首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Plant Production Science》2013,16(4):430-441
Abstract

The objectives of this study were to identify the growth parameters involved in determining the number of spikelets on an individual tiller (ST) and to elucidate how ST is determined in rice (Oryza sativa L.). We examined the correlation of ST with the dry weight (DWT), leaf area (LAT), and the amount of nitrogen (NT) at heading for individual tillers grown under different conditions that were expected to affect spikelet production. In 1999, the japonica rice cultivars “Mineasahi” (short-duration), “Hinohikari” (intermediate-duration), and “Akebono” (long-duration) were transplanted in a paddy field on two different dates (EARLY and LATE). In 2000, Hinohikari was grown under three different treatments (gibberellic acid application, nitrogen topdressing, and thinning of hills at panicle initiation) and without treatment (control). Covariance and partial correlation analyses indicated that ST was positively and essentially correlated with DWT rather than with LAT and NT. The regression of ST on DWT was stable within each cultivar regardless of the treatment, year, tiller order, and number of differentiated spikelets. The slope of the regression was the steepest in the short-duration cultivar. These results suggest that the steep slope is desirable for high-yielding cultivars with large panicles. We conclude that ST is mostly determined by dry matter production of an individual tiller regardless of the number of differentiated spikelets. We present a diagram showing the relationship between dry matter production and the number of differentiated, surviving, and degenerated spikelets on an individual tiller.  相似文献   

2.
ABSTRACT

To enhance the yield potential of rice by breeding, it is important to reveal the genetic factors affecting yield components in high-yielding cultivars. Quantitative trait loci (QTL) analysis for panicle structure and spikelet weight as an index of grain filling was conducted using recombinant inbred lines (RILs) derived from a cross between an indica-dominant high-yielding cultivar, Takanari, and a japonica-dominant high-yielding cultivar, Momiroman in 2012 and 2013 in eastern Japan. The grain-filling ability of Takanari is reported to be better than that of Momiroman. Since grain filling is generally better near the tip of the panicle and decreases as the number of branches from the rachis increases, we classified whole panicles into upper and lower side panicles and spikelets into primary, secondary, and tertiary spikelets according to the number of branches from the rachis. On chromosomes 1, 4, and 6, QTLs regulating the number of spikelets per panicle and panicle structure were detected and were most likely identical to GN1a, SPIKE, and APO1, respectively, which has been previously reported as QTLs regulating the number of spikelets per panicle. Takanari produced much heavier secondary and tertiary spikelets than Momiroman on the lower side panicle. On chromosome 5, novel QTLs regulating spikelet weight were detected. The Takanari allele enhanced secondary and tertiary spikelet weight on the lower side panicle. These results indicate that it may be possible to enhance sink capacity and translocation of source with a combination of novel QTLs detected on chromosome 5 and GN1, APO1, and SPIKE.  相似文献   

3.
Recent progress in rice genomics has promoted the identification of quantitative trait loci (QTLs) associated with yield and its related traits. SPIKE, a QTL controlling spikelet number per panicle, and GPS, a QTL controlling leaf photosynthesis rate, were identical to NAL1. To assess the effect of SPIKE/GPS on yield potential, we compared DNA sequences of these alleles and conducted yield experiments in the field of Japan using the near-isogenic lines NIL-SPIKE (allele from Daringan in IR 64 genetic background), NIL-GPS (allele from Koshihikari in Takanari genetic background), and a chromosome segment substitution line, SL2115 (allele from Koshihikari in IR 64 genetic background). Despite the two SNPs in the promoter regions between Koshihikari and Daringan, both alleles were effective to increase the number of spikelets per panicle both in Takanari and IR 64 backgrounds. However, the extent of the increase was smaller and unstable in Takanari background than that in IR 64 background. In addition, SPIKE/GPS improved percentage of filled spikelets only in the IR 64 background. These results suggest that the effects of SPIKE/GPS alleles are similar but are affected by the difference of the genetic backgrounds. Because the increasing effect of spikelets number per panicle was canceled by the decrease of the number of panicles, which seems to be affected by environmental factors, none of NIL-SPIKE, SL2115, or NIL-GPS significantly out-yielded their parental cultivars. These results indicate the importance to consider genetic backgrounds and QTL-environment interaction toward the future use of SPIKE/GPS.  相似文献   

