首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed.Four super rice cultivars,Liangyoupeijiu,IIyou 084,Huaidao 9 and Wujing 15,and two high-yielding and elite check cultivars,Shanyou 63 and Yangfujing 8,were used.The activities of sucrose synthase (SuSase),adenosine diphosphoglucose pyrophosphorylase (AGPase),starch synthase (StSase) and starch branching enzyme (SBE),and the concentrations of zeatin + zeatin riboside (Z + ZR),indole-3-acetic acid (IAA) and abscisic acid (ABA) in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed.Maximum grain filling rate,the time reaching the maximum grain-filling rate,mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars,but were significantly lower in the super rice than in the check rice for inferior spikelets.Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period.The peak values and the mean activities of SuSase,AGPase,StSase and SBE were lower in inferior spikelets than in superior ones,as well as the peak values and the mean concentrations of Z + ZR and IAA.However,the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice.The grain filling rate was positively and significantly correlated with the activities of SuSase,AGPase and StSase and the concentrations of Z + ZR and IAA.The results suggested that the low activities of SuSase,AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain filling rate and light grain weight of inferior spikelets in super rice.  相似文献   

2.
Non-flooded plastic mulching cultivation (PM) of rice can save much irrigation but usually exhibits a poor grain filling and low grain weight when compared to traditional flooding cultivation (TF). This study measured the variations of plant hormones during grain filling and investigated whether they were related to the grain-filling problem under mulching in a field experiment. Hormonal levels in the grains and the grain development of both superior (early flowered) and inferior spikelets (later flowered) were monitored continuously during the grain filling period. The contents of indole-3-acetic acid (IAA), zeatin riboside (ZR) and abscisic acid (ABA) were higher in superior grains than in inferior ones at early grain-filling stage. For individual spikelets, the peaks of IAA and ZR contents appeared just before the peak grain-filling rate but the peak ABA content matched it. The earlier flowered superior spikelets did not show much difference in grain filling characteristics and hormonal changes under the two cultivation treatments. Distinctively with the inferior spikelets in a panicle, PM led to lower grain weight, higher grain-filling rate at early stage and shorter active grain-filling period than the TF. PM also resulted in less IAA and ZR but more ABA contents in the grains than TF at early and middle grain filling stages in these inferior spikelets. Peaks of these hormone contents in the PM inferior grains usually appeared earlier and also disappeared more quickly than those in TF inferior grains. When exogenous IAA was applied to plants at the initial grain-filling stage, IAA and ZR were increased and ABA was reduced in the inferior grains. The treatment prolonged the active grain-filing period and reduced the peak grain-filling rate of inferior grains, similarly as the case with TF. As a result, IAA spraying enhanced the weight of PM inferior grains but reduced that of TF ones. Exogenous ABA spraying led to the opposite effects to those of IAA. The results suggest that the shortened grain-filling period in the inferior grains under PM is related to the increased ABA and reduced IAA and ZR in the grains. Regulation of the ratio of ABA to IAA in grains could potentially increase the weight of inferior grains under the water-saving cultivation with film mulching.  相似文献   

3.
 种植4个超级稻品种\[两优培九和Ⅱ优084(杂交籼稻)、淮稻9号和武粳15(粳稻)\]和2个高产对照品种\[汕优63(杂交籼稻)和扬辐粳8号(粳稻)\],观察其结实期强、弱势粒中蔗糖合酶(SuSase)、腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、淀粉合酶(StSase)和淀粉分支酶(SBE)活性及玉米素+玉米素核苷(Z+ZR)、3 吲哚乙酸(IAA)和脱落酸(ABA)含量的变化,并测定了强、弱势粒灌浆速率。结果表明,超级稻品种强势粒的最大灌浆速率、到达最大灌浆速率的时间、平均灌浆速率和糙米重与对照品种差异较小,超级稻品种弱势粒的灌浆速率和糙米重显著低于对照。灌浆期强、弱势粒的SuSase、AGPase 、StSase 和SBE活性变化及Z+ZR、IAA 和ABA 含量变化均呈单峰曲线。弱势粒的SuSase、AGPase、StSase 和SBE的峰值活性和平均活性及其Z+ZR 和IAA的峰值含量和平均含量均低于强势粒。弱势粒的ABA 峰值含量和平均含量显著高于强势粒,超级稻品种高于对照品种。籽粒灌浆速率与SuSase、AGPase和StSase 活性及Z+ZR 和IAA含量均呈显著或极显著正相关,与SBE活性及ABA含量的相关不显著。说明超级稻品种弱势粒中较低的SuSase、AGPase和StSase活性及较低的Z+ZR和IAA含量是其灌浆速率小、粒重轻的一个重要原因。  相似文献   

