首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Longevity of trees is known to be associated with growth rates, but also with tree morphology and spatial influences. However, very little quantitative information is available on the effects of these biotic and abiotic influences on maximum ages of trees. The objectives of this study were to investigate the trade-off between longevity and growth rates of Norway spruce (Picea abies) and to quantify the effects of tree morphology and abiotic site conditions on longevity of this species. Data were collected along different topographical and climatic gradients in a 20?×?25?km study area in the northern part of the Swiss Alps (Glarus). The ages of the more than 100 sampled dead Norway spruces ranged between 50 and 367?years. Longevity of these trees was negatively related to tree growth, i.e. slow-growing trees tended to grow older than fast-growing trees. Tree height was positively associated with longevity for both upper and lower storey trees. Longevity of lower storey trees was increased with large crown diameter, but decreased with long crown length. Upper storey trees growing at higher altitude tended to get older than at lower altitude. We conclude that the combined effects of growth rates, variability in site conditions and different traits of tree morphology determine tree longevity of Norway spruce in the Swiss Alps. Because longevity is tightly linked to mortality rates of tree populations, our study may improve our understanding of long-term processes of forest dynamics under current and future climate.  相似文献   

2.
Phillips N  Bergh J  Oren R  Linder S 《Tree physiology》2001,21(12-13):851-860
We investigated effects of nutrition and soil water availability on sap flux density, transpiration per unit leaf area (EL), and canopy stomatal conductance (GS) of Norway spruce (Picea abies L. (Karst.)) in northern Sweden during the 1996 growing season. Our objectives were to determine (1) if artificially imposed drought (65% rain diversion) reduces soil water sufficiently to cause physiological limitations to whole-tree and plot-scale water transport, and (2) whether increased capacity for water transport resulting from fertilization-induced increases in leaf (> 3-fold) and sapwood areas (> 2.3-fold) deplete soil water sufficiently to cause a negative feedback on GS and EL. We monitored soil water content (theta) and soil water potential (PsiS) in control (C), drought (D), fertilized (F) and irrigated + fertilized (IL) treatment plots, along with site meteorological conditions. Ten trees per plot were monitored for sap flow. Although there were significant treatment differences in mean daily EL (C > D > F; P < 0.01) and GS (C > D > F; P < 0.05), variation in absolute magnitudes was small. Therefore, transpiration differences on a unit ground area basis (EC) were nearly proportional to leaf area differences. Precipitation was well distributed throughout the study period and so PsiS remained high, except during short dry periods in Plot F when it declined rapidly. Thus, although soil water was not limiting to GS, EL or EC when precipitation was uniformly distributed throughout the growing season, we cannot conclude that water availability would not limit GS in fertilized stands if the seasonal distribution of precipitation were altered.  相似文献   

3.
Net CO2 exchange in a 35-year-old boreal Norway spruce (Picea abies (L.) Karst.) forest in northern Sweden was measured at the shoot (NSE), tree (NTE) and ecosystem levels (NEE) by means of shoot cuvettes, whole-tree chambers and the eddy covariance technique, respectively. We compared the dynamics of gross primary production (GPP) at the three levels during the course of a single week. The diurnal dynamics of GPP at each level were estimated by subtracting half-hourly or hourly model-estimated values of total respiration (excluding light-dependent respiration) from net CO(2) exchange. The relationship between temperature and total respiration at each level was derived from nighttime measurements of NSE, NTE and NEE over the course of 1 month. There was a strong linear relationship (r2 = 0.93) between the hourly estimates of GPP at the shoot and tree levels, but the correlation between shoot- and ecosystem-level GPP was weaker (r2 = 0.69). However, the correlation between shoot- and ecosystem-level GPP was improved (r2 = 0.88) if eddy covariance measurements were restricted to periods when friction velocity was > or = 0.5 m s(-1). Daily means were less dependent on friction velocity, giving an r2 value of 0.94 between shoot- and ecosystem-level GPP. The correlation between shoot and tree levels also increased when daily means were compared (r2 = 0.98). Most of the measured variation in carbon exchange rate among the shoot, tree and ecosystem levels was the result of periodic low coupling between vegetation and the atmosphere at the ecosystem level. The results validate the use of measurements at the shoot and tree level for analyzing the contribution of different compartments to net ecosystem CO2 exchange.  相似文献   