4.
产量构成因素及穗部性状对籼稻品种库容的影响   总被引:2,自引:1,他引:1  
 在群体水培条件下,以国内外不同年代育成的88份(2001年)和122份(2002年)常规籼稻代表品种为材料,测定它们的茎蘖动态、产量及其构成因素、穗部性状等,采用组内最小平方和的动态聚类方法将供试品种按库容量从低到高依次分为A、B、C、D、E、F共6类,研究各类品种产量及其构成因素、穗部性状的基本特点。结果表明:1)供试品种间库容量的差异很大,库容量最大的品种比最小的品种高426%(2001年)、817%(2002年),F类品种比A、B、C、D、E类品种分别高18471%、8893%、5745%、3432%、1405%(2001年)和30505%、15354%、9028%、5124%、2129%(2002年);2)随着库容量水平的提高,产量呈显著增加趋势;3)大库容类型籼稻品种单位面积穗数、每穗粒数、千粒重均显著大于小库容类型品种;4)大库容籼稻品种平均穗长、着粒密度、每穗一次枝梗数、每穗二次枝梗数较大;5)提高每穗粒数、单位面积穗数均可促进单位面积库容量的提高,两者对库容量作用的大小相仿,但均显著大于千粒重对库容量的影响。着粒密度、穗长对每穗粒数的影响显著大于每穗二次枝粳数,以及一、二次枝粳数比值对每穗粒数的影响。  相似文献   

5.
《Plant Production Science》2013,16(3):279-288
Abstract

Spikelet number per panicle (SPP), differentiated spikelet number per panicle (D-SPP), and preflowering aborted spikelet number per panicle (A-SPP) were examined in five rice cultivars at three planting densities (HD; high, MD; medium, LD; low planting density) in the field condition. Rice plants at LD produced a higher panicle number per plant but lower panicle number per unit area, accompanied by higher D-SPP and SPP, on average. A-SPP and the ratio of A-SPP to D-SPP (%A) showedno consistent trends. There was a broader range of D-SPP values at LD than at HD because of larger D-SPP in higher order panicles (panicles with a higher spikelet number). D-SPP was smaller in lower order panicles in all cultivars and years, whereas %A increased. D-SPP and SPP of each panicle were positively correlated with tiller size (tiller height, leaf area, and neck internode diameter). Spikelet production efficiency for D-SPP or for SPP (spikelet number per leaf area) of each tiller was higher in IR65564-44-51 (NPT65) and Akihikari than in the other cultivars, indicating a greater capacity of tillers to produce spikelets or support spikelet growth. In each cultivar except NPT65, spikelet production efficiency for D-SPP increased as panicle order decreased, whereas spikelet production efficiency for SPP remained constant or decreased. This finding indicates that irrespective of planting density, lower order panicles produce more spikelets than they can afford physiologically, but they were regulated downward to a nearly constant value in four cultivars. In NPT65 different from other cultivars, spikelet production efficiency for D-SPP was lower in lower order panicles.  相似文献   

6.
杂交中稻群体数量与质量性状关系的研究   总被引:3,自引:0,他引:3  
 以杂交水稻组合80优121(中粳)和协优57(中籼)为材料,进行栽插密度试验,以培育数量和质量不同的群体,研究群体数量与质量的关系。试验结果表明,基本苗数、最高茎蘖数等群体数量性状之间和分蘖穗率、茎蘖成穗率等群体质量性状之间都呈正相关。群体数量与质量性状之间呈负相关,其中基本苗数与分蘖穗率、最高茎蘖数与茎蘖成穗率、总颖花数与结实率、有效穗数与平均穗谷重4对性状间相互关系最密切。在试验条件下,有效穗数、平均穗谷重、总颖花数和结实率对产量的直接作用较大,因此高产栽培需在适宜穗数和总颖花数的前提下提高结实率和平均穗谷重。  相似文献   

