of progesterone on tonic GnRH release compared with normal ewes. The reasons for these abnormal steroid feedback mechanisms may reside in sexually dimorphic inputs to the GnRH neurone, including those from oestrogen-receptive neurones in the arcuate nucleus that synthetize the neuropeptide, neurokinin B (NKB). The consequences of in utero androgen exposure are reflected in a progressive and dramatic impairment of fertility in the ovary-intact ewe.  相似文献   

12.
To test the hypothesis that orexin-B acts directly on the anterior pituitary to regulate LH and growth hormone (GH) secretion, anterior pituitary cells from prepuberal gilts were studied in primary culture. On day 4 of culture, 10(5) cells/well were challenged with 0.1, 10 or 1000 nM GnRH; 10, 100 or 1000 nM [Ala15]-hGRF-(1-29)NH2 or 0.1, 1, 10 or 100 nM, orexin-B individually or in combinations with 0.1 and 1000 nM GnRH or 10 and 1000 nM GRF. Secreted LH and GH were measured at 4 h after treatment. Basal LH and GH secretion (control; n = 6 pigs) was 183 +/- 18 and 108 +/- 4.8 ng/well, respectively. Relative to control at 4 h, all doses of GnRH and GRF increased (P < 0.0001) LH and GH secretion, respectively. All doses of orexin-B increased (P < 0.01) LH secretion, except for the 0.1 nM dose. Basal GH secretion was unaffected by orexin-B. Addition of 1, 10 or 100 nM orexin-B in combinations with 0.1 nM GnRH increased (P < 0.001) LH secretion compared to GnRH alone. Only 0.1 nM (P = 0.06) and 100 nM (P < 0.001) orexin-B in combinations with 1000 nM GnRH increased LH secretion compared to GnRH alone. All doses of orexin-B in combination with 1000 nM GRF suppressed (P < 0.0001) GH secretion compare to GRF alone, while only 0.1 nM orexin-B in combination with 10 nM GRF suppressed (P < 0.01) GH secretion compared to GRF. These results indicate that orexin may directly modulate LH and GH secretion at the level of the pituitary gland.  相似文献   

13.
Gonadotropin-inhibiting hormone (GnIH), observed in quail as a member of the RFamide neuropeptide family, suppresses luteinizing hormone (LH) secretion from the avian pituitary. Rats and cattle have an active gene of another member of the RFamide neuropeptide family, termed RFamide-related peptide-3 (RFRP-3), although bovine RFRP-3 is different from that of rats in both length and amino-acid sequence. A single injection of GnIH or RFRP-3 inhibited LH secretion in rodents, which continued for various periods. This study was conducted to evaluate the effects of bovine C-terminal octapeptide of RFRP-3 (RFRP-3-8) on LH secretion from cultured anterior pituitary (AP) cells of cattle, and the effects of RFRP-3-8 injections on pulsatile LH secretion in castrated male calves. The suppressive effect of RFRP-3-8 on LH secretion from AP cells was observed in the presence of gonadotropin-releasing hormone (GnRH), but not in the absence of GnRH in culture media. In another experiment collecting blood samples serially from castrated male calves with repeated intravenous injections of RFRP-3-8 (n = 6) or saline (n = 6), the RFRP-3-8 group showed suppressed LH pulse frequency during the injection period (P < 0.05); however, the RFRP-3-8 group showed no difference from the saline group in all measures of LH secretion in the postinjection period. In conclusion, our results suggested that RFRP-3-8 suppresses LH secretion from cultured AP cells, as well as LH pulse frequency in cattle.  相似文献   

14.
Photoperiod modulates reproduction in goats. We tested the hypothesis that the excitatory glutamatergic tone is reduced in the photoinhibited goat. The objectives of this study were to determine the effect of photoperiod and glutamatergic stimulation on LH, GH, and testosterone (T) secretion in goat bucks. Eight mature, intact bucks were used in two simultaneous 4 x 4 Latin square designs. Variables were two photoperiod regimens (short day; SD, 10 h light:14 h dark, n = 4; vs long day; LD, 16 h light:8 h dark, n = 4) and four doses of N-methyl-D-L-aspartate (NMA; 0, 1, 2 and 4 mg/kg BW, i.v.). Venous blood was obtained for 2 h before and after NMA injection, followed by GnRH injection and then a final 1 h of sampling. Injection of NMA increased (P < 0.002) LH secretion within 20 min. This increase was sustained for 120 min, but the response was most pronounced in LD goats. The increase in mean LH was associated with a concomitant dose-dependent increase in pulse frequency (P < 0.006). However, NMA treatment had no effect (P > 0.10) on LH pulse amplitude. The release of LH after injection of GnRH was not affected by photoperiod. Exposure of bucks to LD reduced T secretion relative to that of SD bucks (P < 0.01). However, GH secretion was enhanced in LD bucks (P< 0.001). The response of GH to NMA was dependent on photoperiod history. A highly significant immediate and sustained increase (P < 0.001) was observed in LD but not in SD bucks within 10 min. Overall, a dose-dependent increase (P < 0.01) in T secretion was stimulated by NMA in both LD and SD bucks. These results indicate that NMA receptors may be involved in the regulation of LH, GH, and testosterone secretion in the goat. Furthermore, length of day influences GH secretion in the goat and NMA receptor activation had divergent effects on the secretion of this hormone.  相似文献   

