首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
果树冠层参数实时检测系统   总被引:3,自引:1,他引:2  
为了降低农药喷施环境污染和提高水果品质,实现果园果树仿形精确喷雾,建立了一套果树冠层参数的实时检测系统.该系统主要由作物识别系统、车辆姿态系统、主控单元和数据记录单元组成,采用CAN总线进行数据通信.对5棵临近的绿篱树进行了初步的靶标距离检测试验,试验重复3次.采用4个超声波传感器分时检测,拖拉机前进速度为0.3m/s,系统采样速率为5次/s.试验表明,系统能可靠地按一定的采样速率,实时检测和记录系统载体车辆位置、姿态(地面平整度)和果树靶标的距离等数据,为精确仿形喷雾提供了一个较好的喷雾控制平台.  相似文献   

2.
俞龙  洪添胜  赵祚喜  黄健  张霖 《农业工程》2010,(11):204-208
为了克服地面不平整和拖拉机非线性行驶对果树冠层参数测量的影响,该文在超声波传感器阵列测量果树冠层体积技术的基础上,使用RTK-DGPS空间定位技术和姿态航向参考系统,通过空间坐标的平移和旋转转换,直接获得以大地坐标表示的果树冠层的三维点阵云图数据,通过PC机后台处理重构果树冠层三维轮廓和计算果树冠层体积,并详细介绍了系统的结构与工作原理。以果园荔枝树为试验对象,采用该系统对15棵不同高度和体积的果树进行了3次重复试验,另对56棵树的测量结果与人工测量结果进行了对比分析,试验结果表明该方法具有较好的重复性(  相似文献   

3.
针对丘陵山地拖拉机作业环境复杂,对拖拉机的稳定性、通过性和地形适应性要求高的突出问题,设计了一种可进行姿态调平的丘陵山地拖拉机,主要由姿态调整后驱动桥、姿态调整前驱动桥、发动机及电液控制系统组成。姿态调整后,驱动桥设置有可独立回转摆动的轮边减速机构,实现了驱动桥刚性结构柔性调节。姿态调整前驱动桥可围绕拖拉机摇摆轴进行姿态调节。电液控制系统实时监测前、后驱动桥与地面间的坡度夹角变化,自动调节驱动桥的摆动姿态,始终使机身处于水平姿态,提高整机作业稳定性。  相似文献   

4.
为探索丘陵山地无人车振动特性,以丘陵山地无人车为研究对象,进行了振动特性试验.在无人车车体选择11个测试点,设计6组试验方案,综合分析测点位置、发动机油门大小和路面不平度对无人车振动特性的影响.试验结果表明,测点3(车架左前部)是无人车整车最合适安装传感器位置,在无人车正常行走、油门1/2位置、挂1档工况下,加速度最大...  相似文献   

5.
丘陵山地拖拉机姿态主动调整系统设计与实验   总被引:3,自引:0,他引:3  
为保证拖拉机在丘陵山地的安全作业,并提高作业效率及乘坐舒适性,设计了基于双闭环PID算法的丘陵山地拖拉机姿态主动调整系统。首先,根据丘陵山地特定作业需求设计了姿态主动调整系统,包括姿态调整机构、液压驱动系统和控制系统;然后,建立了系统动力学模型,通过数值分析验证了该自动调平控制算法的有效性;最后,在山东五征集团生产的拖拉机上安装此系统,并进行了实验验证。结果表明:所设计的姿态主动调整系统在±10°的坡地上调平时间为7. 5 s,最大调平误差小于0. 5°,左右摆动机构摆角绝对值的差在±1°以内,能有效满足丘陵山地作业需求。同时,该拖拉机在高低起伏较大的坡地上以1挡速度(1. 98 km/h)行驶时,车身倾斜角可控制在±3°范围内,左右摆动机构摆角绝对值差在±5°范围内。所设计的姿态主动调整系统能适应恶劣作业环境的作业需求。  相似文献   