4.
结实期高温胁迫对糯玉米子粒发育和内源激素含量的影响   总被引:2,自引:1,他引:1  
杨欢  沈鑫  丁梦秋  陆大雷  陆卫平 《玉米科学》2017,25(2):55-60,67
利用人工智能温室研究结实期高温胁迫(35℃)对糯玉米子粒发育和内源激素含量的影响。结果表明,结实期高温胁迫降低子粒鲜重和干重,高温胁迫下较低的含水率表明子粒灌浆进程加快。高温胁迫加快果皮中淀粉体的降解速度,胚乳细胞中淀粉体充实提前,淀粉积累加速,但持续积累时间缩短,成熟期淀粉含量低于常温处理。与常温相比,高温胁迫增加子粒中ABA和GA_3含量,IAA、CTK和Z含量前期增加,后期降低。内源激素含量的变化可部分解释高温胁迫下淀粉积累提前但持续时间缩短的原因。  相似文献   

5.
Sink strength plays an important role in grain filling of cereals but how it is related to the pre-anthesis non-structural carbohydrate (NSC) reserves is not clear. This study investigated if and how an increase in NSC reserves could enhance sink strength, and consequently improve grain filling of later-flowering inferior spikelets (in contrast to the earlier flowering superior spikelets) for rice varieties with large panicles. Two “super” rice varieties (the recently bred high-yielding rice) and two New Plant Type (NPT, named in IRRI for the extra-large panicle) rice lines were compared with two elite inbred varieties under field-grown conditions. Three nitrogen (N) treatments, applied at the stages of panicle initiation, spikelet differentiation or both, were adopted with no N application during the mid-season as control. Both super rice and NPT rice showed a greater yield capacity as a result of a larger panicle than the elite inbred rice. However, a lower percentage of filled grains limited the realization of higher yield potential in super rice and especially in NPT rice, due to their lower grain filling rate and the smaller grain weight of their inferior spikelets. The low grain filling rate and small grain weight of inferior spikelets are mainly attributed to a poor sink strength as a result of small sink size (small number of endosperm cells) and low sink activity, e.g. low activities of sucrose synthase (SuSase) and adenosine diphosphoglucose pyrophosphorylase (AGPase). The amounts of NSC in the stem and NSC per spikelet at the heading time are significantly and positively correlated with sink strength (number of endosperm cells and activities of SuSase and AGPase), grain filling rate, and grain weight of inferior spikelets. Nitrogen application at the spikelet differentiation stage significantly increased, whereas N application at the panicle initiation or at both panicle initiation and spikelet differentiation stages, significantly reduced, NSC per spikelet at the heading time, sink strength, grain filling rate, and grain weight of inferior spikelets in super rice. The results suggest that pre-anthesis NSC reserves in the stem are closely associated with the sink strength during grain filling of rice, and N application at the spikelet differentiation stage would be a good practice to increase pre-anthesis NSC reserves, and consequently to enhance sink strength for rice varieties with large panicles, such as super rice varieties.  相似文献   

