首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Tyree MT 《Tree physiology》1988,4(3):195-217
A model is presented for the dynamics of water flow in a single eastern white cedar tree (Thuja occidentalis L.). The model takes into account the spatial and temporal dependence of the evaporative flux from leaves in the crown. It also accounts for the quantitative hydraulic architecture of the tree, i.e., the model characterizes the tree as a branched catena of > 4000 stem segments in which account is taken of the segment length, diameter, hydraulic resistance, and the total area of leaves attached to the segment. Input values needed to run the model are measurements of evaporative flux, hydraulic conductance of stems versus stem diameter, and leaf and stem water storage capacitances. Output parameters are the spatial and temporal characterization of stem and leaf water potentials, stem and leaf water deficits, sap flow rate, and relative sap velocity. The input and output values of the branched catena model are compared and contrasted to that of an unbranched catena model. It is shown that the branched catena model fits independently measured field parameters better than an unbranched catena model. Close correspondence is found between model predictions and field measurements of shoot water potential, pressure gradients in stems, hysteresis in sap velocity between the lower and upper parts of the tree, and diurnal changes in stem and leaf water deficits. This model is discussed in terms of both the hydraulic architecture of trees and the potential application of the model to questions of tree morphology, ecology, physiology and evolution.  相似文献   

2.
The model of West, Brown and Enquist (1999) shows that hydraulic resistance in trees can be independent of path length, provided that vascular conduits widen sufficiently from tree top to base. We demonstrate that this result does not depend theoretically on branching architecture or cross-sectional conductive area of the stem. Previous studies have shown that pit membrane resistance, encountered when water moves between either tracheids or vessels, accounts for up to 60% of the total resistance in stem segments. When pit membrane resistance, which is neglected by most whole-tree hydraulic models, was incorporated in hydraulic models in three different ways, the near invariance of hydraulic resistance was preserved. If relative pit resistance was independent of tracheid size or if tracheid dimensions were scaled to minimize wood resistivity, the minimum conduit taper required for path length independence equaled that in the original model of West et al. (1999). Under the most realistic model, in which relative pit resistance increased with tracheid radius, this value was doubled. Such taper is not possible within the typical size range of tracheids over the entire length of moderately tall trees, but it might be possible for vessel-bearing trees. Preliminary results indicated that although tracheid radius in the outer growth ring initially increased basipetally from the top of an 18-m tall Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), it stabilized at mid-trunk. Also, conduit taper was not constant in this species, violating a key assumption of the model of West et al. (1999), on which the invariance of hydraulic resistance depends.  相似文献   

3.
I conducted a literature survey to assess the available information on relationships between size--expressed in terms of diameter and dry biomass--and hydraulic efficiency of woody structures at different scales, from stem segments to whole trees. Three data sets were constructed: the first described the relationship between segment diameter and hydraulic conductivity (k(h); kg m s(-1) MPa(-1)) in four species; the second, for the same four species, described the intraspecific trajectories of change in total hydraulic conductance (G; kg s(-1) MPa(-1)) during ontogeny, i.e., from saplings to mature trees, thereby providing a comparison between allometric scaling laws at the scales of segments and whole trees; the third comprised pooled means for nine species that described the interspecific trajectory of change in G with tree size. The scaling coefficients obtained were compared with predictions made with an architectural fractal-like model incorporating tissue-specific hydraulic architecture parameters (West et al. 1999). When data on segment k(h) were examined, the fractal-like model closely predicted the scaling of k(h) with segment diameter in four species. However, the model failed to predict accurately in all species the intraspecific scaling at the branch and whole-tree levels, and consistently overestimated the scaling coefficients. The results suggest that ontogenetic changes in tree size during the life cycle of one tree may result in tradeoffs between optimal hydraulic supply to the existing leaf area and maintenance costs of the supporting xylem tissue. The model of West et al. (1999) may be useful for understanding broad interspecific patterns, but not for understanding more subtle ontogenetic changes.  相似文献   