4.
In tree species, fine-root growth is influenced by the interaction between environmental factors such as soil temperature (ST) and soil moisture. Evidences suggest that if soil moisture and nutrient availability are adequate, rates of root growth increase with increasing soil temperature up to an optimum and then decline at supraoptimal temperatures. These optimal conditions vary between different taxa, the native environment and the fine-root diameter sub-classes considered. We investigated the effects of seasonal changes of both ST and soil water content (SWC) on very fine (d < 0.5 mm) and fine-root (0.5 < d < 2 mm) mass (vFRM, FRM) and length (vFRL, FRL) in Italian Southern Alps beech forests (Fagus sylvatica L.). Root samples were collected by soil core method. Turnover rate was higher for the very fine (0.51) than for the fine (0.36) roots. vFRM, FRM, vFRL and FRL displayed a complex seasonal pattern peaking in summer when SWC was around 40 % and ST was around 14 °C. Above this temperature, under almost constant SWC, all above mentioned root traits decreased. vFRM, FRM, vFRL and FRL showed significant second-order polynomial relationship (p < 0.05) with SWC for both diameter classes, with the only exception of SRL. ST showed the same kind of relationship significant only with vFRM and vFRL, the latter within the 12–16 °C smaller range. Interpolation analysis between root mass and length for both diameter classes and investigated soil environmental characteristics (ST and SWC) showed a clear roundish delineation only for vFRM. In conclusion, these findings clarified the occurrence of a bimodal fine-root growth seasonal pattern for our beech forest. The optimal growth ST and SWC ranges were delineated only for very fine roots, giving further evidence on this root category as the more responsiveness to soil environmental changes. Furthermore, F. sylvatica seems to adopt an intensive strategy to cope with decreasing SWC. Finally, fine-root growth, mainly radial type, seems to be driven by SWC, whereas very fine-root growth, mainly longitudinal type, seems to be driven by ST.  相似文献   

5.
The purpose of this study was to examine the effects of type and amount of ground vegetation and substrate on the germination and early survival of Norway spruce (Picea abies (L.) Karst) seedlings in uneven-aged stands on mineral soils in Southern Finland. The study was conducted on two permanent plots representing average site quality for spruce stands in the area. A gradient in selection cut intensity and residual stand density was imposed across each of the two permanent plots. Regeneration and vegetation surveys were repeated annually on a grid of unmanipulated microplots and on a set of soil treatment microplots. The results indicated that the number of spruce germinants per unit area was positively correlated with herb cover but negatively correlated with total plant cover. Germinant density was also related to vegetation-free seedbed conditions, high overstory competition index and presence of larger spruce seedlings. Regeneration microsites dominated by moss or with plants with a relatively high light demand were associated with low germinant numbers. Bare humus layer and decayed stumps seemed to promote germinant emergence. Exposure of mineral soil resulted in germination rates that were 4.3–6.9 times higher than in undisturbed conditions during the first growing season.  相似文献   

6.
This paper presents new harmonized distance-independent individual tree basal area growth models for Norway spruce, Douglas-fir and Japanese larch in pure even-aged stands in Southern Belgium. The selected model was originally developed for Norway spruce and Douglas-fir in neighboring France. New formulations are proposed for some of the model components in order to lower the number of fitted parameters and facilitate the fitting procedure. The resulting models integrate the most recent corresponding top-height growth models and use four simple and usually collected explanatory variables: stand age, top-height, total basal area and tree girth at breast height. The modified formulations maintain similar fitting performances and make it easier to interpret the influence of the explanatory variables on tree growth. Parameters estimates were fitted on thousands of growth measurements gathered from several monitoring plots, forest management inventories and silvicultural field experiments that represent the wide range of site conditions and of forest management scenarios applied to coniferous stands in Southern Belgium. Cross-validation of the models revealed no bias and highlighted their consistent behavior over the entire range of girth at breast height, age, top-height, site index and density represented in our dataset. Combining utility and robust performances, these models represent useful forest management tools, purposely ideal for forest simulation software development. Moreover, the flexibility and generic capabilities of the model formulation should make it easily adjustable for other species in even-aged stands.  相似文献   