6.
《Plant Production Science》2013,16(3):235-242
Abstract

The objective of this study was to clarify the effects of soil temperature in the stage from late tillering to panicle initiation (SI) and during the grain-filling stage (SII) on grain setting, dry matter production, photosynthesis, non-structural carbohydrate (NSC), xylem exudation and abscisic acid (ABA) levels in rice (Oryza sativa L. cv. Koshihikari). Rice plants were exposed to four different soil temperatures during SI or SII: 17.5, 25, 31.5 and 36.5°C (ST18, ST25, ST32 and ST37, respectively). The yield, yield components, grain filling and quality in SI were negatively influenced by high soil temperature of 37°C. On the other hand, there was no significant difference in those characters among temperature treatments in SII. The root/shoot ratio was smallest in the ST37 plants in both SI and SII, mainly due to their lighter root weight. At 7 days after initiation of treatment (DAT) in both SI and SII, the photosynthetic and xylem exudation rate tended to increase slightly as soil temperature increased up to 32°C. At 21 DAT, however, the photosynthetic rate was lowest in ST37, with concurrent decrease of diffusion conductance and SPAD value. In addition, decrease of NSC concentration in stem and xylem exudation rate, and increase of ABA level in leaves and xylem exudate were observed in ST37 plants at 21 DAT. These results suggested that high soil temperature before heading especially influenced yield, grain quality and plant growth. Possible mechanisms of the effect of soil temperature are discussed.  相似文献   

7.
The accumulation dynamics of kernel components for spikelets at different positions within a rice panicle were investigated during grain filling to understand the physiological reasons for the variation of grain quality.Two rice cultivars,Yangdao 6 (indica) and Yangjing 9538 (japonica),were field-grown,and the grain filling characters and contents of starch,soluble sugar,and protein of the spikelets at different positions were studied.There were significant differences in matter accumulation among spikelets at different positions during grain filling.The early-flowering spikelets presented dominance over the late-flowering spikelets in initial time and initial rate of accumulation.At the initial and mid filling stages,the contents and the rates of starch and amylose accumulation in spikelets decreased with the flowering sequence,but soluble sugar content (SSC) exhibited the opposite trend.The difference in SSC among the spikelets of Yangjing 9538 was greater than that of Yangdao 6,but amylose content in mature spikelets showed no obvious relationship to their flowering sequence.The crude protein content (CPC) of early-flowering spikelets decreased more rapidly than that of late-flowering ones at the initial filling stage,and CPC in the spikelets on the secondary branch was higher than that on the primary branch,but CPC in early-flowering ones was lower than that in late-flowering across the whole grain filling period.Grain water content (GWC) of early-flowering spikelets decreased more rapidly than that of late-flowering spikelets on the same branch at the initial and mid filling stages,especially for the top grain on each primary branch.The results suggested that poor grain filling of late-flowering spikelets may be attributed to their low biological activity rather than carbohydrate supply limitation.  相似文献   

8.
为阐明外源激素和蔗糖调控冬小麦穗粒数和粒重的机理,以冬小麦农大211为材料,设置不同浓度蔗糖和激素,通过离体穗培养及盆栽不同水分条件下喷施激素处理,考察了冬小麦穗粒数、穗粒重、千粒重以及穗部糖含量对外源蔗糖和激素的响应。离体穗培养试验表明,蔗糖浓度为40 g·L-1,IAA、GA、6-BA和ABA浓度分别为10-4 mol·L-1、10-5 mol·L-1、10-5 mol·L-1和10-6 mol·L-1时取得了较高的穗粒数,且穗粒数以穗上部强势粒数与穗中部弱势粒数增幅较大;适当增加培养基GA和ABA浓度也能提高粒重,从而提升穗粒重。盆栽试验表明,与水分适宜处理相比,干旱使成熟期穗粒数、穗粒重和单株生物量显著下降,千粒重无显著变化,干旱处理的幼穗中CTK和ABA含量显著增加。干旱条件下,喷施IAA较其对照显著增加了穗粒重和单株生物量以及幼穗中可溶性糖和IAA含量,显著降低了幼穗ABA含量;喷施GA较其对照显著增加了单株生物量和幼穗GA含量,显著降低了幼穗ABA含量;喷施6-BA较其对照显著增加了单株生物量和幼穗CTK含量,显著降低了幼穗可溶性糖和ABA含量;喷施ABA较其对照显著增加了穗粒重和单株生物量,显著降低了幼穗蔗糖和可溶性糖含量。水分适宜条件下,喷施IAA较其对照显著降低了穗粒数、穗粒重和单株生物量,但显著增加了千粒重和幼穗可溶性糖、CTK和ABA含量;喷施GA较其对照显著增加了幼穗可溶性糖、GA、CTK和ABA含量,但显著降低了幼穗蔗糖含量;喷施6-BA较其对照显著增加了幼穗可溶性糖、CTK和ABA含量;喷施ABA较其对照显著降低了穗粒数,显著增加了幼穗可溶性糖、IAA、CTK和ABA含量。总之,外源蔗糖与激素对冬小麦穗粒数、穗粒重和千粒重都有显著影响,适宜蔗糖和激素处理提高穗粒数,主要由于增加了穗上部强势粒和穗中部弱势粒数。外源喷施激素可缓解干旱胁迫对冬小麦穗粒数和穗粒重的影响,以喷施IAA效果最好,主要通过调控幼穗糖含量和激素含量来调控穗粒数和粒重。  相似文献   

