首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
Although there is evidence that liquids have flowed on the surface at Titan's equator in the past, to date, liquids have only been confirmed on the surface at polar latitudes, and the vast expanses of dunes that dominate Titan's equatorial regions require a predominantly arid climate. We report the detection by Cassini's Imaging Science Subsystem of a large low-latitude cloud system early in Titan's northern spring and extensive surface changes (spanning more than 500,000 square kilometers) in the wake of this storm. The changes are most consistent with widespread methane rainfall reaching the surface, which suggests that the dry channels observed at Titan's low latitudes are carved by seasonal precipitation.  相似文献   

2.
After 3 years and 31 close flybys of Titan by the Cassini Orbiter, Titan was finally observed in the shocked solar wind, outside of Saturn's magnetosphere. These observations revealed that Titan's flow-induced magnetosphere was populated by "fossil" fields originating from Saturn, to which the satellite was exposed before its excursion through the magnetopause. In addition, strong magnetic shear observed at the edge of Titan's induced magnetosphere suggests that reconnection may have been involved in the replacement of the fossil fields by the interplanetary magnetic field.  相似文献   

3.
Cassini radar observations of Saturn's moon Titan over several years show that its rotational period is changing and is different from its orbital period. The present-day rotation period difference from synchronous spin leads to a shift of approximately 0.36 degrees per year in apparent longitude and is consistent with seasonal exchange of angular momentum between the surface and Titan's dense superrotating atmosphere, but only if Titan's crust is decoupled from the core by an internal water ocean like that on Europa.  相似文献   

4.
Precipitation is expected in Titan's atmosphere, yet it has not been directly observed, and the geographical regions where rain occurs are unknown. Here we present near-infrared spectra from the Very Large Telescope and W. M. Keck Observatories that reveal an enhancement of opacity in Titan's troposphere on the morning side of the leading hemisphere. Retrieved extinction profiles are consistent with condensed methane in clouds at an altitude near 30 kilometers and concomitant methane drizzle below. The moisture encompasses the equatorial region over Titan's brightest continent, Xanadu. Diurnal temperature gradients that cause variations in methane relative humidity, winds, and topography may each be a contributing factor to the condensation mechanism. The clouds and precipitation are optically thin at 2.0 micrometers, and models of "subvisible" clouds suggest that the droplets are 0.1 millimeter or larger.  相似文献   

5.
Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51 degrees to 68 degrees north and all longitudes observed (10 degrees to 190 degrees west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.  相似文献   

6.
Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal that the horizontal structure, height, and optical depth of Titan's clouds are highly dynamic. Vigorous cloud centers are seen to rise from the middle to the upper troposphere within 30 minutes and dissipate within the next hour. Their development indicates that Titan's clouds evolve convectively; dissipate through rain; and, over the next several hours, waft downwind to achieve their great longitude extents. These and other characteristics suggest that temperate clouds originate from circulation-induced convergence, in addition to a forcing at the surface associated with Saturn's tides, geology, and/or surface composition.  相似文献   

7.
When the Voyager 1 spacecraft returned images in 1980, the dense atmosphere of Saturn's moon Titan was assumed to be bland and featureless. As Lorenz discusses in his Perspective, recent ground-based spectroscopy, and images from the Hubble Space Telescope, are changing this perception. Observations such as the short-lived clouds in Titan's atmosphere reported by Griffith et al. suggest that although average precipitation is likely to be low, individual precipitation events may be heavy enough to cause deep valleys on Titan's surface.  相似文献   

8.
The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.  相似文献   

9.
The Cassini Titan Radar Mapper imaged about 1% of Titan's surface at a resolution of approximately 0.5 kilometer, and larger areas of the globe in lower resolution modes. The images reveal a complex surface, with areas of low relief and a variety of geologic features suggestive of dome-like volcanic constructs, flows, and sinuous channels. The surface appears to be young, with few impact craters. Scattering and dielectric properties are consistent with porous ice or organics. Dark patches in the radar images show high brightness temperatures and high emissivity and are consistent with frozen hydrocarbons.  相似文献   