7.
To investigate the effect of tree species on soil N dynamics in temperate forest ecosystems, total N (Nt), microbial N (Nmic), net N mineralization, net nitrification, and other soil chemical properties were comparatively examined in beech (64–68 years old) and Norway spruce (53–55 years old) on sites 1 and 2, and beech and Scots pine (45 years old) on site 3. The initial soil conditions of the two corresponding stands at each site were similar; soil types were dystric Planosol (site 1), stagnic Gleysols (site 2), and Podzols (site 3). In organic layers (LOf1, Of2, Oh), Nmic and Nmic/Nt, averaged over three sampling times (Aug., Nov., Apr.), were higher under the beech stands than under the corresponding coniferous ones. However, the Nmic in the organic layers under beech had a greater temporal variation. Incubation (10 weeks, 22 °C, samples from November) results showed that the net N mineralization rates in organic layers were relatively high with values of 8.1 to 24.8 mg N kg–1 d–1. Between the two corresponding stands, the differences in net N mineralization rates in most of the organic layers were very small. In contrast, initial net nitrification rates (0.2–17.1 mg N kg–1 day–1) were considerably lower in most of the organic layers under the conifer than under the beech. In the mineral soil (0–10 cm), Nmic values ranged from 4.1–72.7 mg kg–1, following a clear sequence: August>November>April. Nmic values under the beech stands were significantly higher than those under the corresponding coniferous stands for samples from August and April, but not from November. The net N mineralization rates were very low in all the mineral soils studied (0.05–0.33 mg N kg–1 day–1), and no significant difference appeared between the two contrasting tree species.  相似文献   

8.
To determine effects of stem nitrogen concentration ([N]) on the seasonal course of respiration, rates of stem respiration of ten control and ten irrigated-fertilized (IL), 30-year-old Norway spruce trees (Picea abies (L.) Karst.), growing in northern Sweden, were measured on seven occasions from June 1993 to April 1994. To explore sources of seasonal variation and mechanisms of fertilization effects on respiration, we separated total respiration into growth and maintenance respiration for both xylem and phloem bark. Stem respiration increased in response to the IL treatment and was positively correlated with growth rate, volume of living cells and stem nitrogen content. However, no significant effect of IL treatment or [N] in the living cells was found for respiration per unit volume of live cells. Total stem respiration during the growing season (June to September) was estimated to be 16.7 and 29.7 mol CO(2) m(-2) for control and IL-treated trees, respectively. Respiration during the growing season accounted for approximately 64% of total annual respiration. Depending on the method, estimated growth respiration varied between 40 and 60% of total respiration during the growing season. Between 75 and 80% of the live cell volume in the stems was in the phloem, and phloem maintenance accounted for about 70% of maintenance respiration. Because most of the living cells were found in the phloem, and the living xylem cells were concentrated in the outer growth rings, we concluded that the best base for expressing rates of stem growth and maintenance respiration in young Norway spruce trees is stem surface area.  相似文献   

9.
The hypothesis that soil chemistry is a main constraint for the vigour of Norway spruce trees on calcareous soils is scrutinised based on data from 60 existing and new intensive study sites in the Bavarian Alps, where comprehensive information on soils, climate, foliar nutrient concentration, ground vegetation, and tree growth is available. We characterised ecological gradients of the response variables site index (SI), foliar nutrient level and needle weight by constrained ordination, identified nutrient limitations based on regression trees and modelled SI based on vegetation-based mean Ellenberg indicator values. Our study confirms the assumption that soil development and concurrent acidification are key determinants for the vitality and growth of spruce in the Bavarian Alps, which surpass the importance of climate on nutrition and growth. Pools and availability of P and N are limiting nutrition and growth of spruce in this region. We hypothesize that N-limitation persists despite considerable deposition inputs because N tends to be locked up in organic horizons with low biological activity. K and trace elements, especially Fe, can also be deficient in some cases but do not appear as major limiting factors. High foliar Mn concentrations are a reliable indicator of mature soils and favourable site conditions in the Bavarian Alps, but Mn itself is usually not limiting. P must be regarded as the most critical macronutrient in the Bavarian Alps, particularly in the face of biomass harvesting. Consequently, at sites with shallow soils forest, management should focus on sustaining or restoring humus stocks. SI of spruce can be predicted from composition of ground vegetation and Ellenberg indicator values with remarkable precision (R 2 = 0.75).  相似文献   