9.
《Plant Production Science》2013,16(4):442-450
Abstract

Rice cultivars with numerous spikelets per panicle (extra-heavy panicle types) frequently fail to exhibit their high yield potential due to low grain filling. Existing genetic variation in grain filling, however, opens possibilities for genetic improvement for this trait. We studied the correlation between grain filling and the activities of enzymes for sucrose-starch conversion in developing endosperm. The activity of sucrose synthase (EC 2.4.1.13, SuSy) and ADPglucose pyrophosphorylase (EC 2.7.7.27, AGPase), were measured in three extra-heavy panicle types and a standard cultivar grown at two locations under different environmental conditions. The proportions of grains with definite specific gravities and the rate of grain filling were adopted as the parameters related to grain filling. AGPase activity, but not that of SuSy, was consistently correlated to high proportions of high-density grains (specific gravity > 1.20) and high rates of grain growth in spikelets, particularly in those on secondary branches in which low grain filling is the rule. Such correlation was also detected in spikelets on primary branches which generally show better grain filling, but only early stages. Therefore, a high activity of AGPase might contribute to the reduction of the sucrose concentration by accelerating sucrose metabolism at the developing seed, a sink terminus of the phloem. Thus the sink-directed phloem transport of sucrose would be promoted, resulting in improved grain filling of extra-heavy panicle types. SuSy would play some roles in such a cultivar difference in grain filling, but depending on environments.  相似文献   

10.
《Plant Production Science》2013,16(3):173-183
Abstract

The effects of dry matter production and the remobilization of nonstructural carbohydrates (NSC) on grain filling were investigated using the Indica-based Japonica crossed rice cultivar Takanari, which can bear a large sink. For three years,beginning in 1994, shade treatments were conducted with different nitrogen applications to develop large variations in plant growth. The percentage of ripened spikelets showed the greatest correlation with the total amount of carbohydrate supply per spikelet during 10 to 20 days after heading, calculated by adding the amount of dry matter increase to the amount ofNSC decrease in leaf sheaths and culms during the period. Between the two components, the dry matter increase was more important. The NSC reserve played a role in compensating for the shortage of carbohydrate supply from assimilates after heading and showed a tendency to increase the percentage of ripened spikelets when dry matter production after heading was limited. However, the maximum ratio of compensatory translocation from the NSC reserve was estimated to be only 48%, becauseofsmaller reservoir size compared with the demand. The NSC reserve at heading was not significantly increased by increasing the dry matter production before heading. It was concluded that to increase grain filling ability it is more effective to increase the dry matter production after heading than that before heading. Nitrogen application showed negative effectson the translocation of reserve NSC. It is important to optimize the nitrogen content to maximize the total source of carbohydrate supply.  相似文献   

11.
《Plant Production Science》2013,16(4):223-226
Abstract

In a rice panicle, the superior spikelets display higher growth rates than the inferior spikelets during the initial phase of grain-filling. To better understand the regulatory mechanism of this phenomenon, we examined the dynamics of endogenous abscisic-acid (ABA) levels and the effects of shading on the dynamics during the grain-filling period in superior and inferior spikelets. While ABA content in the superior spikelets increased rapidly after flowering, that in the inferior spikelets increased slowly and reached the maximum later than in the superior spikelets. Shading significantly exaggerated the inherently different ABA dynamics between the superior and inferior spikelets. We concluded that ABA levels are correlated with the dry matter accumulation patterns of spikelets. These results support our hypothesis that ABA is involved in assimilate partitioning among spikelets in a panicle during the initial phase of grain-filling of rice.  相似文献   

