共查询到20条相似文献,搜索用时 0 毫秒
1.
Well-watered American elm (Ulmus americana L.) seedlings responded to increased nitrate availability with increased leaf nitrogen (N) concentration and photosynthetic rate, larger and more numerous leaves, greater total growth and greater proportional allocation of carbon to shoot than root. Plasticity of growth and carbon allocation were greater than plasticity of N concentration and photosynthetic capacity. For a given N availability, allocation of N per unit leaf area was positively correlated with dry mass per unit leaf area (specific leaf mass), but these relationships differed with N availability. Rates of net photosynthesis and leaf conductance declined logarithmically with decreasing predawn water status. Increased water stress resulted in a greater relative decline in net photosynthesis and leaf conductance for high-N than low-N plants. 相似文献
2.
Six-week-old half-sib seedlings of Ulmus americana L. were subjected to different amounts of flexure daily for 3 weeks under controlled greenhouse conditions. The daily flexure treatments were: no flexing in a staked stem, minimal flexing in a non-staked stem, and five, 10, 20, 40, and 80 flexures. Seedling height and diameter growth and average leaf area were determined before and after the treatments. The ratio of the change in height growth (DeltaH) to the change in diameter growth (DeltaD; (DeltaH:DeltaD)) before and after the 3-week treatments were calculated. At the end of the 3-week experiment, staked seedlings were significantly taller and had smaller stem diameters than all of the flexed seedlings. Height growth tended to decrease exponentially with increased flexure, with significant differences between the extremes of treatment. All of the flexure treatments significantly increased stem diameter compared to staked seedlings. The DeltaH:DeltaD ratio exhibited an exponential function in response to increased flexure. Average leaf area decreased with increased flexure, and seedlings in the 40x and 80x flexure treatments had significantly less leaf area than seedlings in all of the other treatments. These data are similar to the dose responses previously observed in herbaceous species. The finding that trees exhibit greater sensitivity to low doses of flexure than to high doses of flexure indicates that slight exposure to wind may result in a large initial alteration in stem morphology, producing a thigmomorphogenetic effect. Trees will continue to respond to increasing amounts of mechanical stress, but at an exponentially declining rate. Declining leaf areas in response to increasing amounts of mechanical stress may result in a decrease in available photosynthate, resulting in a tree of smaller stature compared to trees exposed to lower amounts of mechanical loading. 相似文献
3.
Leaf-level physiological processes were studied in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) to determine whether apparent increases in stand-level water use efficiency (WUE) observed in response to nitrogen (N) fertilization were attributable to foliar N effects on carbon fixation rates or on stomatal control of water loss. Photosynthesis and transpiration were measured at different light intensities and ambient CO(2) molar fractions and comparisons were made between current-year shoots with average foliar N concentrations of 1.58% (High-N) and 1.25% (Low-N). Photosynthetic rates and foliar N concentrations were positively correlated. In response to light, photosynthesis and stomatal conductance were closely coupled and a similar coupling was observed in response to different ambient CO(2) concentrations. Partitioning the photosynthetic responses into mesophyll and stomatal components indicated that foliar N altered mesophyll conductance but not stomatal control of water loss. High-N shoots had significantly greater rates of photosynthesis and transpiration than Low-N shoots and, as a result, instantaneous WUE did not differ significantly between High-N and Low-N shoots. 相似文献
4.
This study was conducted to investigate the potential for modifying drought tolerance of Japanese cypress ( Chamaecyparis obtusa Endl.) and Japanese red pine ( Pinus densiflora Sieb. et Zucc.). Three-year-old seedlings were controlled for five-months at three different soil water potentials ({ie73-1}).