10.
Soil properties were compared in adjacent 50-year-old Norway spruce, Scots pine and silver birch stands growing on similar soils in south-west Sweden. The effects of tree species were most apparent in the humus layer and decreased with soil depth. At 20-30 cm depth in the mineral soil, species differences in soil properties were small and mostly not significant. Soil C, N, K, Ca, Mg, and Na content, pH, base saturation and fine root biomass all significantly differed between humus layers of different species. Since the climate, parent material, land use history and soil type were similar, the differences can be ascribed to tree species. Spruce stands had the largest amounts of carbon stored down to 30 cm depth in mineral soil (7.3 kg C m−2), whereas birch stands, with the lowest production, smallest amount of litterfall and lowest C:N ratio in litter and humus, had the smallest carbon pool (4.1 kg C m−2), with pine intermediate (4.9 kg C m−2). Similarly, soil nitrogen pools amounted to 349, 269, and 240 g N m−2 for spruce, pine, and birch stands, respectively. The humus layer in birch stands was thin and mixed with mineral soil, and soil pH was highest in the birch stands. Spruce had the thickest humus layer with the lowest pH.  相似文献   

11.
In this study the hydrological regime of Norway spruce (Picea abies) and birch (Betula pendula) growing on heavy soils in the south east of Austria was analysed. Results from the year 2003 characterised by an extremely hot and dry summer are presented in this paper. Due to the extreme weather conditions the soil water content in August 2003 was very low (0.10–0.25 m3 m−3) in the topsoil (0–50 cm) with no explicit difference between both tree species.  相似文献   

12.
Old-growth forests play a key-role in reducing atmospheric carbon dioxide(CO2) concentrations by storing large CO2 amounts in biomass and soil over time.This quantifies the carbon pool into different forest compartments in three Mediterranean old-growth forests of Southern Italy populated by Pinus laricio,Fagus sylvatica and Abies alba.Ecosystem carbon pools have been assessed per compartment,i.e.,living trees,dead wood,litterfall(foliar and woody),roots and 0-20 cm topsoil...  相似文献   

13.
Abstract

Biomass, total nitrogen (N) and total carbon (C) stocks were determined in trees, roots, field vegetation and soil in plots given two different site preparation treatments, deep soil cultivation (DSC) approximately 50?cm deep and patch scarification (PS), at three locations in Sweden 10?years after treatment. One location was planted with Pinus contorta, one with Picea abies and one with a mixture of P. abies and Pinus sylvestris. No differences were found in total ecosystem (trees, roots, field vegetation and soil) C and N stocks between the DSC and PS plots. In the DSC plots the tree biomass, tree N and C contents and total biomass were higher than in the PS plots, but the opposite was found for stocks in field vegetation. Biomass and C stocks in the total vegetation (trees, roots and field vegetation) were higher in the DSC plots. However, vegetation N stocks did not differ between the soil treatments, probably because the combined amount of leaf tissue in the trees and field vegetation did not differ between them. The proportions of biomass allocated to roots, stems and needles did not differ between the two treatments. However, the rooting was deeper in DSC plots, possibly because nutrient availability was higher, and subsoil density lower, following DSC than following PS.  相似文献   

14.
Forest soils store large stocks of soil organic matter (SOM) and are of vital importance for the ecosystem supply with nutrients and water. According to the available literature, depending on management regime and site properties, different negative and positive effects of forest management (particularly of forest thinnings and shelterwood cuttings) on soil organic carbon (SOC) and nitrogen (N) stocks are observed. To elucidate the long-term impact of different shelterwood systems and small clear-cuttings on the OC and N stocks of shallow calcareous soils in the Bavarian Alps, we conducted soil humus inventories on different plots of a mixed mountain forest management experiment started in 1976. The silvicultural multi-treatment experiment consists of a NW-exposed Main Experiment (ME) site with eight plots of different cutting intensity (two unthinned controls, two light shelterwood cuttings = 30 % of basal tree area removed, two heavy shelterwood cuttings = 50 % removed, and two clear-cuttings = 100 % removed) on Triassic dolostone. Additionally, plots were installed at a N-exposed dolostone (ND) site and two sites (FL, FH) on Flysch sandstone (each with one unthinned control and one heavy shelterwood cutting). The shelterwood cuttings from 1976 were repeated in 2003 to re-establish the overstorey basal area as produced by the first cutting in the different plots. Thirty-five years after the first treatments, forest floor SOC and N stocks were significantly decreased (up to ?70 %) at the different shelterwood and clear-cut treatments compared to the unthinned control at the ME site despite vigorous development of natural rejuvenation. Also significantly smaller topsoil (forest floor plus mineral soil 0–10 cm depth) OC stocks (between ?16 and ?20 %) were detected at the thinned compared to the control plots. Differences in topsoil N stocks were also considerable (between ?3 and ?14 %), but substantially smaller than OC stock changes. For the total soil down to 30 cm depth, OC stocks in the differently thinned plots were consistently smaller compared to the unthinned control plots. Comparable to our findings at the ME site, heavy shelterwood plots at the three other sites (ND, FL, and FH) showed significant losses of OC in the forest floor (up to 43 %), mineral soil (up to 38 %), topsoil (up to 38 %), and total soil (up to 34 %). Significant large absolute and relative SOC decreases coincided with sites characterized by large initial humus stocks. Moreover, significant effects of heavy shelterwood cuttings on SOC and N stocks (on average 23 % SOC loss and 13 % soil N loss for the forest floor plus the uppermost 10 cm mineral soil) were detected on a regional level. Our results show that different shelterwood systems are accompanied with a considerable long-term decrease in OC and N stocks in shallow calcareous forest soils of the Bavarian Alps. However, a comparison with a windthrown forest stand at a nearby similar site indicates that SOM losses after thinning operations are small compared to decreases following windthrow or other calamities with subsequent large soil erosion and increased mineralization processes.  相似文献   

