首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
以自然环境下的红提葡萄果穗为研究对象,利用图像识别技术对其果穗成熟度进行研究分析。首先,采用Faster R-CNN卷积神经网络模型识别红提葡萄图像中的果穗,再利用KNN算法分割红提葡萄图像中的果穗和背景,并借助圆形Hough变换法检测出果穗图像中的红提葡萄果粒;最后,结合HSV空间中的H值将果粒成熟度划分为4个等级,并计算各个等级的果粒数量占果穗总果粒数量的比重,以此判断该果穗整体的成熟度,从而确定其是否能够满足采摘的要求。实验结果表明:该方法判断果穗成熟度的准确率能达到90%,满足红提葡萄果穗成熟度判断的需求,可辅助精准采摘作业。  相似文献   

2.
图像分割是实现田间葡萄机器识别的关键部分,针对田间复杂的环境下传统图像分割法分割葡萄果穗图像准确度低的问题,课题组根据采摘葡萄果穗目标与背景在颜色特征上的差异性,对田间待采摘葡萄果穗的图像分割方法进行了研究.将数字图像的基本运算和逻辑运算进行结合,实现了图像分割的操作.课题组选取了与人类视觉相近的RGB颜色空间,并提取...  相似文献   

3.
基于机器视觉的自然环境中猕猴桃识别与特征提取   总被引:10,自引:0,他引:10  
研究了综合应用果实颜色和形状特征识别自然环境中猕猴桃果实及特征提取的方法.通过对比不同颜色空间,选用R-G色差分量;再采用基于误分割像素的分割评价方法来确定颜色特征nR-G中最佳分割系数n,最终选取0.9R-G颜色特征.利用0tsu法对其进行阈值分割,形态学运算去除掉残余噪声,实现了目标果实区域和背景区域的分割.然后利用Canny算子提取边界,最后对边界图像进行椭圆形Hough变换,逐个识别出目标果实,并提取出果实的形心坐标、长轴端点坐标和长短轴长度等特征信息.对49幅包含110个果实图像进行识别试验,试验结果表明:相互分离果实的识别率为96.9%,邻接果实识别率为92.0%,被枝叶部分遮挡果实识别率为86.6%,重叠的果实识别率为81.6%.  相似文献   

4.
基于计算机视觉的成熟番茄识别研究   总被引:1,自引:0,他引:1  
以番茄图像为研究对象,提出一种成熟番茄识别方法。首先,以HSI模型中的色调分量为基础进行图像分割,提取出成熟番茄目标图像;然后,再采用最大方差自动取阈值法进行分割处理,对得到的目标图像进行轮廓提取;最后,对轮廓曲线采用Hough变换的方法进行识别,以同一个轮廓圆识别的多个极值点的均值作为最终识别结果,在Hough变换之前采用最小外接矩形法进行有效区域标记,提高了Hough变换的效率。通过多幅番茄果实图像的仿真测试表明:本算法对果实遮掩度为0、小于50%、大于50%这3种情况的识别率分别为78.7%、6 8.1%、4 1.9%,平均识别率达到7 0.6%。本算法对于成熟番茄可以较好识别,尤其对于存在重叠情况的番茄,识别准确率较高。  相似文献   

5.
幼苗子叶方向的正确识别是瓜科嫁接机实现全程自动化的关键技术之一。该文研究了在自然光照条件下,对白籽南瓜砧木子叶方向特征的识别方法。首先对采集的幼苗图像进行预处理,提取出子叶边界;然后利用区域标记,依次提取目标幼苗子叶边界的最小外接矩形,在外接矩形内对幼苗边界进行椭圆形Hough变换,拟合两片子叶的轮廓曲线;最后依据子叶轮廓的椭圆形数学模型,求取幼苗子叶方向,幼苗生长点位置以及子叶叶片面积等特征信息。对100幅幼苗图像进行识别试验,成功率为85%。该文提出的方法可对嫁接南瓜幼苗的子叶方向特征进行有效的识别,并且通过调整参数,可用于其他幼苗的特征识别研究。   相似文献   