Japanese cypress exposed to high {ie73-2} was able to maintain higher photosynthesis (Ph n), transpiration (Tr) and stomatal conductance to H 2O (gH 2O) in comparison to low {ie73-3} pretreatments, however, there was no significant difference in Ph n for Japanese red pine. Soil water potential at the threshold from the maximum to limited Ph n was higher in high {ie73-4} pretreatments than in low {ie73-5} pretreatments. Net photosynthesis, Tr and gH 2O decreased more rapidly in high {ie73-6} pretreatments than in low {ie73-7} pretreatments. Transpiration decreased more significantly
than Ph n, thus, resulted in increased water use efficiency. All these factors are likely to result in significant improvements in
the drought tolerance. Japanese red pine seems more drought-tolerant than Japanese cypress. Japanese cypress is suitable to
soil of −0.05 MPa water potential, and Japanese red pine is suitable to −0.16 MPa and even dryer soils. 相似文献
5.
Improving plant water use efficiency (WUE) has the potential to lower plant susceptibility to drought. Amending soils with biochar has been suggested as a way to improve WUE, as it has been shown to increase the water holding capacity of soils. Here, we investigated the influence of two different biochar soil amendments on WUE measured by gas exchange and carbon isotopes of pine-oak ecosystem species. We measured WUE of individuals grown in soils where either lignocellulose or hemicellulose biochar was applied (10% v/v). WUE increased under lignocellulose, but not hemicellulose, biochar amendment during both late spring and early fall measurement periods in a single year study. However, net photosynthesis and stomatal conductance decreased in plants grown with biochar amendments. Physiochemical and sorption data provide a partial explanation of how biochar mechanisms impact soil-water-plant relations. Our results demonstrated that lignocellulosic biochar may be added to forest soils to reduce drought stress in pine-oak systems, but amendments may not lead to increases in carbon uptake rates. 相似文献
6.
Early growth and physiology of longleaf pine ( Pinus palustris Mill.) seedlings were studied in response to light, water and nitrogen under greenhouse conditions. The experiment was conducted with 1-year-old seedlings grown in 11.3 l pots. The experimental design was a split-plot factorial with two levels (low and high) of each of the factors, replicated in three blocks. The four factorial combinations of water and nitrogen were randomly applied to 15 pots (sub-plots) in each of the light treatment (main plot). Data were collected on survival, root collar diameter (RCD), and height on a monthly basis. Biomass (shoot, root and needle), leaf area index, specific needle area, and needle nutrient (N, P, K, Ca, and Mg) concentrations were determined following final harvest after 16 months. Physiological data (net photosynthesis and transpiration) were collected monthly from March to July during the second growing season. Height and RCD were significantly influenced by nitrogen and water and by the interaction between them with no apparent effect of light. Seedlings grew 93% taller in the high nitrogen and well watered (HNWW) treatment compared to the low nitrogen and water stressed (LNWS) treatment. Similarly, a significant increase (78%) in RCD was observed for seedlings in the HNWW treatment over the LNWS treatment. Light, along with water and nitrogen, played an important role in seedling biomass growth, especially when water was not limiting. Biomass partitioning (as measured by root:shoot ratio) was affected only by nitrogen and water. Nutrient stress had a greater influence on carbon allocation (69% increase in root:shoot ratio) than water stress (19% increase). Net photosynthesis (Pnet) was significantly higher for seedlings in the high resource than in the low resource treatments with significant light×water and nitrogen×water interactions. Transpiration rate was higher (75%) under the WW treatment compared to the WS treatment. Longleaf pine seedlings grown under the LNWW treatment had the lowest foliar nitrogen (0.71%) whereas seedlings in the HNWS treatment had the highest (1.46%). Increasing the availability of light (through larger canopy openings or controlling midstory density) and soil nitrogen (through fertilization) may not result in greater Pnet and improved seedling growth unless soil water is not limiting. 相似文献
8.