4.
Time series diagnosis of tree hydraulic characteristics   总被引:1,自引:0,他引:1  
An in vivo method for diagnosing hydraulic characteristics of branches and whole trees is described. The method imposes short-lived perturbations of transpiration and traces the propagation of the hydraulic response through trees. The water uptake response contains the integrated signature of hydraulic resistance and capacitance within trees. The method produces large signal to noise ratios for analysis, but does not cause damage or destruction to tree stems or branches. Based on results with two conifer tree species, we show that the method allows for the simple parameterization of bulk hydraulic resistance and capacitance of trees. Bulk tree parameterization of resistance and capacitance predicted the overall diel shape of water uptake, but did not predict the overshoot water uptake response in trees to shorter-term variations in transpiration, created by step changes in transpiration rate. Stomatal dynamics likely complicated the use of simple resistance-capacitance models of tree water transport on these short time scales. The results provide insight into dominant hydraulic and physiological factors controlling tree water flux on varying time scales, and allow for the practical assessment of necessary tree hydraulic model complexity in relation to the time step of soil- vegetation-atmosphere transport models.  相似文献   

5.
A dynamic model for simulating water flow in a Scots pine (Pinus sylvestris L.) tree was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration, together with the elasticity of wood tissue, causes variations in the diameter of a tree stem and branches. The change in xylem diameter can be linked to water tension in accordance with Hookea s law. The model was tested against field measurements of the diurnal xylem diameter change at different heights in a 37-year-old Scots pine at Hyyti?l?, southern Finland (61 degrees 51' N, 24 degrees 17' E, 181 m a.s.l.). Shoot transpiration and soil water potential were input data for the model. The biomechanical and hydraulic properties of wood and fine root hydraulic conductance were estimated from simulated and measured stem diameter changes during the course of 1 day. The estimated parameters attained values similar to literature values. The ratios of estimated parameters to literature values ranged from 0.5 to 0.9. The model predictions (stem diameters at several heights) were in close agreement with the measurements for a period of 6 days. The time lag between changes in transpiration rate and in sap flow rate at the base of the tree was about half an hour. The analysis showed that 40% of the resistance between the soil and the top of the tree was located in the rhizosphere. Modeling the water tension gradient and consequent woody diameter changes offer a convenient means of studying the link between wood hydraulic conductivity and control of transpiration.  相似文献   

6.
日本松干蚧(Matsucoccus matsumurae Kuwana)发生数十年以来,各地均进行了研究和防治,取得了成果和效益。而研究日本松干蚧口针和吸食部位以及损害松树的原因尚未见有报导。笔者自1985年起开展这一研究,现将初步结果整理如下。  相似文献   

7.
In large trees, the daily onset of transpiration causes water to be withdrawn from internal storage compartments, resulting in lags between changes in transpiration and sap flow at the base of the tree. We measured time courses of sap flow, hydraulic resistance, plant water potential and stomatal resistance in co-occurring tropical forest canopy trees with trunk diameters ranging from 0.34-0.98 m, to determine how total daily water use and daily reliance on stored water scaled with size. We also examined the effects of scale and tree hydraulic properties on apparent time constants for changes in transpiration and water flow in response to fluctuating environmental variables. Time constants for water movement were estimated from whole-tree hydraulic resistance (R) and capacitance (C) using an electric circuit analogy, and from rates of change in water movement through intact trees. Total daily water use and reliance on stored water were strongly correlated with trunk diameter, independent of species. Although total daily withdrawal of water from internal storage increased with tree size, its relative contribution to the daily water budget (approximately 10%) remained constant. Net withdrawal of water from storage ceased when upper branch water potential corresponded to the sapwood water potential (Psi(sw)) at which further withdrawal of water from sapwood would have caused Psi(sw) to decline precipitously. Stomatal coordination of vapor and liquid phase resistances played a key role in limiting stored water use to a nearly constant fraction of total daily water use. Time constants for changes in transpiration, estimated as the product of whole- tree R and C, were similar among individuals (~0.53 h), indicating that R and C co-varied with tree size in an inverse manner. Similarly, time constants estimated from rates of change in crown and basal sap flux were nearly identical among individuals and therefore independent of tree size and species.  相似文献   