10.
Arecibo radar observations of Titan at 13-centimeter wavelength indicate that most of the echo power is in a diffusely scattered component but that a small specular component is present for about 75% of the subearth locations observed. These specular echoes have properties consistent with those expected for areas of liquid hydrocarbons. Knowledge of the areal extent and depth of any deposits of liquid hydrocarbons could strongly constrain the history of Titan's atmosphere and surface.  相似文献   

11.
Titan's dense and cold nitrogen atmosphere contains a small amount of methane under conditions at least approaching those at which one or both constituents would condense. The possibility of methane and nitrogen rain clouds and global methane oceans has been discussed widely. From specific features of radio occultation and other Voyager results, however, it is concluded that nitrogen does not condense on Titan and that Titan has neither global methane oceans nor a global cloud of liquid methane droplets. Certain results indirectly support the conjecture that methane does not condense at any location. However, other considerations favor a methane ice haze high in the troposphere, and liquid and solid methane might exist on the surface and as low clouds at polar latitudes.  相似文献   

12.
It has long been known that Saturn's largest moon, Titan, has a thick nitrogen atmosphere, which obscures the underlying surface. In his Perspective, Lorenz highlights the report by Campbell et al., who have used the giant Arecibo and Green Bank radio telescopes as a radar to probe Titan's hidden surface. The surface appears to be distinct from those of the icy satellites of Jupiter, in both brightness and polarization. The new data show sharp spikes in the reflected microwave spectrum, indicating large, smooth areas of radar-dark material. These features suggest the widespread existence of lakes or seas of liquid hydrocarbons on Titan.  相似文献   

13.
The magnetic field signature obtained by Cassini during its first close encounter with Titan on 26 October 2004 is presented and explained in terms of an advanced model. Titan was inside the saturnian magnetosphere. A magnetic field minimum before closest approach marked Cassini's entry into the magnetic ionopause layer. Cassini then left the northern and entered the southern magnetic tail lobe. The magnetic field before and after the encounter was approximately constant for approximately 20 Titan radii, but the field orientation changed exactly at the location of Titan's orbit. No evidence of an internal magnetic field at Titan was detected.  相似文献   

14.
The Cassini Magnetospheric Imaging Instrument (MIMI) observed the interaction of Saturn's largest moon, Titan, with Saturn's magnetosphere during two close flybys of Titan on 26 October and 13 December 2004. The MIMI Ion and Neutral Camera (INCA) continuously imaged the energetic neutral atoms (ENAs) generated by charge exchange reactions between the energetic, singly ionized trapped magnetospheric ions and the outer atmosphere, or exosphere, of Titan. The images reveal a halo of variable ENA emission about Titan's nearly collisionless outer atmosphere that fades at larger distances as the exospheric density decays exponentially. The altitude of the emissions varies, and they are not symmetrical about the moon, reflecting the complexity of the interactions between Titan's upper atmosphere and Saturn's space environment.  相似文献   

15.
Titan's lower atmosphere has long been known to harbor organic aerosols (tholins) presumed to have been formed from simple molecules, such as methane and nitrogen (CH4 and N2). Up to now, it has been assumed that tholins were formed at altitudes of several hundred kilometers by processes as yet unobserved. Using measurements from a combination of mass/charge and energy/charge spectrometers on the Cassini spacecraft, we have obtained evidence for tholin formation at high altitudes (approximately 1000 kilometers) in Titan's atmosphere. The observed chemical mix strongly implies a series of chemical reactions and physical processes that lead from simple molecules (CH4 and N2) to larger, more complex molecules (80 to 350 daltons) to negatively charged massive molecules (approximately 8000 daltons), which we identify as tholins. That the process involves massive negatively charged molecules and aerosols is completely unexpected.  相似文献   

16.
We have discovered frequent variations in the near-infrared spectrum of Titan, Saturn's largest moon, which are indicative of the daily presence of sparse clouds covering less than 1% of the area of the satellite. The thermodynamics of Titan's atmosphere and the clouds' altitudes suggest that convection governs their evolutions. Their short lives point to the presence of rain. We propose that Titan's atmosphere resembles Earth's, with clouds, rain, and an active weather cycle, driven by latent heat release from the primary condensible species.  相似文献   