7.
《Plant Production Science》2013,16(2):176-184
Absract

High-yielding rice varieties require a large accumulation of N in panicles. The objectives of this study were to clarify the change in N allocation during the ripening period (Exp. 1) and to quantify the contribution of N absorbed during the ripening period to panicle N at maturity (Exp. 2) in the high-yielding variety Takanari in comparison with that in Nipponbare as a control. In Exp. 1, 15N-labeled N (15N) was applied at heading to investigate the distribution of newly absorbed N as well as the allocation of plant N. In Exp. 2, split 15N application was performed during the filling period to estimate the above contribution. In Exp. 1, the allocation of plant N and absorbed 15N to the panicles was larger and that to the leaves was smaller in Takanari than in Nipponbare during the ripening period, although Takanari accumulated more N at maturity. The difference in N allocation suggested that the difference in N demand in panicles would be larger than that in N uptake. In Exp. 2, the varietal difference in the grain filling duration was observed: Nipponbare accumulated little N in the panicles after 28 d after heading (DAH), while Takanari accumulated about a quarter of its panicle N during that time. An estimate showed that in Takanari, 13.5% of the panicle N was derived from N absorbed after 28 DAH. These results suggest that the utilization of newly absorbed N until a later period after heading is important for the achievement of high yields.  相似文献   

8.
为鉴定杂交籼稻组合在云南干热籼稻区种植的产量潜力,研究不同产量水平水稻产量形成规律及群体质量指标,选用大面积生产应用的6个杂交籼稻品种为材料进行了比较试验,并根据当地水稻生产特点制定了相应的高产栽培技术。结果显示,广优1186、德优4727、两优2186、宜优673、两优2161、宜香3003产量分别为15.65、15.29、15.19、15.18、14.89和13.95 t/hm~2。为更好的分析水稻高产形成规律,将6个品种产量划分为高产(13.0~14.0 t/hm~2)、更高产(14.0~15.0 t/hm~2)、超高产(15.0~16.0 t/hm~2)3个不同产量水平。超高产水稻较更高产水稻有效穗数提高10.25%,较高产水稻总粒数、实粒数、结实率分别提高32.13%、35.69%、12.50%;超高产水稻高峰苗数较更高产、高产水稻分别低10.32%和30.02%;成穗率随着产量水平的增加而增加。超高产水稻齐穗期总LAI为7左右,高效叶面积率70%左右。颖花量随着产量的增加而增加。超高产水稻实粒/叶、粒重/叶较高产水稻分别增加20.00%和25.54%。超高产水稻齐穗期、成熟期、齐穗至抽穗期干物质积累量较高产水稻分别提高11.70%、11.96%和12.35%。  相似文献   

9.
Abstract

Proteins and carbohydrates in developing rice panicles were analyzed to see whether these parameters control spikelet number in rice. Two rice cultivars and 2 levels of nitrogen topdressing were used to obtain panicles with different numbers of spikelets. A japonica rice cultivar, Nipponbare, with topdressing (H) had 1.8 times more spikelets per panicle than that without topdressing (L). Moreover, the number of spikelets per panicle in an indica rice cultivar, Takanari, without topdressing was 2.7 times larger than that in Nipponbare-L. Panicles with more spikelets (LP) in Nipponbare-H and Takanari-L showed slower growth than those with few spikelets (SP) in Nippanbare-L in an early stage. LP, however, increased markedly in size thereafter, eventually exceeding SP, in length and fresh weight. Soluble protein content was higher in LP than SP in an early stage, but this difference was hardly detected in a late stage. No clear difference was observed in sugars or starch between LP and SP. Analysis of soluble and insoluble proteins by SDS-polyacrylamide gel electrophoresis showed that bands corresponding to insoluble proteins with a molecular weight about 42 kDa were present at higher intensities in LP than in SP. These results suggest that the spikelet number in rice is controlled by the soluble protein content in an early stage and insoluble proteins with a molecular weight of 42 kDa during panicle development, but not by the carbohydrates in developing panicles.  相似文献   

10.
以高原粳稻区大面积应用的大穗型、穗粒型、多穗型品种为材料,研究不同穗型品种的产量潜力。结果表明,这3种穗型品种均可获得11.00 t/hm2以上的超高产,其主要原因是穗粒协调,形成了较多的颖花数;多穗型品种的颖花数主要靠有效穗贡献,大穗型品种的颖花数主要靠穗粒数贡献,穗粒型品种的颖花数靠有效穗和穗粒数协调贡献;抽穗前期干物质积累量为多穗型品种穗粒型品种大穗型品种,抽穗后期干物质积累量为大穗型品种穗粒型品种多穗型品种。  相似文献   