15.
Needles from healthy Norway spruce (Picea abies (L.) Karst.) at Willerzie in the West Ardennes and from trees with symptoms of dieback at Langesthal in the East Ardennes were analyzed by age class for mineral composition. Both stands were on acid oligotrophic soils. At Willerzie, needles were sampled from plots fertilized 12 to 17 years earlier (dolomitic lime plus N, P and K) as well as unfertilized plots. Effects of fertilization included increased levels of calcium, manganese, phosphorus, and copper and reduced levels of total sulfur, sulfate-S, sulfate-S:total S, potassium and aluminum. Levels of calcium, magnesium, copper and boron were low at both sites and, at Langesthal, calcium and magnesium may have been deficient. Sulfur level was normal at Willerzie, but at Langesthal, mean sulfur content for needles of all age classes was 198 mg 100 g(-1) dry weight, a level that may be toxic. In older needles, the N:S ratio at Langesthal was below the threshold value of eight reported to be necessary for healthy growth. Other symptoms of stress observed were high sulfate-S:total S and nitrate-N:total N ratios. At Langesthal, manganese level was probably adequate although only one-fifth the level at Willerzie. Levels of aluminum and iron were very high at both sites. Most of the iron and much of the aluminum occurred as a surface deposit that could be removed by washing the needles in chloroform.  相似文献   

16.
The research site, Wingst Compartment 123B, is a 68-year-old Norway spruce (Picea abies (Karst.)) stand located in the coastal area of northern Germany. This area receives high atmospheric inputs of ammonium and also has relatively high ozone concentrations (0.061 mg m−3).Ten trees were categorized as healthy to slightly damaged (3–29% needle loss) or severely damaged (49–71% needle loss). Apparent net photosynthetic rates were measured on detached branches at light saturation (1000 μE m−2 s−1). Needles were analyzed for chlorophyll, N, C, Ca, Mg, K, Zn, Mn and Fe.When compared to the healthy-to-slightly-damaged trees, the severely damaged trees tended to have higher rates of net apparent photosynthesis in the 1 and 2-year-old needles and similar rates in the current-year needles. All three needle ages from the severely damaged trees had higher average stomatal conductances to water vapor (gs. Although the damaged trees had significantly less total chlorophyll in all needle ages sampled, there was no statistically significant difference in the chlorophyll a:b ratio between the healthy and severely damaged trees.Nitrogen contents of the current-year needles were slightly lower in the severely damaged trees. Carbon and calcium levels did not significantly differ between the damage classes, although the average Ca content of all younger needles was generally under the recommended sufficiency levels. The current-year needles of the severely damaged trees had significantly less magnesium (0.42–0.46 mg Mg g−1) than those of the healthy trees, and all trees had Mg values in the deficiency range (< 0.7 mg g−1). The severely damaged trees also had lower average potassium levels in the older needles.The annual volume increment per unit crown surface area declined with increasing crown damage. Trees with a 50% needle loss showed a 62% loss of volume increment.Soil investigations revealed conditions of high soil acidity and poor nutrient capacity. The low pH values (pH < 3.8) in 64% of all samples indicated a high risk of acid toxicity for plant roots in the investigated area.The significance of these results relative to the current ideas concerning forest decline is discussed.  相似文献   