17.
We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan, driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole gravity, at about 4% of the static value. Two independent determinations of the corresponding degree-2 Love number yield k(2) = 0.589 ± 0.150 and k(2) = 0.637 ± 0.224 (2σ). Such a large response to the tidal field requires that Titan's interior be deformable over time scales of the orbital period, in a way that is consistent with a global ocean at depth.  相似文献   

18.
The most prominent oscillatory feature observed in the Voyager 1 radio occultation of Saturn's rings is identified as a one-armed spiral bending wave excited by Titan's -1:0 nodal inner vertical resonance. Ring partides in a bending wave move in coherently inclined orbits, warping the local mean plane of the rings. The Titan -1:0 wave is the only known bending wave that propagates outward, away from Saturn, and the only spiral wave yet observed in which the wave pattern rotates opposite to the orbital direction of the ring particles. It is also the first bending wave identified in ring C. Modeling the observed feature with existing bending wave theory gives a surface mass density of approximately 0.4 g/cm(2) outside the wave region and a local ring thickness of [unknown]5 meters, and suggests that surface mass density is not constant in the wave region.  相似文献   

19.
The global hydrogen Lyman alpha, helium (584 angstroms), and molecular hydrogen band emissions from Saturn are qualitatively similar to those of Jupiter, but the Saturn observations emphasize that the H(2) band excitation mechanism is closely related to the solar flux. Auroras occur near 80 degrees latitude, suggesting Earth-like magnetotail activity, quite different from the dominant Io plasma torus mechanism at Jupiter. No ion emissions have been detected from the magnetosphere of Saturn, but the rings have a hydrogen atmosphere; atomic hydrogen is also present in a torus between 8 and 25 Saturn radii. Nitrogen emission excited by particles has been detected in the Titan dayglow and bright limb scans. Enhancement of the nitrogen emission is observed in the region of interaction between Titan's atmosphere and the corotating plasma in Saturn's plasmasphere. No particle-excited emission has been detected from the dark atmosphere of Titan. The absorption profile of the atmosphere determined by the solar occultation experiment, combined with constraints from the dayglow observations and temperature information, indicate that N(2) is the dominant species. A double layer structure has been detected above Titan's limb. One of the layers may be related to visible layers in the images of Titan.  相似文献   

20.
Voyager 1 radio occultation measurements of Titan's equatorial atmosphere successfully probed to the surface, which is provisionally placed at a radius of 2570 kilometers. Derived scale heights plus other experimental and theoretical results indicate that molecular nitrogen is the predominant atmospheric constituent. The surface pressure and temperature appear to be about 1.6 bars and 93 K, respectively. The main clouds are probably methane ice, although some condensation of nitrogen cannot be ruled out. Solar abundance arguments suggest and the measurements allow large quantities of surface methane near its triple-point temperature, so that the three phases of methane could play roles in the atmosphere and on the surface of Titan similar to those of water on Earth. Radio occultation measurements of Saturn's atmosphere near 75 degrees south latitude reached a maximum pressure of 1.4 bars, where the temperature is about 156 K. The minimum temperature is about 91 K near the 60-millibar pressure level. The measured part of the polar ionosphere of Saturn has a peak electron concentration of 2.3 x 10(4) per cubic centimeter at an altitude of 2500 kilometers above the 1-bar level in the atmosphere, and a plasma scale height at the top of the ionosphere of 560 kilometers. Attenuation of monochromatic radiation at a wavelength of 3.6 centimeters propagating obliquely through Saturn's rings is consistent with traditional values for the normal optical depth of the rings, but the near-forward scattering of this radiation by the rings indicates effective scattering particles with larger than expected diameters of 10, 8, and 2 meters in the A ring, the outer Cassini division, and the C ring, respectively. Preliminary analysis of the radio tracking data yields new values for the masses of Rhea and Titan of 4.4 +/- 0.3 x 10(-6) and 236.64 +/- 0.08 x 10(-6) times the mass of Saturn. Corresponding values for the mean densities of these objects are 1.33 +/- 0.10 and about 1.89 grams per cubic centimeter. The density of Rhea is consistent with a solar-composition mix of anhydrous rock and volatiles, while Titan is apparently enriched in silicates relative to the solar composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号