Seedlings of Eucalyptus grandis Hill ex Maiden, E. pilularis Smith and E. gummifera (Sol. ex Gaertner) Hochr. were grown in solution culture with 100 micromol phosphorus (P). After eight weeks, half of the seedlings were transferred to solution cultures containing 1 micromol P. After a further four weeks, growth, net photosynthesis and foliar P and nitrogen (N) concentrations were measured. The seeds of E. grandis came from a relatively fertile site and those of the other two species from phosphorus-deficient sites. Growth and net photosynthesis did not change in E. pilularis subjected to the low-P treatment, whereas in E. grandis, and to a limited extent in E. gummifera, the low-P treatment resulted in an increase in net photosynthesis that was associated with higher foliar N concentrations (especially protein-N), possibly as a result of nitrogen being retranslocated from the roots. In response to the low-P treatment, leaf phosphorus concentration was reduced by 50-60% in E. grandis and E. pilularis and by 20-30% in E. gummifera. Of the chemical fractions examined, the greatest decrease occurred in the inorganic-P pool. The data suggest that photosynthesis is not limited by leaf phosphorus concentrations typical of those found in Eucalyptus seedlings growing on phosphorus-deficient sites. 相似文献
9.
Growth and drought resistance of Douglas fir ( Pseudotsuga menziesii (Mirb.) Franco), lodgepole pine ( Pinus contorta (Loud.)), and white spruce ( Picea glauca (Moench) Voss) container seedlings, treated with paclobutrazol at different times and with concentrations up to 2.8 m M, were examined over their second growing season. In two experiments all three species were planted in sand beds in the open and subjected to different levels of moisture stress. Paclobutrazol drenches of 0.3 and 0.6 m M made twice in October, prior to planting the following March, reduced dry weight growth the least, or increased growth in lodgepole pine under dry conditions. Paclobutrazol generally decreased survival under drought stress, particularly if treatment was applied immediately before planting, rather than the previous October. In a third experiment paclobutrazol treated white spruce were grown, in 3.1 L capacity containers filled with peat and vermiculite, at different moisture supply levels and temperatures in growth chambers. Water use efficiency (WUE) was calculated from water use and increases in dry weight of these seedlings over 83 days. Paclobutrazol treatment increased WUE most strongly over the first 31 day measurement period, under all temperature and moisture conditions, but the effect was negligible during the last 24 days of the experiment, and height growth was reduced by treatment. Mineral nutrient concentrations were affected by paclobutrazol, and it was concluded that these and other responsed depended partly on seedling condition at the time of treatment. 相似文献
10.
Growth characteristics and nutrient utilization rate of Nyssa aquatica L. seedlings grown in pots containing flooded or well-drained soil were compared in a greenhouse study. For most of the growing season, relative height and diameter growth rates, and biomass accumulation rates were greater for seedlings in flooded soil than for seedlings in well-drained soil. The concentration of Fe in the roots of seedlings in flooded soil was almost tenfold greater than that of seedlings in well-drained soil. However, flooding had no effect on foliar Fe concentrations. The flooding treatment resulted in decreased concentrations of N in all component parts and increased concentrations of P in the roots and stem, but it had no effect on foliar P concentrations. In response to flooding, foliar K concentrations decreased, whereas the concentration of K in the roots increased. Flooding had no effect on the K concentration of the stem. Seedlings in flooded soil produced more total biomass per milligram of nutrient absorbed than seedlings in well-drained soil, suggesting that N. aquatica seedlings are more efficient at producing biomass and height growth under hydric conditions than under mesic conditions. 相似文献
11.
New Forests - Morpho-physiological characteristics in Eucalyptus species can determine N (NUE) and P (PUE) use efficiency and, consequently, the plant's responses to fertilization. The study... 相似文献
12.