6.
针对目前姿态调整式丘陵山地拖拉机只能实现静态调平和差高调平、调平精度低等问题,设计了一种轮式丘陵山地拖拉机扭腰姿态调整装置,该装置通过调整前后车身的相对转动来实现丘陵山地拖拉机对复杂路面的适应。首先,根据丘陵山地特殊作业要求,对拖拉机坡地作业稳定性进行研究,设计了扭腰姿态调整装置;然后,对扭腰姿态调整装置进行动力学仿真,建立轮式拖拉机模型并进行多工况动力学仿真分析,仿真试验结果显示,扭腰姿态调整装置最大转动角为15.2°,拖拉机纵向坡行驶保持稳定的最大倾角为23.2°,横向坡行驶保持稳定的最大倾角为16.8°;最后,进行了样机田间试验,田间试验结果表明,扭腰姿态调整装置平均转动角为15.03°,拖拉机最大纵向爬坡角为25.6°,最大横向爬坡角为16.2°;在坡度为15°的地面上,旋耕作业平均生产率为0.65hm2/h,犁耕作业平均生产率为0.36hm2/h,该拖拉机能够较好地适应丘陵山地环境,满足丘陵山地正常作业需求。  相似文献   

7.
针对目前姿态调整式丘陵山地拖拉机只能实现静态调平和差高调平、调平精度低等问题,设计了一种轮式丘陵山地拖拉机扭腰姿态调整装置,该装置通过调整前后车身的相对转动来实现丘陵山地拖拉机对复杂路面的适应。首先,根据丘陵山地特殊作业要求,对拖拉机坡地作业稳定性进行研究,设计了扭腰姿态调整装置;然后,对扭腰姿态调整装置进行动力学仿真,建立轮式拖拉机模型并进行多工况动力学仿真分析,仿真试验结果显示,扭腰姿态调整装置最大转动角为15.2°,拖拉机纵向坡行驶保持稳定的最大倾角为23.2°,横向坡行驶保持稳定的最大倾角为16.8°;最后,进行了样机田间试验,田间试验结果表明,扭腰姿态调整装置平均转动角为15.03°,拖拉机最大纵向爬坡角为25.6°,最大横向爬坡角为16.2°;在坡度为15°的地面上,旋耕作业平均生产率为0.65 hm2/h,犁耕作业平均生产率为0.36 hm2/h,该拖拉机能够较好地适应丘陵山地环境,满足丘陵山地正常作业需求。  相似文献   

8.
基于机器视觉的果树树冠体积测量方法研究   总被引:6,自引:0,他引:6  
针对人工测量精度低、费时费力,而基于三维激光扫描技术、超声波技术等自动测量方法成本高、操作复杂的不足,提出了基于机器视觉的果树树冠体积测量方法,搭建了可移植性果树树冠体积自动测量平台。基于机器视觉实现待测树冠图像获取,通过图像处理算法获得树冠图像面积特征,并采用最小二乘法和五点参数标定法获得普适性树冠面积与体积相关关系模型,从而得到树冠体积,通过对梨树以及桂花树样本的试验,可以发现预测树冠体积平均误差分别为13.73%和10.18%。对于不具备系列样本无法构建模型的树冠,采用单点测量法,根据树冠轮廓拟合椭球结构体,然后根据体积求算补偿公式,完成体积测量,测量误差在10%左右。表明树冠形态特征的图像提取算法可行有效,通过面积以及轮廓特征量均能很好地表达树冠体积特征。  相似文献   

9.
水田激光平地机平地铲姿态测量系统的设计   总被引:1,自引:0,他引:1  
水田激光平地机水平控制作为农田激光平地技术的重要组成部分,其研究过程中首先要解决平地铲实时倾角测量问题.为提高倾角测量精度,设计了平地铲姿态测量系统,采用MEMS传感器集成模块AD1S16300作为惯性测量单元,通过卡尔曼滤波实现传感器信息融合以计算平地铲倾角.分析了姿态测量系统的构成,阐述了两种传感器融合测量实时倾角的方法,基于ARM7 Cotex- M3微处理器设计了姿态测量系统硬件.采用AHRS500GA对该姿态测量系统性能进行了融合算法验证与ADIS16300测量平地铲倾角验证.测试结果表明,该姿态测量系统能在动态条件下准确地测定平地铲实时倾角,可以进一步应用于激光平地机的水平控制之中.  相似文献   

10.
激光测距在果树冠层三维重构中的应用   总被引:1,自引:0,他引:1  
随着计算机技术的发展和果园果树精细管理的现实需求,果树冠层的三维重构问题成为研究热点。本文采用激光传感器在不同高度对果树靶标冠层进行水平扫描测距;将从果树不同方位测得的探测点坐标进行坐标转换,得到同一坐标系下的果树冠层三维点云;采用插值法重构模型树冠层三维轮廓。试验结果表明重构的冠层轮廓较为准确地反映了果树的外形轮廓。本文研究为采用激光传感器测距技术进行果树冠层三维重构与体积测量提供了前期研究基础。  相似文献   