11.
Abstract

The photosynthetic rate in the fl ag leaf of rice at the full heading stage was examined in three japonica varieties, Koshihikari, Aikoku and Asanohikari, and the indica high-yielding variety Takanari at the same level of leaf nitrogen. At an ambient CO2 concentration of 350 µL L-1, Takanari had a higher photosynthetic rate and stomatal conductance than the japonica varieties when plants were compared at a leaf nitrogen content of approximately 1.5 g m-2. Stomatal conductance increased considerably with increases in leaf nitrogen content in the japonica varieties. As a result, at a leaf nitrogen content of approximately 2.0 g m-2, differences in terms of the photosynthetic rate among varieties were small. By contrast, there were no clear varietal differences in Rubisco content at any identical nitrogen content of leaves. We conclude that stomatal conductance is responsible for the varietal differences in photosynthetic rate examined at the same leaf nitrogen content.  相似文献   

12.
The genes TAWAWA1 (TAW1) and ABERRANT PANICLE ORGANIZATION1 (APO1) increase the number of spikelets per panicle (SN). In the present study, we examined the effects of these genes on morphological traits, yield, and yield-related traits including yield components using the near-isogenic lines (NILs) in the genetic background of a japonica rice variety, Koshihikari – NIL-taw1, NIL-apo1-D3, and NIL-apo1-D4 – in a field experiment. The SN and total number of spikelets per area of the three NILs were larger than those of Koshihikari. However, the yield of the three NILs did not exceed that of Koshihikari due to their low filling ability. Interestingly, our field experiments indicated that TAW1 did not affect the diameter of internodes and the PN, whereas APO1 decreased the PN and increased the diameter of internodes. These results suggest that TAW1 and APO1 differently affect yield-related traits.  相似文献   

13.
System of rice intensification (SRI) has been disseminated in many countries because of its high yield, although the mechanism of yield increase has yet to be fully understood. The aims of this study were to clarify the actual water management of a skilled SRI farmer in irrigated paddy field of Indonesia and to examine the effect of intermittent water management on rice growth and yield. Yield and yield components were compared in the field experiments in the farmer’s fields under intermittent (SRI) or flooded (FL) irrigation for 4 years from 2013 to 2016. The daily mean water depth of SRI plots during 0–40 days after transplanting showed very shallow (ca. 2 cm) or little lower than soil surface and continued to be lower than soil surface during reproductive stage when panicles were formed. The yield of SRI significantly exceeded that of FL for 4 years by 13% (P?=?0.0004), so did the panicle numbers per area (P?=?0.036). The yield increase in SRI was associated with the increased number of panicles, which should have resulted from enhanced tiller development under shallow water level during the vegetative stage. The increased number of panicles was, however, counteracted by the reduced number of spikelets per panicle and resulted in nonsignificant increase in the spikelet density, defined as number of spikelets per unit area of crop. This dampening change in spikelet number per panicle could have been caused by limited supply of either nitrogen or carbohydrate during the panicle development stage under the intermittent water supply. A greater yield increase by SRI could be expected by improving nutrient or water management during the reproductive stage.  相似文献   

14.
《Plant Production Science》2013,16(3):289-296
Abstract

Failure of fertilization in rice is a critical yield-determining factor in plants subjected to temperature or water stress at the early-reproductive stage and in high-yield cultivars bearing heavy spikelets. Although it is important to identify quickly the unfertilized spikelets for research and selection of stress-resistant or high-ripening cultivars from bulksamples, the identification takes time because unfertilized spikelets are usually determined by visual and manual procedures. Our objective was to develop a convenient method to identify unfertilized spikelets in rice. Takanari spikelets at maturity grown in the paddy field were separated into floating and sinking spikelets by different specific gravity solutions of ethanol/water mixture. The unfertilized spikelets were identified by checking the grains inside the spikelets by light penetration and examining the spikelets manually. The percentage of floating spikelets decreased with the increase in ethanol concentration, and that of floating spikelets approximately coincided with the percentage of unfertilized spikelets when the specific gravity was below 0.90×10>3 kg m-3, corresponding to over 70% -ethanol. In a practical range of temperature the specific gravity scarcely changed. In an 80%-ethanol solution, the percentages of floating spikelets in Takanari grown under different nitrogen applications and in rice cultivars having different spikelet size approximately coincided with percentages of unfertilized spikelets, though the percentages of floating spikelets was 5 to 7% higher than the unfertilized spikelets. The use of 70%-ethanol solution increased the difference in some rice cultivars. We concluded that the gravitation method would be convenient for identification of unfertilized spikelets in bulk samples of rice.  相似文献   