12.
High temperature during grain filling period has been reported to decrease the grain filling duration, leading to the lower grain weight and yield of rice. Two experiments in the phytotron and field were carried out to test the hypothesis that the leaf senescence of rice plants may determine the grain filling duration under high temperature. In the phytotron experiment in 2008, rice plants of a japonica cultivar “Ilpumbyeo” were subjected to three minimum/maximum (mean) temperature regimes of 11/19 (15), 17/25 (21), and 23/31 °C (27 °C). In the field experiment, rice seedlings of the same rice cultivar were transplanted on May 6th and June 19th in 2009 and the mean temperatures during the grain filling period were 24.4 and 21.9 °C, respectively. Both experiments revealed consistently that high temperature increased the rates of grain filling and leaf senescence while it reduced the durations of them. However, grain filling was terminated earlier than complete leaf senescence, the time gap being greater at higher temperature. In addition, the fraction of dry matter partitioning to the leaf sheath + culm resumed to increase following the termination of grain filling under high temperature, indicating that leaves were still maintaining photosynthetic capacity and supplying assimilates into the other plant tissues except grain even after the termination of grain filling. These findings suggest that an early termination of grain filling in temperate rice under high temperature was not resulted from the lack of assimilate owing to the early leaf senescence but from the loss of sink activity owing to the earlier senescence of panicle.  相似文献   

13.
Durum wheat is grown in the Mediterranean area where drought and high temperature frequently prevail and impact grain texture, composition and yield. The purpose of this work was to examine the effect of high temperature on grain development and final composition according to the timing of exposure. High temperature (up to 27.5 °C) was applied either during the linear grain filling or drying phases or during whole grain development. The dynamics of grain dry mass, water, glutenin polymers, and protein bodies during grain development were determined. Irrespective of high temperature timing, the arrest of grain filling was observed at 45.9% grain moisture content. At that point, starch granules included in endosperm cells reached their physical packing limit, limiting further deposits. HT applied before physiological maturity shortened the duration of grain filling and resulted in a significant increase in grain protein concentration and in the proportion of vitreous grain. Late formation of sodium dodecyl sulfate (SDS)-insoluble glutenin polymers below 32% grain moisture content was also favored. The ability of wheat storage protein to form a viscoelastic matrix embedding starch granules at the beginning of grain desiccation is proposed to be mandatory for gaining vitreous grains and a high proportion of SDS-insoluble glutenin polymers.  相似文献   

14.
外源ABA处理对离体玉米子粒灌浆特性的影响   总被引:1,自引:0,他引:1  
以郑单958和登海605为试验材料,采用离体培养的方法,研究玉米子粒发育早期和中期不同浓度脱落酸(ABA)处理对玉米子粒灌浆特性的影响。运用Logistic模型解析不同浓度ABA处理后子粒灌浆过程与品种差异,分析灌浆速率、灌浆时间等子粒灌浆参数及其与粒重的相关性。结果表明,早期ABA处理降低了最大和平均灌浆速率,中期低浓度处理提高灌浆速率而高浓度降低灌浆速率。相关分析显示,同一品种的粒重与灌浆渐增期、快增期、缓增期平均速率及各时期粒重增量呈极显著正相关,郑单958和登海605的粒重差异由灌浆速率和灌浆时间决定。ABA早期和中期处理,均提前最大灌浆速率到达时间并缩短有效灌浆期,相同浓度ABA中期处理的效果较早期明显。选择适宜品种,灌浆中期或者后期适当浓度ABA处理,能增加灌浆速率和粒重并缩短有效灌浆期,有利于提高玉米产量。  相似文献   