6.
基于轮廓分析的双串叠贴葡萄目标识别方法   总被引:4,自引:0,他引:4  
为准确定位叠贴情况下的葡萄目标,提出了一种基于轮廓分析的双串叠贴葡萄目标识别方法。首先提取最能突显夏黑葡萄的HSV颜色空间中的H分量,通过改进K-means聚类方法对葡萄图像进行分割,运用形态学去噪等处理获取葡萄图像区域,再提取该区域边缘轮廓和左右轮廓的类圆中心。然后以该中心点为原点建立基于轮廓分析的叠贴葡萄串分界线几何求解与计算模型,分别在逆时针方向45°~135°和225°~315°区域内沿葡萄轮廓搜索距离原点最近的点,进而确立两叠贴葡萄轮廓拐点及其分界线,最终实现对叠贴葡萄目标的分别提取。对从果园采集的27幅双串叠贴葡萄图像进行试验,结果显示:24幅图像中的叠贴葡萄串被正确识别和提取,成功率达88.89%,目标像素区域的识别精准度为87.63%~96.12%,算法处理时间在0.59~0.68 s之间。将算法移植到自主研制的机器人上进行视觉定位试验,结果表明所提方法可很好地用于两叠贴葡萄目标的识别与定位。  相似文献   

7.
基于Hough变换的成熟草莓识别技术   总被引:6,自引:1,他引:6  
基于图像区域特征来识别被遮掩、重叠或紧靠的草莓果实非常困难,提出一种基于Hough变换的成熟草莓识别方法。先对Lab彩色模型下α通道图像进行分割,利用提取的草莓轮廓信息,根据草莓轮廓的数学模型进行Hough变换,实现成熟草莓的识别。为减少运算量,在Hough变换之前,先进行区域标记,获取有效图像信息区域。草莓轮廓信息提取和Hough变换在各个有效区域中进行,由于参数空间大大压缩,运算量也得到减少。试验表明:当成熟草莓轮廓信息丢失小于1/2时,无论单个分离的成熟草莓,还是被遮掩、重叠或紧靠的成熟草莓,皆有很好的识别效果,识别平均相对偏差为4.8%,能满足草莓采摘机器人对目标识别精度的要求。  相似文献   

8.
基于图像轮廓分析的堆叠葡萄果粒尺寸检测   总被引:4,自引:0,他引:4  
陈英  李伟  张俊雄 《农业机械学报》2011,42(8):168-172,121
提出一种堆叠葡萄果粒尺寸检测算法:首先通过8 -邻域轮廓跟踪提取果穗轮廓曲线,然后基于改进的曲线旋转和局部极值判断方法搜索曲线上的凹点,从而将曲线分割成分段圆弧以实现果粒的分割和识别,进而采用最小二乘分段曲线拟合计算果粒直径.通过对巨峰葡萄的检测试验表明,该算法对葡萄果穗的果粒正确识别率在35%左右,用于统计葡萄的平均果粒直径,平均误差为0.61 mm,最大误差为1.69 mm,根据果粒大小分级的准确率为72.7%.  相似文献   

9.
为提高田间复杂环境下传统图像分割法分割葡萄果穗图像准确度低的问题,提出一种基于改进红绿色差和Otsu算法的田间葡萄果穗图像分割方法。选取与人类视觉相近的RGB颜色空间,提取并分析R、G特征图的直方图,经分析对其点乘特征图并进行Otsu运算,再经过形态学处理,实现对田间环境下葡萄果穗图像的分割。与灰度图、(R-G)特征图和(R-G)/(R+G)特征图分别采用最大阈值分割法(Otsu)分割的结果进行对比,试验结果表明,红绿色差点乘Otsu分割法的分割结果最优,准确率为92.37%,F1值90.13%。对50幅图像做了测试,其中图像准确率最高为97%,准确率最低为79%,其平均准确率为88.75%。所提出的方法能够实现葡萄果穗较完整的分割,并可为葡萄果穗的识别、定位提供研究基础。  相似文献   