11.
基于车载二维激光扫描的树冠体积在线测量   总被引:2,自引:0,他引:2  
采用车载二维激光扫描仪获取树木单侧点云数据,坐标变换后通过设置感兴趣区域检测树木,利用垂直分布特性识别树干,得到树冠中心距离。考虑树冠连续/不连续2种情况进行树木分割,将树冠外缘距离与对应树干距离相减算出树冠厚度。将树冠体积离散化为长方体,利用树冠厚度、相邻测量点垂直方向距离、车辆速度、扫描周期等参数进行计算。采用FIFO缓冲区保存在线数据,新采集的一帧数据写入缓冲区末尾,同时从缓冲区开头读出处理好的数据帧输出,实现树冠体积的在线测量。实验结果证明,树冠连续/不连续场景下,方法均能准确检测分割树冠、识别树干,实现树冠体积的在线测量。  相似文献   

12.
面向精准喷雾的果树冠层体积在线计算方法   总被引:2,自引:0,他引:2  
针对目前变量喷雾未综合考虑空隙预判及防漏喷的问题,提出了基于空隙预判的果树冠层体积在线计算方法。该方法利用超声波传感器与激光传感器提前46 cm探测,获取冠层信息点云图,并剔除空隙及冗余数据进行滤波;同时进行曲线分割、空隙预判,沿喷雾机行进方向离散分割冠层,并制定针对空隙的防漏喷决策。试验表明:采用融合式传感器阵列及防漏喷策略,防漏喷效果最佳,但存在喷施过量的问题。相比普通融合式传感器阵列,改进后的融合式传感器阵列,在连续型密集果园上、中、下冠层的雾滴沉积个数分别降低6. 95%、3. 85%和升高4. 40%,沉积量分别降低11. 11%、8. 33%、3. 57%;在纺锤型稀疏果园上、中、下冠层的雾滴沉积个数分别降低27. 08%、30. 37%、18. 55%,沉积量分别降低64. 71%、60. 87%、40. 38%;在单株型稀疏果园上、中、下冠层的雾滴沉积个数分别降低18. 44%、26. 26%、15. 54%,沉积量分别降低40%、42. 43%、41. 46%。  相似文献   

13.
针对背景和杂草干扰下的果树图像冠层提取问题,提出了一种基于M-SP特征加权聚类的冠层分割算法。首先,将采集的原始图像由RGB颜色空间转换到HSI颜色空间,计算果树与背景区域在H、S分量上的马氏距离,构造马氏距离相似度矩阵〖WTHX〗M〖WTBX〗;其次,提取图像像素的垂直位置作为空间特征〖WTHX〗P〖WTBZ〗,在HSI空间内的I分量上,利用最大熵算法提取图像的阴影区域,并进行掩膜处理,将获取的阴影区域作为空间特征的加权区域L,从而构造阴影位置加权的空间特征〖WTHX〗L〖WTBX〗P;最后,对获取的M-LP特征矩阵进行归一化处理,分别进行上背景、下背景、果树冠层、杂草4个类别的K means聚类,最终完成图像分割。为验证算法的有效性,在采集的果树图像上进行了分割试验,结果表明,基于M-LP特征的聚类方法能有效解决重度杂草干扰条件下果树冠层被漏分的问题。采用精确率、召回率和F1值3个评价指标对分割结果进行定量评价,选取不同杂草干扰程度(轻微、中等、较强)和时间段(早晨、中午、傍晚)的果树图像,分别以传统K-means和GMM聚类算法作为对比进行试验,结果表明,相对于未经过特征提取的普通聚类分割方法,本文算法对于不同杂草干扰程度和不同拍摄时间段下的果树冠层分割表现出一定的鲁棒性,平均精确率为87.1%,平均召回率为87.7%,平均F1值为87.1%。分割和验证结果表明,在进行有效图像特征提取的基础上,结合少量标注作为先验知识的无监督分割方法可以准确分割出果树冠层区域。  相似文献   

14.
果实采摘中果梗激光切割分析与实验   总被引:2,自引:0,他引:2  
为探讨机器人果实采摘中应用激光进行果梗切断的可行性,以黄瓜果梗为对象,利用基于30 W光纤耦合半导体激光器构建的果梗切割实验平台,分别进行了激光穿透时间与果梗直径、激光束功率、离焦量、入射角的关系实验和果梗激光切割速度实验。实验发现,激光焦斑热功率密度0.75 W/mm2即可实现果梗的穿透和切割,且对果梗直径变化、焦斑定位与入射角度误差具有良好的适应性。但半导体激光器在垂直照射、零离焦量、光输出功率14.94 W条件下的最短切割时间达到23.73~28.13 s,应通过选择更高光束质量的光纤激光器等实现快速气化切割以满足实际作业的需要。  相似文献   