8.
Gao Q  Peng S  Zhao P  Zeng X  Cai X  Yu M  Shen W  Liu Y 《Tree physiology》2003,23(9):641-648
A stomatal conductance model and a photosynthesis model were applied to field measurements of transpiration and photosynthesis of seven tree species growing in subtropical southern China. Parameter values of drought resistance and tolerance and biochemical assimilation capacity were obtained by means of nonlinear statistical regression, and were used to quantify species succession. The analysis indicated that the models adequately described the ecophysiological behavior of the trees under various environmental conditions. We found a general pattern of decreased drought resistance and tolerance, but increased biochemical assimilation capacity from pines to heliophilus broadleaf trees to mesophilus broadleaf trees. Succession was explained on the basis of these physiological characteristics together with positive feedbacks caused by changes in soil physical properties. The ecophysiological explanation of succession implies that: (1) fitness of a species for a particular succession stage at a particular location can be measured by stomatal behavior and biochemical assimilation capacity under local climate and soil conditions; (2) selection of species for a particular location at a particular succession stage can be guided by the parameter values provided in this study; and (3) succession may be accelerated by selecting trees with large root systems and large soil-root conductances that facilitate soil hydraulic redistribution of water.  相似文献   

9.
Calibration of a recently developed water flow and storage model based on experimental data for a young diffuse-porous beech tree (Fagus sylvatica L.) and a young ring-porous oak tree (Quercus robur L.) revealed that differences in stem wood anatomy between species strongly affect the calibrated values of the hydraulic model parameters. The hydraulic capacitance (C) of the stem storage tissue was higher in oak than in beech (939.8 versus 212.3 mg MPa(-1)). Model simulation of the elastic modulus (epsilon) revealed that this difference was linked to the higher elasticity of the stem storage tissue of oak compared with beech. Furthermore, the hydraulic resistance (R (x)) of beech was about twice that of oak (0.1829 versus 0.1072 MPa s mg(-1)). To determine the physiological meaning of the R (x) parameter identified by model calibration, we analyzed the stem wood anatomy of the beech and oak trees. Calculation of stem specific hydraulic conductivity (k (s)) of beech and oak with the Hagen-Poiseuille equation confirmed the differences in R (x) predicted by the model. The contributions of different vessel diameter classes to the total hydraulic conductivity of the xylem were calculated. As expected, the few big vessels contributed much more to total conductivity than the many small vessels. Compared with beech, the larger vessels of oak resulted in a higher k (s) (10.66 versus 4.90 kg m(-1) s(-1) MPa(-1)). The calculated ratio of k (s) of oak to beech was 2, confirming the R (x) ratio obtained by model calibration. Thus, validation of the R (x) parameter of the model led to identification of its physiological meaning.  相似文献   

10.
单木生长模型边缘误差的传播规律*   总被引:4,自引:0,他引:4       下载免费PDF全文
研究提出了生长模拟保护带应由边缘效应带和误差阻尼带两部分构成。边缘效应带的宽度等于林分平均优势木影响圈半径的2倍,阻尼带的宽度可根据模拟分期数和模拟精度估计。样地边缘误差呈衰减趋势由外向内逐级传播,各环带中树木竞争指数的系统误差,可根据其与样地边缘的距离近似估计。利用生长模型一般形式推导出了竞争指数相对误差与生长模拟相对误差的转换函数,证明由边缘效应造成的不同位置树木生长模拟系统误差是可估的。该研究为单水生长模型生长模拟保护带宽度的确定提供了理论依据和实用的估计方法。  相似文献   

11.
为了提高树木移栽机在不同工况下,达到最佳的工作效率,本文提出了针对树木移栽机工作原理中铲刀阻力所带来的问题,应用负载敏感系统作为整台机械的液压系统。在AMESim软件的仿真平台上,建立了负载敏感系统仿真模型图,设置了元件中的相应参数,为验证模型的正确性以及进行后续的动态特性分析做准备。选定的负载压力范围在0~30 MPa,仿真时间设置为1 s,采样时间为0.001 s,在节流阀全开的情况下,样本曲线压力增大时,流量有细微的下降;接着,验证阀负载压力分别为0、5、10 MPa、15、20时,泵的出口压力与节流阀出口压力之差始终保持在一个稳定的数值上,这就说明,依靠负载敏感系统就可以顺利解决了压力与外界负载变化无关这项课题。  相似文献   