10.
基于机器视觉的猕猴桃特征参数提取   总被引:2,自引:0,他引:2  
以猕猴桃为研究对象,通过对源图像各颜色分量及颜色因子的灰度图、直方图及线剖面分析,选用Lab空间的a通道分量进行特征提取。为了改善图像质量,对a通道分量通过直方图均衡化、中值滤波进行增强。对滤波后的图像利用OTSU自动阈值分割法,完成目标与背景的分割。应用形态学处理方法,对图像先腐蚀再去除小目标最后进行反向膨胀运算去除残留物。对处理得到的二值图像运用Canny算子获取目标区域的边界信息,基于正椭圆Hough变换提取猕猴桃的质心、面积、周长和圆形度。为了测试提取算法的准确性和实时性,对采集的40张图像87个果实进行了特征提取试验。试验结果表明:正确提取率为88.5%,平均提取时间为3.976s,基本满足猕猴桃采摘机器人目标识别对图像处理的实时性要求。  相似文献   

11.
基于核K—均值聚类算法的植物叶部病害识   总被引:4,自引:2,他引:2  
针对植物叶部病害图像的特点,首先对采集到的玉米病害彩色图像采用矢量中值滤波法去除噪声,然后提取玉米病叶彩色图像的纹理特征和颜色特征作为特征向量,利用Mercer核,把输入空间的样本映射到高维特征空间进行K-均值聚类以及植物病害识别.试验涉及的4种玉米病害识别正确率达82.5%,核K-均值聚类方法适合玉米叶部病害分类.  相似文献   

12.
马铃薯典型病害图像自适应特征融合与快速识别   总被引:3,自引:0,他引:3  
针对自然条件下马铃薯典型病害区域定位和识别难的问题,提出了一种马铃薯典型病害图像的自适应特征融合与快速识别方法。该方法利用K-means、Hough变换与超像素算法定位叶片,结合二维Otsu与形态学法分割病斑区域,通过病斑图像颜色、形状、纹理的自适应主成分分析(PCA)特征加权融合,进行支持向量机(SVM)病害识别。对3类马铃薯典型病害图像进行识别试验,结果表明:SVM识别模型下,自适应特征融合方法相比PCA降维、特征排序选择等传统自适应方法,平均识别率至少提高了1.8个百分点;13个自适应融合特征下,识别方法平均识别率为95.2%,比人工神经网络、贝叶斯分类器提高了3.8个百分点和8.5个百分点,运行时间为0.600 s,比人工神经网络缩短3 s,可有效保证识别精度,大大加快了识别速度。  相似文献   

13.
鲜食葡萄品种多样,具有不同的形状和颜色。针对葡萄采摘机器人采摘不同品种鲜食葡萄时采摘点定位精度降低的问题,提出一种基于深度学习的多品种鲜食葡萄采摘方法。首先利用PSPNet(MobileNetv2)语义分割模型分割葡萄图像,在葡萄上方设置一个兴趣区域,在兴趣区域内使用自适应阈值果梗方向Canny边缘检测提取果梗边缘信息,然后采用霍夫变换检测果梗边缘上的直线段并进行直线拟合。最后将拟合的直线与兴趣区域的水平对称轴的交点作为采摘点。对晴天顺光、晴天逆光、晴天遮阴3种光照条件下的克瑞森、阳光玫瑰、红提和黑金手指4个品种的360幅葡萄图像进行采摘点定位试验。结果显示,采摘点定位准确率为91.94%,定位时间为187.47 ms,在模拟试验中采摘成功率为85.5%。  相似文献   

14.
正确识别西兰花田间位置是实现西兰花自动化采收的基础,西兰花花球颜色与植株的叶片、茎秆相似,仅通过颜色特征无法对西兰花进行识别,本文以成熟期的田间西兰花为研究对象,提出了一种基于纹理特征与颜色特征的西兰花识别算法。首先通过预处理以及Laws滤波对图像进行边界纹理强化,再通过Gabor滤波对图像进行纹理特征向量提取,并对提取后的纹理特征向量进行z-score标准化,随后对标准化后的纹理特征向量进行K-means聚类与开运算,获取花球潜在存在区域。同时对RGB图像进行HSV转换,通过对图像的H分量进行阈值分割达到滤除地面像素的效果。最终对纹理特征识别与颜色特征识别的结果进行融合,实现对田间西兰花的识别。算法通过结合纹理与颜色特征,对田间西兰花进行了识别,解决了西兰花的花球与茎叶等背景颜色相近难以识别的问题。本文共使用792幅图像进行试验,试验结果表明,本方法可以准确地对西兰花田间图像进行识别,其精确率为96.96%,召回率为94.41%,F1值为95.67%。通过对3组不同拍摄环境的数据集进行算法识别,3组数据集的F1值始终保持在94%以上,具有良好的拍摄环境适应性,为农业机器人进行西兰花自...  相似文献   