The solution culture method was used to study the effect of increasing nitrogen on the growth and pho-tosynthesis of poplar seedlings under 100 mmol L-1 NaCl stress. I Increase in nitrogen reduced stomatal limitation of leaves under NaCl stress, improved utilization of CO2 by mesophyll cells, enhanced photosynthetic carbon assimi-lation capacity, significantly alleviated saline damage of NaCl, and promoted the accumulation of aboveground and root biomass. I Increased nitrogen enhanced photochemical efficiency (ΦPSⅡ) and electron transport rates, relieved the reduction of maximum photochemical efficiency (Fv/Fm) under NaCl, and reduced the degree of photoinhibition caused by NaCl stress. Increased nitrogen applications reduced the proportion of energy dissipating in the form of ineffective heat energy and hence a greater proportion of light energy absorbed by leaves was allocated to photo-chemical reactions. Under treatment with increased nitro-gen, the synergistic effect of heat dissipation and the xanthophyll cycle in the leaves effectively protected pho-tosynthetic PSⅡ and enhanced light energy utilization of leaves under NaCl stress. The increased nitrogen promoted photosynthetic electron supply and transport ability under NaCl stress evident in enhanced functioning of the oxygen-evolving complex on the electron donor side of PS Ⅱ. It increased the ability of the receptor pool to accept electrons on the PSII electron acceptor side and improved the sta-bility of thylakoid membranes under NaCl stress. Therefore, increasing nitrogen applications under NaCl stress can promote poplar growth by improving the effi-ciency of light energy utilization. 相似文献
13.
Leaf growth, rate of leaf photosynthesis and tissue water relations of shoots of Eucalyptus marginata Donn ex Sm. (jarrah) seedlings were studied during a soil drying and rewatering cycle in a greenhouse experiment. Rates of leaf growth and photosynthesis were sensitive to water deficits. The rate of leaf growth decreased linearly with predawn leaf water potential to reach zero at -1.5 MPa. Rate of leaf growth did not recover completely within the first three days after rewatering. Midday photosynthetic rates declined to 40% of those of well-watered seedlings at a predawn leaf water potential of -1.0 MPa and reached zero at -2.2 MPa. Photosynthetic rate recovered rapidly following rewatering and almost fully recovered by the second day after rewatering. All tissue water relations parameters, except the bulk modulus of elasticity, changed significantly as the soil dried and recovered completely by the third day after rewatering. Changes in osmotic pressure at full turgor of 0.4 MPa indicated considerable capacity for osmotic adjustment. However, because there was little osmotic adjustment until predawn leaf water potential fell below -1.5 MPa, this capacity would not have enhanced seedling growth, although it may have increased seedling survival. The sensitivity of photosynthesis and relative water content to water deficits suggests that greenhouse-grown E. marginata seedlings behave like mesophytic plants, even though E. marginata seedlings naturally grow in a drought-prone environment. 相似文献
14.
以水曲柳2年生苗木作为试验材料,在人工气候室中用霍格兰水培营养液修改配方(四种氮、磷的不同配比,清水作为对照)进行水培试验,测定了叶片的光合作用、叶绿素荧光以及叶绿素含量等,以期从光合作用角度探讨不同配比的氮、磷对水曲柳幼苗生产力的影响。结果表明:不同氮、磷配比对水曲柳的多个光合指标差异影响显著。在一定范围内随着施磷量的逐渐增加净光合速率(Pn)升高;施磷肥对提高水曲柳叶片光合作用能力有积极作用;磷胁迫使叶绿素含量降低且对水曲柳叶片的碳同化和光能利用产生负影响。 相似文献
15.
Thinning is the main forestry measure to increase tree growth by reducing stand tree density and competition for resources. A thinning experiment was established in 1993 on a 32-year-old Pinus nigra Arn. stand in central Spain. The response of growth, climate-growth relationships and intrinsic water use efficiency (WUEi) to a stand density reduction were compared between moderate thinned plots and a control plot by a combined analysis of basal area increments (BAI), and C and O stable isotope ratios (δ 13C c and δ 18O c). BAI in the control plot showed a decreasing trend that was avoided by thinning in the thinned plot. Thinning also partially buffered tree-ring response to climate and trees were less sensitive to precipitation although more sensitive to temperature. Δ 13C c in the thinned plot was not modified indicating that stomatal conductance ( g) and photosynthetic capacity ( A) did not change or change in the same direction. However, δ 18O c decreased in the control plot (unrelated to δ 18O of precipitation) but not in the thinned plot, suggesting a relative increase of temperature and irradiance and/or a decrease of air humidity after reducing the density consistent with an increase in A, g and BAI. As WUEi did not increase in the thinned plot, faster growth in this plot was caused by higher abundance of resources per tree. The trend of WUEi in both plots indicated low-moderate CO 2-induced improvements. Thinning might be a useful adaptation measure against climate change in these plantations reducing their vulnerability to droughts. However, because WUEi was not affected, the positive growth response might be limited if droughts and warming continue and certain thresholds are exceeded. 相似文献
16.