17.
18.
On the ‘local county monitoring plots’ located throughout Norway a reduction of crown density has been noted during the period 1988–1997. The aim of this study was to determine whether this change could be attributed to normal effects due to the increased age of trees in the plots. The dataset comprised around 580 plots and 27 000 single trees of Norway spruce (Picea abies), with 10 years of crown density measurements available for each tree. A two-step approach was used, first to search for an expectancy for normal reduction of crown density by age derived from the dataset, and then to compare this with the actual reduction. The interpretation was somewhat complicated as the various results were dependent upon each other. Highly significant correlations were found between crown density and age. The relationship indicated an annual reduction of crown density of around 0.12%. However, the relationship varied both between years and between regions, and it was not possible to definitely determine whether the relationship was best described by linear or nonlinear models. Of major importance here is that the relationship appeared to be influenced by the presence of stresses, whose effects tended to be more severe in old stands. On this basis it seems questionable whether an expectancy for normal ageing can be properly defined. In the present study, however, it could still be definitely determined that the mean crown density change of—0.41% annually was too negative to be attributed to normal ageing, as it was clearly below all the suggested expectancies from the various models. This suggests that the amount of stress in the period under study has been higher than normal, and this encourages the search for causal agents in further studies. Changes in silviculture may have had some influence. The results were valid for most of Norway, with the exception of western and northern regions. Crown density assessments are subjective, which may possibly give erroneous time trends. However, it is argued that this is less likely to be of major importance in the present data.  相似文献   

19.
In 1984, a liming experiment with a surface application of 4 t ha−1 of dolomitic limestone was started at the acidic N-saturated Norway spruce forest “Höglwald” in southern Germany and monitored until 2004. The decay of surface humus due to the accelerated mineralisation accounted for 18.5 ± 2.7 t ha−1 C or 50% of the initial pool and 721.6 ± 115.0 kg ha−1 N or 46% for N. Due to some translocation of organic material to the mineral soil the values to 40 cm depth are slightly lower (13.5 ± 4.4 t ha−1 C or 15% of the initial pool and 631.6 ± 192.8 kg ha−1 N or 13% for N). In the control plot NO3 concentrations at 40 cm depth were above the European level of drinking water (0.8 mmolc l−1 or 50 mg NO3 l−1) for nearly the whole investigation period. Liming increased NO3 concentrations in seepage water for approximately 15 years, and accelerated leaching losses by 396.2 NO3–N kg ha−1 from 1984 to 2003. The increase in pH of the soil matrix was more or less restricted to the humus layer and the upper 5 cm of the mineral soil during the whole time span, while the base cations Ca and Mg reached deeper horizons with seepage water. From 1984 to 2003, an amount that nearly equalled the applied Mg, was leached out of the main rooting zone, while most of the applied Ca was retained. The time series of the elemental concentrations in needles showed minor changes. Ca concentrations in needles increased with liming, while Mg remained nearly unchanged, and P decreased in older needles.  相似文献   

20.
Following clearcutting applying the conventional stem-only harvesting method in a Norway spruce (Picea abies (L.) Karst.) stand and different levels of removal of logging residue, the nutrient fluxes from the heaps of logging residue and from the O horizon were monitored over four growing seasons and the soil nutrient pools were determined. Three levels of removal of logging residue were carried out using (i) conventional stem-only harvesting (no residues removed); (ii) residues removed; and (iii) removal of branches (foliage left on site). The heaps of logging residue were a minor source of inorganic N entering the soil in the water percolating through the heaps, but they were a significant source of organic N, P, Ca, Mg, and especially K. Nutrient fluxes from the O horizon were in general greater under the heaps of logging residue as compared to soils without overlying logging residue. The leaching of inorganic N from the O horizon under the heaps of logging residue resulted in a net loss of these compounds, while the O horizon without overlying logging residue gained N. The removal of logging residue significantly decreased the extractable K pools in the soil while it or conversely, the presence of residue heaps had no significant effect on the pools of organic matter and the pools of N, P, Ca, and Mg in the O horizon and in the 0–10 cm soil layer. The results show that the short-term effects of logging residue on nutrient dynamics in the soil can be complex and difficult to interpret in terms of site productivity as there are changes in the nutrient fluxes, which imply the opposite effects on site productivity. However, the results do indicate that, in the short-term, the removal of logging residue does not impair pools of N in the soil nor site productivity on sites where the availability of N limits productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号