15.
为提高农业害虫图像识别效果,采用改进支持向量机算法。首先通过交叉验证优化惩罚因子,Manhattan距离确定核函数选择;然后建立农业害虫图像的特征模型,包括颜色特征、纹理特征、形状特征;接着对害虫图像多特征融合识别,各种害虫的颜色特征、纹理特征、形状特征所分配的权值通过Fisher计算,避免害虫识别误判的发生。试验仿真显示:害虫图像多特征平均识别率高于单一性特征、两特征,本文算法ISVM对害虫平均识别率均值为95.67%,相比NN、ACNN、FL、SVM、PPSVM分别提高9.81%、6.82%、5.57%、3.93%、1.90%,本文算法检测结果优于其他算法。  相似文献   

16.
基于计算机视觉的葡萄检测分级系   总被引:8,自引:2,他引:6  
设计了一套基于计算机视觉的葡萄检测分级系统,包括驱动装置、输送机构、夹持机构、图像采集与处理系统和分级控制系统,葡萄以悬挂方式连续输送,两个CCD摄像机在外触发模式下实时采集葡萄的两面图像.基于RGB色彩空间计算果面着色率,采用投影面积法和果轴方向投影曲线计算果穗大小和形状参数,进而实现葡萄外观品质分级.选用20穗巨峰葡萄进行3次分级试验,与人工分级对比,颜色和大小形状分级的准确率分别为90%和88.3%,同时在分级过程中不会对葡萄造成损伤.  相似文献   

17.
一种高精度自主导航定位的葡萄采摘机器人设计   总被引:1,自引:0,他引:1  
为了提高葡萄采摘机器人自主导航能力,增强对葡萄成熟度的准确识别功能,降低漏采率和误采率,设计了一种新式的基于RSSI自主导航和颜色特征提取的葡萄采摘机器人。该机器人使用RSSI定位技术,首先对装有无线传感器的葡萄树进行定位,然后利用机器视觉系统对葡萄的成熟度进行判断,并对满足采摘条件的葡萄使用机械手进行采摘。对葡萄采摘机器人的性能进行了测试,通过测试发现:机器人对装有传感器的葡萄树的准确识别率达到了95%以上,对葡萄成熟度的判断达到了98%以上,是一种相对高效的葡萄采摘机器人。  相似文献   

18.
基于图像处理技术的大田麦穗计数   总被引:13,自引:0,他引:13  
为了实现不同播种方式下单位面积小麦穗数的智能计算,设计了一种利用图像分析技术实现大田麦穗快速计数的方法,分析了利用颜色特征和纹理特征分割麦穗的优缺点和粘连区域麦穗个数的计算方法。通过对撒播和条播各35幅样本图像进行计数实验,准确率分别为95.77%和96.89%。结果表明,利用颜色特征和纹理特征均可提取大田环境下麦穗图像,其中利用颜色特征提取速度快。麦穗骨架角点个数能够反映粘连区域麦穗个数,在条播和撒播小麦田中计数准确率均较高。  相似文献   

19.
基于模式识别的农田目标定位线检测   总被引:6,自引:3,他引:3  
根据农田图像的特点,采用K-means模式识别算法,实现农作物与背景的分离.通过对二值图像进行水平扫描.检测定位区域和定位点,利用定位点的坐标信息确定聚类判别函数,实现农田目标定位线的检测.多幅农田图像实验表明,定位线能够正确提取出来.该算法处理640×480像素的彩色图像蒂要0,12 s,在自动导航系统中是一种有效、快速的图像处理算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号