To study the effects of elevated CO2 concentration ([CO2]) on relationships between nitrogen (N) nutrition and foliar gas exchange parameters, white birch (Betula papyrifera Marsh.) seedlings were exposed to one of five N-supply regimes (10, 80, 150, 220, 290 mg N l(-1)) in either ambient [CO2] (360 micromol mol(-1)) or elevated [CO2] (720 micromol mol(-1)) in environment-controlled greenhouses. Foliar gas exchange and chlorophyll fluorescence were measured after 60 and 80 days of treatment. Photosynthesis showed a substantial down-regulation (up to 57%) in response to elevated [CO2] and the magnitude of the down-regulation generally decreased exponentially with increasing leaf N concentration. When measured at the growth [CO2], elevated [CO2] increased the overall rate of photosynthesis (P(n)) and instantaneous water-use efficiency (IWUE) by up to 69 and 236%, respectively, but decreased transpiration (E) and stomatal conductance (g(s)) in all N treatments. However, the degree of stimulation of photosynthesis by elevated [CO2] decreased as photosynthetic down-regulation increased from 60 days to 80 days of treatment. Elevated [CO2] significantly increased total photosynthetic electron transport in all N treatments at 60 days of treatment, but the effect was insignificant after 80 days of treatment. Both P(n) and IWUE generally increased with increasing leaf N concentration except at very high leaf N concentrations, where both P(n) and IWUE declined. The relationships of P(n) and IWUE with leaf N concentration were modeled with both a linear regression and a second-order polynomial function. Elevated [CO2] significantly and substantially increased the slope of the linear regression for IWUE, but had no significant effect on the slope for P(n). The optimal leaf N concentration for P(n) and IWUE derived from the polynomial function did not differ between the CO2 treatments when leaf N was expressed on a leaf area basis. However, the mass-based optimal leaf N concentration for P(n) was much lower in seedlings in elevated [CO2] than in ambient [CO2] (31.88 versus 37.00 mg g(-1)). Elevated [CO2] generally decreased mass-based leaf N concentration but had no significant effect on area-based leaf N concentration; however, maximum N concentration per unit leaf area was greater in elevated [CO2] than in ambient [CO2] (1.913 versus 1.547 g N m(-2)). 相似文献
17.
Responses of net photosynthesis (A), leaf conductance to water vapor (g(wv)) and instantaneous water use efficiency (WUE) to decreasing leaf and soil water potentials (Psi(l), Psi(s)) were studied in three-month-old white oak (Quercus alba L.), post oak (Q. stellata Wangenh.), sugar maple (Acer saccharum Marsh.), and black walnut (Juglans nigra L.) seedlings. Quercus seedlings had the highest A and g(wv) when plants were well watered. As the soil was allowed to dry, both A and g(wv) decreased; however, trace amounts of A were observed at a Psi(l) as low as -2.9 MPa in Q. stellata and -2.6 MPa in Q. alba and A. saccharum. Photosynthesis was not measurable at Psi(l) lower than -2.2 MPa in J. nigra and water stress-induced leaflet senescence was observed in this species. Within each species, g(wv) showed a similar relationship to soil and leaf Psi, but the response to Psi(l) was shifted to more negative values by 1.2 to 1.6 MPa. As Psi(s) declined below -1 MPa, the difference between soil and leaf Psi diminished because of the suppression of transpiration. There was no indication that Psi(s) had a more direct influence on g(wv) than did Psi(l). Water use efficiency showed an initial increase as the soil dried, followed by a decline under severe water stress. Water use efficiency was highest in J. nigra, intermediate in Quercus species and lowest in A. saccharum. There was an evident relationship between gas exchange characteristics and natural distribution in these species, with the more xeric species showing higher A and g(wv) under both well-watered and water-stressed conditions. There was no trend toward increased efficiency of water use in the more xeric species. 相似文献
18.