12.
Aboveground xylem hydraulic conductance was determined in Scots pine (Pinus sylvestris L.) trees and stands from 7 to about 60 years of age. At the stand scale, leaf area index and net primary productivity (NPP, above- plus belowground) increased and reached a plateau at about 25-30 and 15-20 years, respectively; both parameters declined in mature stands. Stand hydraulic conductance followed a similar trend to NPP, with a maximum at about 15-20 years and a pronounced reduction in old stands. At the tree scale, annual biomass growth per unit of leaf area (growth efficiency) declined with tree age, whereas aboveground sapwood volume per unit leaf area, which is linearly related to maintenance respiration costs, steadily increased. Radiation interception per unit leaf area increased significantly with reduced leaf area index of mature stands, despite increased foliage clumping in the canopies of mature trees. Needle nutrient concentration did not change in the chronosequence. Tree hydraulic conductance per unit leaf area was strongly and positively correlated with growth efficiency. We discuss our findings in the context of growth reductions in mature and old trees, and suggest that increased hydraulic resistance and maintenance respiration costs may be the main causes of reduced carbon gain in mature and old trees.  相似文献   

13.
In plants, water flows from roots to leaves through a complex network of xylem conduits. The xylem architecture is characterized by the conduit enlargement towards the stem base and the multiplication of conduits near the apices of lateral branches. The xylem architecture of a small ash tree was analysed by measuring the vessel hydraulic diameter (Dh) and number (N) at different heights along the stem and branches. Along the stem, Dh and N increased from the apex to the point of crown insertion. Below, Dh and N decreased and remained constant, respectively. In branches, the Dh and N of apices increased with distance from the ground (PL) (P < 0.001 and P < 0.0001, respectively), indicating that apical resistance (R(APEX)) becomes lower in the most peripheral branches (P < 0.0001). At the level of branch nodes along the stem, the total conductive area (AC) of the stem and branches just above the node was 11% higher than that of the stem just below the node (P = 0.024), whereas the conductivity (Kh) remained invariant above and below (P = 0.76). The difference in AC (ΔAC) between the branches and stem above each node increased with the distance of the node position from the stem apex (L). The xylem architecture of the analysed tree was characterized by anatomical modifications likely aimed at equilibrating the different path length effects on the hydraulic resistance of the different branches. Conduit tapering and multiplication seem to play a crucial role for the achievement of equal hydraulic resistance of all the leaves in the crown.  相似文献   

14.
油松林木枯损率模型研究   总被引:1,自引:0,他引:1  
林木枯损率模型是树木生长与收获模拟系统中的一个重要组成部分。本文在充分研究国内外林木枯损率模型的基础上,根据北京市油松复位样地的数据,应用Logistic模型预测油松枯损率,模型自变量选择树木大小、竞争因子和林分密度等指标。研究结果显示:油松林木枯损率随径阶增加而呈U型分布,在5~15cm径阶时林木枯损率逐渐降低,之后枯损率又逐渐增加;枯损率随竞争激烈程度和林分密度的增加而增加。使用油松检验数据对建立的枯损率模型进行检验,发现该模型预测的油松枯损率与观测值之间没有显著差异。因此该模型可用于油松径阶和单木枯损率的预测。  相似文献   

15.
Plantation establishment using invasive alien plants is common in South Africa,but the effects of these plants on soil physical properties in the Vhembe biosphere is unknown.In this comparative study,soils underneath Pinus elliottii and Eucalyptus cloeziana were assessed for differences in physical properties compared to soils underneath adjacent natural sites in the Entabeni plantation in the Vhembe biosphere in Limpopo Province,South Africa.Soils were collected from topsoil over 3 months and quantified for gravimetric soil moisture,penetration resistance,soil infiltration,hydraulic conductivity and soil water repellency.For all 3 months,soils from both P.elliottii and E.cloeziana plantations were compact and had low penetration resistance compared to soils from adjacent natural sites.Soil infiltration and hydraulic conductivity were significantly(p\0.05)lower in soils from plantations compared to soils from adjacent natural sites,and more so from the E.cloeziana plantation than from P.elliottii.Soil water repellency was observed in soils from E.cloeziana only in May and June.Soils from the invasive alien tree plantation have decreased soil moisture,infiltration rate,hydraulic conductivity and are compact as well as repellent(only E.cloeziana),all poor soil physical properties.However,this decline in soil physical properties was not uniform between the two invasive alien plantation species;hence we cannot generalize about the effects of invasive alien plantation species on soil physical properties,and further research is required across different ecological regions.  相似文献   