15.
In vitro responsiveness of the horse anterior pituitary (AP) gonadotropes to single and multiple GnRH challenges was examined. The pituitaries were collected from reproductively sound mares in estrus (n = 5) and diestrus (n = 5). Uniform 0.5 mm AP slices were subdivided using a 3 mm biopsy punch and then bisected for use in the perifusion chamber. Four bisected sections per chamber were perifused at 0.5 ml/min at 37 C for 560 min in Medium 199 saturated with 95% 0(2)/5% CO2. Ten minute fractions were collected after an initial 2 hr equilibration period. Four different treatment regimes of GnRH (10(-10) M) were evaluated: (A) three consecutive 10 min GnRH pulses separated by 80 and 100 min, respectively; (B) a single 120 min GnRH infusion; (C) a 10 min GnRH pulse followed 80 min later by a 120 min GnRH infusion and (D) two 10 min GnRH pulses separated by 60 min followed 80 min later by a 120 min GnRH infusion. Estimated total pituitary LH content was higher in estrous than diestrus mares (p less than 0.05). The total amount of LH released in response to GnRH tended to be greater in estrus than diestrus (p less than 0.1), whereas the percentage of LH released in estrus and diestrus was similar. An increase in the area under the LH response curve was noted with each successive 10 min pulse of GnRH during both estrus and diestrus (p less than 0.05), demonstrating a self-priming effect of GnRH. In addition, a significant increase in the peak LH amplitude (p less than 0.05) and the slope to peak amplitude (p less than 0.05) were observed for the 120 min GnRH pulse in regime C and D indicating that prior exposure to short-term pulses of GnRH increased the acute LH secretory response. These results suggest that in the cycling mare (1) the responsiveness of the pituitary (amount of LH released as percent of total LH) is similar in both estrus and diestrus, however, the magnitude of the LH response (total microgram amount of LH released) differs with the stage of the estrous cycle, being highest in estrus, and appears to be related, in part, to pituitary LH content and (2) GnRH self-priming occurs independently of the stage of the estrous cycle. Furthermore, we have demonstrated that the pulsatile mode of GnRH can act directly on the anterior pituitary to dictate the pulsatile release pattern of LH in the cycling mare.  相似文献   

16.
Hourly pulses of gonadotropin-releasing hormone (GnRH) or bi-daily injections of estradiol (E2) can increase luteinizing hormone (LH) secretion in ovariectomized, anestrous pony mares. However, the site (pituitary versus hypothalamus) of positive feedback of estradiol on gonadotropin secretion has not been described in mares. Thus, one of our objectives involved investigating the feedback of estradiol on the pituitary. The second objective consisted of determining if hourly pulses of GnRH could re-establish physiological LH and FSH concentrations after pituitary stalk-section (PSS), and the third objective was to describe the declining time trends of LH and FSH secretion after PSS. During summer months, ovariectomized pony mares were divided into three groups: Group 1 (control, n = 2), Group 2 (pulsatile GnRH (25 μg/hr), n = 3), and Group 3 (estradiol (5 mg/12 hr), n = 3). All mares were stalk-sectioned and treatment begun immediately after stalk-section. Blood samples were collected every 30 min for 8 h on the day before surgery (DO) and 5 d post surgery (D5) to facilitate the comparison of gonadotropin levels before and after pituitary stalk-section. Additionally, jugular blood samples were collected every 12 hr beginning the evening of surgery, allowing for evaluation of the gonadotropin secretory time trends over the 10 d of treatment. On Day 10, animals were euthanized to confirm pituitary stalk-section and to submit tissue for messenger RNA analysis (parallel study). Plasma samples were assayed for LH and FSH by RIA. Mean LH secretion decreased from Day 0 to Day 5 in Groups 1 and 3, whereas LH secretion tended (P < 0.08) to decrease in Group 2 mares. On Day 5, LH was higher (P < 0.01) in Group 2 (17.26 ± 3.68 ng/ml; LSMEANS ± SEM), than either Group 1 (2.65 ± 4.64 ng/ml) or group 3 (4.28 ± 3.68 ng/ml). Group 1 did not differ from Group 3 on Day 5 (P < 0.40). Similarly, mean FSH levels decreased in all groups after surgery, yet Group 2 mares had significantly (P < 0.001) higher FSH concentrations (17.66 ± 1.53 ng/ml) than Group 1 or Group 3 (8.34 ± 1.84 and 7.69 ± 1. 63 ng/ml, respectively). Regression analysis of bi-daily LH and FSH levels indicated that the time trends were not parallel. These findings indicate: 1) Pituitary stalk-section lowered LH and FSH to undetectable levels within 5 d after surgery, 2) pulsatile administration of GnRH (25 μg/hr) maintained LH and FSH secretion, although concentrations tended to be lower than on Day 0, and 3) E2 did not stimulate LH or FSH secretion.  相似文献   