European Journal of Forest Research - Ectomycorrhizal fungi (EMF) can enhance drought resistance of host plants by increasing nutrient and water absorption. Calcium (Ca) plays a central role in... 相似文献
19.
Needle water potential (Ψ n), stomatal resistance ( rs) and net photosynthesis ( PN) were measured in potted radiata pine seedlings from three families (A, B, and C) during a soil drying and rewritting event. Measurements were made in a controlled environment of 25°C, 14-h days and 18°C, 10-h nights; vapour pressure deficit of 16 mbar; photon flux of 400 μE m ?2 s ?1; and wind speed of 1 m s ?1.Stomatal resistance increased at a greater rate in family A than in family B than in family C as Ψ n decreased during the drying phase: at ?25 bar Ψ n, rs values were 77, 60, and 46 s cm ?1 for families A, B and C respectively. Net photosynthesis ( PN) was greatest in family A at high Ψ n but least at low Ψ n: at Ψ n ?9 bar, PN was 9.4 6.4, and 8.2 ng cm ?2 s ?1 for families A, B, and C respectively, but for ?25 bar Ψ n corresponding PN values were 0.4, 1.1, and 0.9.Consequently family A had a greater proportional decrease in both PN and water use efficiency from high Ψ n to low Ψ n. This may help explain in part observed field behaviour (P.P. Cotterill, unpublished) where family A produces well relative to other families when weeds are controlled (high Ψ n condition) but produces less well relative to other families when weeds are not controlled (low Ψ n condition).Recovery of Ψ n after rewatering preceded that of rs and PN, and recovery of Pn was typically biphasic with 70% of recovery coinciding with recovery in Ψ n and the remaining 30% more closely coinciding with recovery in rs. Recovery was slower in family A than the other two families. 相似文献
20.
The impact of seed size and successional status on seedling growth under elevated CO 2 was studied for five dry tropical tree species viz. Albizia procera, Acacia nilotica, Phyllanthus emblica, Terminalia arjuna and Terminalia chebula. Seedlings from large (LS) and small seeds (SS) were grown at two CO 2 levels (ambient and elevated, 700–750 ppm). CO 2 assimilation rate, stomatal conductance, water use efficiency and foliar N were determined after 30 d exposure to elevated CO 2. Seedlings were harvested after 30 d and 60 d exposure periods. Height, diameter, leaf area, biomass and other growth traits (RGR, NAR, SLA, R:S) were determined. Seedling biomass across species was positively related with seed mass. Within species, LS seedlings exhibited greater biomass than SS seedlings. Elevated CO 2 enhanced plant biomass for all the species. The relative growth rate (RGR), net assimilation rate (NAR), CO 2 assimilation rate, R:S ratio and water use efficiency increased under elevated CO 2. However, the positive impact of elevated CO 2 was down regulated beyond 30 d exposure. Specific leaf area (SLA), transpiration rate, stomatal conductance declined due to exposure to elevated CO 2. Fast growing, early successional species exhibited greater RGR, NAR and CO 2 assimilation rate. Per cent enhancement in such traits was greater for slow growing species. The responses of individual species did not follow functional types (viz. legumes, non-legumes). The enhancement in biomass and RGR was greater for large-seeded species and LS seedlings within species. This study revealed that elevated CO 2 could cause large seeded, slow growing and late successional species to grow more vigorously. 相似文献
|