15.
两系杂交稻两优培九产量构成及其生态关联   总被引:5,自引:0,他引:5  
为探明两系杂交稻两优培九在不同生态条件下的产量水平及其构成,揭示引发产量变异的主要构成因素及其与生态因子的关联性,应用2006和2007年中国南方稻区8个气候生态试验点的生育进程、茎蘖消长、籽粒灌浆、产量及其构成与同期气象数据,建立了产量与其构成因素、各构成因素与温光因子的统计关系。两优培九稻谷产量变幅为5~18 t/hm2。以每平方米总粒数引发产量变异的贡献率最高(60.5%),其次为结实率(32.9%)。扩增总粒数主要依赖每平方米穗数与每穗粒数的平衡增加。华南双季早稻生育中期的梅雨寡照对于每穗粒数、开花期持续高温对于结实率、长江中下游麦(油)茬稻生育前期高温对于穗数、乳熟期日照骤减对于结实率都有负面影响。云南河谷地区稻作期的适温、长日、强辐射,促成每平方米425穗、7.2万粒、结实率90%的产量结构,产量高达18.2 t/hm2。结实率累积动态呈左偏不对称的S形曲线。谷粒干物质积累呈Logistic曲线,拐点在花后8~14 d。穗数与本田营养生长期、每穗粒数与生育中期日照时数、结实率与后期日照时数都呈极显著正相关。开花期持续高温、乳熟期障碍型冷害和台风等气象灾害制约结实率的提高。每平方米总粒数是影响两优培九产量的主要因素,发挥其大穗优势、在有效分蘖临界期形成目标穗数的茎蘖数、构建足穗大穗群体,是进一步提高其产量的主攻方向。  相似文献   

16.
ABSTRACT

Field trials were carried out during 2011–2013 in three locations on 10 wheat genotypes. Traits that were investigated included grain weight, grain-filling duration, grain-filling rates and the lag phase from flowering to the commencement of effective grain filling. The grain-filling duration and rate were fitted by Richard’s equation in thermal time (growing degree-days (GDD), base temperature 9ºC). A combined ANOVA across environments showed that the grain weight was mainly affected by genotype, while most of the other grain-filling characters were influenced by the environment and G × E interactions. Grain filling lasted between 362 to 400 GDD and included a lag phase that ranged from 67 to 86 GDD. Both the effective and maximum rates of grain filling ranged from 0.12 to 0.15 mg GDD?1 and 0.18–0.22 to GDD?1, respectively. The lag phase was positively correlated with grain weight and rates of grain filling, whereas days to anthesis were significantly negatively correlated with the lag phase and both rates of grain filling. Temperature during grain filling was negatively correlated with the lag phase. The variation in grain weight was positively associated with the rate of grain filling, which, in turn, was related to the grain number per unit area. A compensating variability existed among the genotypes in both the grain number and grain-filling rate. The study of genotypic stability demonstrated that Chuanmai42 and Chuanmai104 had high grain weight and stability among most of the grain-filling parameters, and also had high grain yield. Chuanmai42 and Chuanmai104 were the best genotypes for improving the yield potential and grain weight stability.  相似文献   

17.
ABSTRACT

To enhance the yield potential of rice by breeding, it is important to reveal the genetic factors affecting yield components in high-yielding cultivars. Quantitative trait loci (QTL) analysis for panicle structure and spikelet weight as an index of grain filling was conducted using recombinant inbred lines (RILs) derived from a cross between an indica-dominant high-yielding cultivar, Takanari, and a japonica-dominant high-yielding cultivar, Momiroman in 2012 and 2013 in eastern Japan. The grain-filling ability of Takanari is reported to be better than that of Momiroman. Since grain filling is generally better near the tip of the panicle and decreases as the number of branches from the rachis increases, we classified whole panicles into upper and lower side panicles and spikelets into primary, secondary, and tertiary spikelets according to the number of branches from the rachis. On chromosomes 1, 4, and 6, QTLs regulating the number of spikelets per panicle and panicle structure were detected and were most likely identical to GN1a, SPIKE, and APO1, respectively, which has been previously reported as QTLs regulating the number of spikelets per panicle. Takanari produced much heavier secondary and tertiary spikelets than Momiroman on the lower side panicle. On chromosome 5, novel QTLs regulating spikelet weight were detected. The Takanari allele enhanced secondary and tertiary spikelet weight on the lower side panicle. These results indicate that it may be possible to enhance sink capacity and translocation of source with a combination of novel QTLs detected on chromosome 5 and GN1, APO1, and SPIKE.  相似文献   