17.
GnRH has several direct actions on rat granulosa cells. Specific receptors for GnRH have been demonstrated on rat and human ovaries. Whether the porcine ovary has specific receptors for GnRH is still debated and the physiological actions of GnRH on porcine granulosa cells have not yet been clarified. Consequently, we have examined the actions of a GnRH agonist (GnRHa) on basal and LH stimulated progesterone secretion by porcine granulosa cells. GnRHa inhibited both basal and LH stimulated progesterone secretion by granulosa cells from medium (3-5 mm) and large (6-10 mm) antral follicles during 3 day incubations. LH stimulated progesterone secretion was more sensitive to inhibition than basal progesterone secretion. Studies on the time course for GnRHa inhibition of progesterone secretion indicated that the decrease in progesterone secretion occurred 48 to 72 hr after first exposure to GnRHa. Earlier inhibition occurred in only a fraction of the experiments. GnRHa did not have to be present during the time when inhibition occurred. Incubations of 2 days with GnRHa were just as effective as 3 day incubations at inhibiting progesterone secretion on day 3. Furthermore, a 30 min exposure to GnRHa on day 1 was just as inhibitory as a full 2 day incubation with GnRHa in inhibiting LH stimulated progesterone secretion on day 3. Incubation of the cells for 3 days prior to exposure of the cells to GnRHa did not alter the time course for GnRHa action. GnRHa did not alter the DNA content of the cultures in up to 6 day incubations or the number of viable cells attached to the wells in up to 3 day incubations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The bed nucleus of the stria terminalis (BNST) is one of the brain areas densely innervated by noradrenergic neurons originating in the brain stem. The present study aims to determine the role of noradrenergic receptors in the BNST in regulating pulsatile luteinizing hormone (LH) secretion in female rats. Ovariectomized (OVX) or estrogen-primed OVX (OVX+E2) rats received three 1-h-interval injections of 0.05 micromol of noradrenaline (NA), phenylephrine (alpha1-adrenergic receptor agonist), clonidine (alpha2-agonist), or isoproterenol (beta-agonist) into the BNST. Injection of NA or alpha1-adrenergic agonist into the BNST strongly suppressed pulsatile LH secretion in OVX+E2 rats with a significant (P < 0.05) decrease in the mean LH level for 3 h and LH pulse frequency, but alpha2-and beta-agonists did not affect any of the LH pulse parameters. In OVX animals, alpha1- and alpha2-adrenergic agonists caused a significant change in LH pulse frequency and amplitude, respectively, though the effect was not as apparent as the NA- or alpha1-agonist-induced changes in OVX+E2 animals. These results indicate that NA inputs to the BNST suppress pulsatile LH secretion via alpha1-adrenergic receptors and that estrogen enhances this suppression.  相似文献   

19.
We interrogated the neurokinin‐1 receptor (NK‐1R)/substance P (SP) pathway in canine melanoma tumour tissues and cell lines. NK‐1R messenger RNA (mRNA) and protein expression were observed in the majority of tumour tissues. Immunohistochemical assessment of archived tissue sections revealed NK‐1R immunoreactivity in 11 of 15 tumours, which may have diagnostic, prognostic and therapeutic utility. However, we were unable to identify a preclinical in vitro cell line or in vivo xenograft model that recapitulates NK‐1R mRNA and protein expression documented in primary tumours. While maropitant inhibited proliferation and enhanced apoptosis in cell lines, in the absence of documented NK‐1R expression, this may represent off‐target effects. Furthermore, maropitant failed to suppress tumour growth in a canine mouse xenograft model derived from a cell line expressing mRNA but not protein. While NK‐1R represents a novel target, in the absence of preclinical models, in‐species clinical trials will be necessary to investigate the therapeutic potential for antagonists such as maropitant.  相似文献   

20.
The blood luteinizing hormone (LH) surge in cows is well studied. However, little is known about urinary LH in cows. This study examined urinary LH concentrations after administration of gonadotropin-releasing hormone (GnRH) in six Japanese black cows to induce LH secretion from the pituitary gland into the bloodstream. Abrupt rises in plasma and urinary LH were observed after GnRH administration. Plasma and urinary LH peaked at 2 and 5 hr, respectively. A positive correlation was observed between plasma LH concentrations and urinary LH amounts. Ovulation was confirmed in the cows after 48 hr of GnRH administration. These data strongly suggest that urinary LH is derived from plasma LH, which triggers ovulation in cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号