15.
针对地面三维激光扫描仪在室外环境下获取果树冠层三维点云信息的复杂性,以及三维点云的颜色和真实颜色存在较大色差问题,提出了一种三维点云颜色矫正方法。通过计算Pearson系数和Spearman相关系数,确定扫描点的 R、G、B 分别与太阳辐射值、TCCR24标准颜色测试板与地面夹角 θ 、TCCR24标准颜色测试板不同色块颜色、扫描质量、光线方向变量之间均存在相关关系。利用统计学方法,在置信度为95%时,建立 R、G、B 分量的双重筛选逐步回归模型。利用建立的回归模型,矫正三维点云颜色。采用该方法对室外果树冠层三维点云进行颜色矫正实验,结果表明,利用建立的颜色矫正回归模型,三维点云颜色 R、G、B 与真实颜色 R、G、B 的相关度由矫正前的低于0.69提高到0.90以上,颜色矫正后的标准差明显由矫正前的高于50%降到低于13%。该方法可为地面三维扫描仪获取较准确的三维点云的彩色信息提供理论依据。  相似文献   

16.
针对果树栽植过程中株距难以控制的问题,考虑到现有的果树栽植机定株距存在结构复杂、制造成本高及受土壤滑移率影响较大等问题,设计了一种光电定株距装置,可以避免土壤滑移率对株距的影响,保证栽植果树株距的一致性,且可实现株距连续可调,满足不同果树栽植时对株距选择的要求。针对试验中出现的部分株距较设计值有所偏差的问题,分析了原因并提出了优化方案。试验结果表明:果树栽植机光电定株距装置栽植合格率92.5%,平均栽植深度合格率为92.9%,在1.7m栽植株距下,株距变异系数为5.9%,满足现代标准果园机械化生产要求。  相似文献   

17.
果树冠层体积是决定果园施药量的重要指标。针对机载LiDAR探测技术(ALS)在冠层体积测量中存在下冠层信息缺失的问题,提出运用图像处理的方法对果树上下冠层体积比进行测量。该方法运用结合马氏距离和K-means算法的M-K聚类法对图像目标区域进行分割,通过旋转积分法求得上下冠层的像素体积之比。为解决该方法对单侧冠层图像处理存在误差(25.3%)较大的问题,对果树不同侧面的多幅图像进行测算,并对结果进行算术平均以提升方法的准确性与稳定性。运用所述方法对果园内23棵苹果树、20棵樱桃树进行实验,并将结果与人工测量结果进行对比分析,结果表明,该方法与人工法的测量结果间具有较好的一致性,两种果树的决定系数分别为0.775和0.832,能够用于果树冠层体积比的测量。  相似文献   

18.
将内嵌有面阵相机及IMU的智能手机作为硬件系统,单目SLAM技术获取多视图几何深度图、位姿等为数据源,构建了单目SLAM增强现实森林测树系统。设计了基于平滑度高鲁棒性过滤胸高圆柱体表面点云及切线的方法;然后,基于点到圆柱体表面距离及圆柱体切线到圆柱体表面距离构建了胸径与立木位置精确估计算法;最后,以该算法为基础在智能手机端开发了增强现实测树系统,即利用智能手机实时测树、并通过增强现实场景实时人工监督测量结果。新型测树系统在5块32m×32m方形样地中进行了测试,以评估新型测树系统的测量精度;此外,每块样地使用了单次观测、正交观测、对称观测及环绕观测4种不同的观测方法对立木胸高圆柱体观测,以评估不用观测方式对测树精度的影响。结果显示:立木位置估计值在X、Y轴方向的平均误差范围为-0.014~0.020m,X、Y轴方向均方根误差范围为0.04~0.08m;立木胸径估计值偏差为-0.85~-0.03cm(相对偏差为-3.60%~-0.04%),均方根误差为1.32~2.51cm(相对均方根误差为6.41%~12.33%);相比于单次观测方法,其他观测方法获取位置及胸径估计精度均有提高(特别是不可近似为圆柱体的立木树干),从精度与效率角度而言,正交观测及对称观测为最佳观测方法。结果表明,单目SLAM增强现实测树系统是一种可精确进行森林样地调查的潜在解决方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号