18.
为了解糯小麦和非糯小麦对遮光的生理反应差异,在大田条件下,以非糯小麦轮选987和糯小麦农大糯50206为材料,设置3个遮光处理(不遮光、花后遮光30%和60%),研究了花后不同强度遮光对糯小麦和非糯小麦干物质积累和产量的影响.结果表明,遮光后,轮选987和农大糯50206的生物产量、籽粒产量和经济系数均显著下降.花后光照强度降低导致小麦花前营养器官干物质在花后向籽粒的转运量及其贡献率发生明显变化,同时影响籽粒灌浆进程,最终表现为粒重显著下降,且此影响存在明显的基因型差异.轮选987在遮光30%后营养器官干物质在花后向籽粒的转运量降低,遮光60%后转运量恢复至对照(不遮光)水平,转运物质对籽粒的贡献率随遮光强度的提高而增加.花后遮光抑制了农大糯50206花前营养器官干物质在花后向籽粒的转运,但未改变转运物质对籽粒的贡献率.花后弱光降低了小麦籽粒的平均灌浆速率和最大灌浆速率,轮选987的灌浆进程不受影响,却改变了农大糯50206的灌浆进程,延长了其渐增期和快增期的天数,推迟了灌浆高峰期的来临.遮光后小麦败育小穗数增多,穗粒数下降.花后遮光致使小麦产量降低的程度存在基因型差异,农大糯50206产量的降幅明显小于轮选987.  相似文献   

19.
耕作方式对冬小麦内源激素含量及产量的影响   总被引:1,自引:0,他引:1  
为探讨耕作方式对冬小麦不同生育时期内源激素含量及产量的影响,在大田条件下,设3种耕作方式(耕翻+镇压,旋耕+镇压和旋耕),在小麦各生育时期定期取样,用高效液相色谱法(HPLC)分离、测定小麦5种植物内源激素的含量,并测定各处理小麦的产量及其构成因素。结果表明,在小麦越冬至抽穗期,耕翻+镇压处理下小麦叶片及根的IAA、SA、GA3、ZT含量较高;在抽穗灌浆期,耕翻+镇压处理下小麦叶片及根的IAA、GA3、ZT含量最高,进入灌浆期,耕翻+镇压处理下小麦叶片及根的IAA、SA、GA3、ZT含量下降缓慢,且ABA含量较低。耕翻+镇压处理下的小麦产量较旋耕+镇压及旋耕处理分别提高了3.74%和9.41%,且与旋耕处理的差异达到极显著水平。因此,3种耕作方式处理下,耕翻+镇压有利于提高小麦促生长类激素含量,降低小麦促衰老类激素含量,增加小麦有效穗数,促进籽粒灌浆,提高小麦千粒重,有利于实现小麦的高产优质。  相似文献   

20.
《Plant Production Science》2013,16(4):369-372
Abstract

The yielding ability of a new rice cultivar Akisayaka was compared with that of a standard rice cultivar Yumehikari. The refined grain yield was 9% larger in Akisayaka than in Yumehikari since Akisayaka had more panicles and spikelets per unit area but had a similar percentage of ripened grain. Although the leaf area index (LAI) in Akisayaka was similar to that in Yumehikari, the leaf area of the flag leaf per unit area of Akisayaka was smaller than that of Yumehikari at the full heading stage. This indicates that Akisayaka had a larger number of smaller upper leaves than Yumehikari. The refined grain weight of Akisayaka was similar to that of Yumehikari at 30 days after heading. This implies that the plant type of Akisayaka is not so important for increasing dry matter production from early to middle ripening period although small upper leaves seems to suppress overluxuriant growth. Accordingly the most important factor for the high yield of Akisayaka was considered to exist in the late ripening stage. The refined grain weight of Akisayaka increased more rapidly than that of Yumehikari from 30 to 45 days after heading. In addition, the leaf chlorophyll content estimated with chlorophyll meter (SPAD) and top dry weight of Akisayaka exceeded those of Yumehikari at the late ripening stage. These results suggest that the large number of spikelets per unit area and the continuation of sink and source ability during the late ripening stage caused the high yielding ability of Akisayaka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号