16.
介绍一台由我国自行研发的树木抗风能力测试装备与方法,基于树木力学原理,通过将角传感器合理布置在树干上实时监测树干角度变化,结合实时风速,利用树木抗风能力预测分析系统,可测算该树能够承受的最大风速或最大风力等级。以2株樟Cinnamomum camphora为研究对象,采集了樟在风载荷作用下树干形变的角响应信息,测得樟能够承受的最大风速和临界断裂的破坏方式及断裂位置。本方法可为树木在大风或台风来临前是否需要防护提供科学依据,同时可为抗风性树种选择提供理论支撑。  相似文献   

17.
树木水力结构特征季节变化规律研究   总被引:1,自引:0,他引:1  
在北京林业大学校园内选取侧柏、刺槐等11个针阔叶树种为研究对象,测定1a生枝条小枝水势及水力结构参数季节变化。研究表明:小枝水势及水力结构参数均具有季节变化规律。导水率与比导率季节变化规律基本相似,从树种材性上看均表现为:环孔材树种〉散孔材树种〉无孔材树种,而木质部栓塞化程度也表现为:环孑L材树种〉散孔材树种〉无孔材树种。枝条水势、导水率和比导率季节变化节律均与树木生长发育节律相一致,都表现出枝条木质化时期〉嫩枝生长期〉早春,而木质部空穴和栓塞化程度也存在着季节变化节律,且与比导率季节变化节律相反,即:早春〉嫩枝生长期〉枝条木质化时期。  相似文献   

18.
Maximum plant height and the biophysical factors that limit it   总被引:1,自引:0,他引:1  
Niklas KJ 《Tree physiology》2007,27(3):433-440
Basic engineering theory and empirically determined allometric relationships for the biomass partitioning patterns of extant tree-sized plants show that the mechanical requirements for vertical growth do not impose intrinsic limits on the maximum heights that can be reached by species with woody, self-supporting stems. This implies that maximum tree height is constrained by other factors, among which hydraulic constraints are plausible. A review of the available information on scaling relationships observed for large tree-sized plants, nevertheless, indicates that mechanical and hydraulic requirements impose dual restraints on plant height and thus, may play equally (but differentially) important roles during the growth of arborescent, large-sized species. It may be the case that adaptations to mechanical and hydraulic phenomena have optimized growth, survival and reproductive success rather than longevity and mature size.  相似文献   

19.
Reiteration is the process whereby architectural units are replicated within a tree. Both immediate (from apical buds) and delayed (from suppressed or adventitious buds) reiteration can be seen in many tree species where architectural units ranging from clusters of shoots to entire branches and stems are replicated. In large old trees and suppressed trees, delayed reiteration occurs without an obvious external stimulus such as defoliation or traumatic loss of the branch apex. This suggests that, in trees that are growth-limited, reiteration is an adaptive mechanism for crown maintenance. We discuss theories about the aging process and how delayed adaptive reiteration may help maintain crown productivity and increase longevity. These include: (1) reducing the respiration/photosynthesis ratio; (2) increasing hydraulic conductance to newly developing foliage; (3) reducing nutrient loss from the tree; and (4) rejuvenating the apical meristem. The ability to reiterate various architectural units may contribute to increasing lifetime reproductive output by prolonging tree longevity. Further studies on the physiological and ecological implications of reiteration are needed to understand its adaptive significance in the life history of trees.  相似文献   

20.
The gulf between process-based and empirical approaches to modeling tree growth may be bridged, in part, by the use of a common model. To this end, we have formulated a process-based model of tree growth that can be fitted and applied in an empirical mode. The growth model is grounded in pipe model theory and an optimal control model of crown development. Together, the pipe model and the optimal control model provide a framework for expressing the components of tree biomass in terms of three standard inventory variables: tree height, crown height and stem cross-sectional area. Growth rates of the inventory variables and the components of biomass are formulated from a carbon balance. Fundamentally, the parameters of the model comprise physiological rates and morphological ratios. In principle, the values of these parameters may be estimated by lower-level process models. Alternatively, the physiological and morphological parameters combine, under reasonable assumptions, into a set of aggregate parameters, whose values can be estimated from inventory data with a statistical fitting procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号