15.
China's “super” hybrid rice breeding project has developed many new varieties using a combination of the ideotype approach and intersubspecific heterosis. It is controversial whether these “super” hybrid varieties have increased the yield potential of irrigated rice. This study was conducted to compare grain yield and yield attributes among “super” hybrid, ordinary hybrid, and inbred varieties. Field experiments were done in Liuyang (moderate-yielding site) and Guidong (high-yielding site) counties, Hunan Province, China, in 2007 and 2008. Two varieties from each varietal group were grown in each field experiment under moderate and high N rates. Grain yield, yield components, aboveground total dry weight, harvest index, total N uptake, and crop radiation use efficiency (RUE) were measured for each variety. A significant difference in grain yield was observed among the varieties and varietal groups but not between the two N rates. “Super” hybrid varieties have increased rice yield potential by 12% compared with ordinary hybrid and inbred varieties. The higher grain yield of “super” hybrid varieties was attributed to improvement in both source and sink. “Super” hybrid varieties produced more biomass than ordinary hybrid and inbred varieties. Long growth duration and high accumulated incident radiation were partially responsible for high biomass production for the “super” hybrid varieties. “Super” hybrid varieties had significantly larger panicle size (spikelets per panicle) than ordinary hybrid and inbred varieties, which resulted in larger sink size (spikelets per m2). Crop RUE did not explain the yield superiority of “super” hybrid rice. Our study suggests that “super” hybrid rice varieties do not necessarily require more N fertilizer to produce high grain yield.  相似文献   

16.
《Plant Production Science》2013,16(4):275-280
Abstract

The effects of flag leaves and panicles on canopy photosynthesis in a leading cultivar (Nipponbare) and two high-yielding rice cultivars (Takanari and Ghugoku 117) bred in Japan were compared. The total dry matter production was in the order of Takanari > Ghugoku 117 > Nipponbare. Canopy photosynthesis was highest in Takanari throughout the growth season, and was higher in Chugoku 117 than in Nipponbare during the ripening period. The photosynthetic rate in the flag leaf was in the order of Nipponbare > Takanari > Chugoku 117. The light extinction coefficient of canopy was higher in Takanari than in the others. At the middle ripening stage, canopy photosynthesis increased 35 and 17% in Nipponbare and Takanari, respectively, by the removal of panicles and decreased 37 and 48%, respectively, by the removal of flag leaves. In Chugoku 117, canopy photosynthesis was hardly influenced by these treatments. Clearly, the panicles intercept more radiation at the upper layer of the canopy in Nipponbare than in Takanari and flag leaves contribute more to canopy photosynthesis in Takanari than in Nipponbare. However, these effects were small in Chugoku 117. In conclusion, Takanari produces more dry matter than the others due to larger, wider, longer and more erect 1st (flag) and 2nd leaves above the panicles, which intercept more radiation. Chugoku 117 had erect panicles which allowed more radiation to penetrate into the deeper layer of the canopy, resulting in a high dry matter production. The lower panicle height relative to leaf layer and erect panicles are important characteristics for higher yield in rice.  相似文献   

17.
Sink strength plays an important role in grain filling of cereals but how it is related to the pre-anthesis non-structural carbohydrate (NSC) reserves is not clear. This study investigated if and how an increase in NSC reserves could enhance sink strength, and consequently improve grain filling of later-flowering inferior spikelets (in contrast to the earlier flowering superior spikelets) for rice varieties with large panicles. Two “super” rice varieties (the recently bred high-yielding rice) and two New Plant Type (NPT, named in IRRI for the extra-large panicle) rice lines were compared with two elite inbred varieties under field-grown conditions. Three nitrogen (N) treatments, applied at the stages of panicle initiation, spikelet differentiation or both, were adopted with no N application during the mid-season as control. Both super rice and NPT rice showed a greater yield capacity as a result of a larger panicle than the elite inbred rice. However, a lower percentage of filled grains limited the realization of higher yield potential in super rice and especially in NPT rice, due to their lower grain filling rate and the smaller grain weight of their inferior spikelets. The low grain filling rate and small grain weight of inferior spikelets are mainly attributed to a poor sink strength as a result of small sink size (small number of endosperm cells) and low sink activity, e.g. low activities of sucrose synthase (SuSase) and adenosine diphosphoglucose pyrophosphorylase (AGPase). The amounts of NSC in the stem and NSC per spikelet at the heading time are significantly and positively correlated with sink strength (number of endosperm cells and activities of SuSase and AGPase), grain filling rate, and grain weight of inferior spikelets. Nitrogen application at the spikelet differentiation stage significantly increased, whereas N application at the panicle initiation or at both panicle initiation and spikelet differentiation stages, significantly reduced, NSC per spikelet at the heading time, sink strength, grain filling rate, and grain weight of inferior spikelets in super rice. The results suggest that pre-anthesis NSC reserves in the stem are closely associated with the sink strength during grain filling of rice, and N application at the spikelet differentiation stage would be a good practice to increase pre-anthesis NSC reserves, and consequently to enhance sink strength for rice varieties with large panicles, such as super rice varieties.  相似文献   

18.
《Plant Production Science》2013,16(3):328-334
Abstract

White heads and silicon deposition in spikelets were observed in three rice varieties (IR28, IR4595-4-1-13 and Mangasa), which were different in vulnerability to white heads under salinity conditions. Plants were grown in three-liter pots with two nitrogen fertilizer levels (HN : high nitrogen and LN : low nitrogen) and subjected to salinity by submerging the soil in a lOOmM sodium chloride solution from booting to seven days after panicle emergence. White heads occurred in IR4595-4-1-13 and Mangasa but not in IR28 under the salinity condition, and the vulnerability to white heads was higher with the HN treatment than the LN treatment. Silicon deposition in spikelets, measured by energy-dispersive X-ray analysis with a scanning electron microscope, was correlated to the vulnerability to white heads. White heads inhibited flower opening and thus induced high sterility. It was concluded that low silicon deposition in spikelets was responsible for the occurrence of white heads under salinity conditions in rice.  相似文献   

19.
Pot experiments were conducted in 2002 and 2003 to investigate the effects of soil copper(Cu) concentration on growth, development and yield formation of rice by using the japonica cultivar Wuxiangjing 14 and hybrid rice combination Shanyou 63. The plant height, leaf number, elongated internode number and heading date of rice plants were not affected at soil Cu levels below 200 mg/kg, but affected significantly at above 400 mg/kg. The inhibitory effects on rice growth and development were increased with the increment of soil Cu levels. The grain yields decreased significantly with raising soil Cu levels. The main reasons for the grain yield reductions under lower soil Cu levels (100, 200 mg/kg) were mainly due to the decrease of number of spikelets per panicle, however, under higher soil Cu levels (more than 400 mg/kg), both panicle number and number of spikelets per panicle contributed to the yield loss. The decreases of panicle number by Cu stress were mainly attributed to slow recovery from transplanting, delayed tillering and reduced maximum tiller numbers. The reduction of number of spikelets per panicle under soil Cu stress resulted from the decreases of both shoot dry weight (SDW) at the heading date and the ratio of spikelets to SDW. Total biomass at maturity decreased significantly with the increase of soil Cu levels, while economic coefficient showed non-significant decrease except under soil Cu levels above 800 mg/kg.  相似文献   

20.
为探讨膜下滴灌栽培模式下的粳稻产量构成及其穗部特征,以12个水稻品种(A1~A12)为材料,比较分析了其产量及其构成因素、茎蘖组成及其成穗率、穗部构成特征.结果表明:在膜下滴灌栽培条件下,不同品种的产量及其构成因素平均值以A6最高,膜下滴灌水稻主要依靠主茎和一级分蘖成穗,且主茎和一级分蘖的贡献率占97%以上,群体数量的上升较平稳,成穗率中等;膜下滴灌水稻可以依靠二次枝梗数来增加穗粒数,二次枝梗对穗粒数的贡献率在57%以上.膜下滴灌水稻栽培应选用着粒密度较大、紧实的大穗型品种.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号