首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
尤毅  李华平  谢大森 《植物保护》2016,42(2):182-186
本研究在我国主要冬瓜产区采集具有典型病毒病症状的病叶材料105份,根据葫芦科作物上常见的5种病毒病原的CP基因设计特异性引物,对105份待检冬瓜材料进行RT-PCR检测。检测结果表明:5对特异引物可分别在105份待检材料的95份中检测到小西葫芦黄花叶病毒(Zucchini yellow mosaic virus,ZYMV)、西瓜花叶病毒(Watermelon mosaic virus,WMV)、黄瓜花叶病毒(Cucumber mosaic virus,CMV)、番木瓜环斑病毒(Papaya ringspot virus,PRSV)4种病毒,未检测到南瓜花叶病毒(Squash mosaic virus,SqMV);并且发现不同的冬瓜主产区致病的病毒种类有较大差异;同时还发现,在这些待检样品中4种病毒复合侵染现象较普遍,其中以PRSV与WMV组合最常见,占复合侵染现象的31.25%;未发现有4种病毒复合侵染。  相似文献   

2.
ABSTRACT Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Málaga virus are monopartite begomoviruses (genus Begomovirus, family Geminiviridae) that infect common bean (Phaseolus vulgaris), causing bean leaf crumple disease (BLCD). This disease was found to be widespread in southern Spain and causes stunted growth, flower abortion, and leaf and pod deformation in common bean plants. Commercial yield losses of up to 100% occur. In the present study, we have identified and characterized a resistance trait to BLCD-associated viruses in the common bean breeding line GG12. This resistance resulted in a complete absence of BLCD symptoms under field conditions or after experimental inoculation. Our analysis showed that virus replication was not inhibited. However, a severe restriction to systemic virus accumulation occurred in resistant plants, suggesting that cell-to-cell or long-distance movement were impaired. In addition, recovery from virus infection was observed in resistant plants. The reaction of P. vulgaris lines GG12 (resistant) and GG14 (susceptible), and of F(1), F(2), and backcross populations derived from them, to TYLCV inoculation suggested that a single dominant gene conferred the BLCD resistance described here.  相似文献   

3.
Nine tobacco fields of small- and large-scale farmers in Central, Lusaka and Southern provinces of Zambia with an experimental area in the range of 4–52 ha were surveyed for the incidence, prevalence and identification of virus diseases during the growing season of 1997. Samples were collected from three tobacco fields in each of the three provinces, and a total of 72 samples was analysed. Virus identification was based on field disease syndrome, host range studies, DAS-ELISA and electron microscopy of virus particles in some cases. The study demonstrated the occurrence of Tobacco mosaic virus (TMV), Potato virus Y (PVY), Alfalfa mosaic virus (AMV) and Tobacco ringspot virus (TRSV). TMV and PVY occurred widely and were common in all three provinces, while AMV and TRSV were relatively less common. The prevalence of the four viruses was TMV 78%, PVY 67%, AMV 33% and TRSV 22%. Serological tests for Tomato spotted wilt virus (TSWV) and Cucumber mosaic virus (CMV) showed that these viruses were not present in the tobacco samples analysed.  相似文献   

4.
ABSTRACT Bean calico mosaic virus (BCMoV), a whitefly-transmitted geminivirus from Sonora, Mexico, was purified, and the genome components were cloned and sequenced. Purified viral fractions and cloned genome components were infectious by biolistic inoculation to bean, completing Koch's postulates for both. The B biotype of the whitefly Bemisia tabaci efficiently transmitted both native virus and progeny virus derived from cloned DNA inoculum. Host ranges of native virus and of progeny virus derived from cloned DNA were identical based upon whitefly and biolistic mediated transmission, respectively. BCMoV has a relatively wide experimental host range among begomoviruses known to infect bean, encompassing genera and species within the Fabaceae, Malvaceae, and Solanaceae. BCMoV has a bipartite genome, as do other New World begomoviruses. BCMoV DNA-A shared highest nucleotide sequence identities with squash leaf curl virus-E strain (SLCV-E) and cabbage leaf curl virus (CaLCV) at 80.1 and 80.7%, respectively. BCMoV DNA-B shared highest nucleotide sequence identity with SLCV-E at 70.7%. The common region (CR) sequences of BCMoV and SLCV-E are 73 to 76% identical; however, modular cis-acting elements within the CR involved in replication origin function and recognition are 100% conserved. Phy-logenetic analysis indicated that BCMoV DNA-A shares a most recent common ancestor with the DNA-A of two viruses that also occur in the Sonoran Desert, SLCV-E and Texas pepper virus (TPV-TAM), and CaLCV from Florida. In contrast, a phylogenetic analysis indicated that BCMoV DNA-B shares a most recent common ancestor with SLCV-E; whereas DNA-B of CaLCV clustered in a separate clade with pepper hausteco virus. Collectively, biological and molecular characteristics indicate that BCMoV is a distinct begomovirus species with the northernmost distribution of any begomovirus isolated from bean in the Americas. Furthermore, the phylogenetic relationships of begomovirus cognate components are not necessarily identical, suggesting that DNA-A and DNA-B of some begomoviruses may have different evolutionary histories.  相似文献   

5.
Characterization of a new potyvirus isolated from peanut (Arachis hypogaea)   总被引:1,自引:0,他引:1  
During a survey of viruses of peanuts in South Africa a mechanically transmissible virus was isolated from a plant exhibiting chlorotic ringspots and blotches on the leaves. Typical potyvirus-like flexuous particles were detected by electron microscope examination. Pinwheel-shaped and laminated inclusions in ultrathin sections, reaction with a monoclonal antibody directed to a potyvirus common epitope, a single 33 kDa coat protein and aphid transmission using Myzus persicae all confirmed that the virus was a subdivision II member of the Potyviridae. Host range studies suggested that the virus was none of the previously reported potyviruses of peanuts or of subdivision II potyviruses. The serological relationships of the virus were studied using a range of 17 antisera to potyviruses in ELISA and immunosorbent electron microscopy (ISEM). The isolate reacted weakly with antisera to plum pox virus and bean yellow mosaic virus in ISEM only. Nucleotide sequence of a 624 bp DNA product was obtained following immuno-capture with a potyvirus common epitope antiserum, cDNA synthesis and PCR amplification with potyvirus specific primers which amplify the 3' untranslated region and a part of the coat protein gene. The sequence was only distantly related to a number of potyviruses, whether amino acid or nucleotide sequences were used for comparisons. It is proposed that the virus be named peanut chlorotic blotch virus and be accepted as a new member of the genus Potyvirus in the family Potyviridae.  相似文献   

6.
 从北京郊区患有类似花叶病害的菜豆株上分离到一种线条状病毒(长约700至750nm)并于1983至1986年间加以研究。在温室内接种可以侵染菜豆、蚕豆、豌豆、大豆、决明、苋色藜及昆诺藜而不能侵染被接种的任何茄科植物.同标准的菜豆普遍花叶病毒(BCMV)相比,它不侵染茄科植物例如黄花烟(Nicotiana rustica)和矮牵牛(Petunia hybrida)在菜豆叶上也不产生坏死枯斑.此外它能侵染蚕豆、大豆、豌豆及决明而BCMV则不能.BCMV能侵染豇豆而这一分离物则不能.此分离物的物理性状为:钝化温度=56-580℃(十分钟),硫释限点=10-3至10-4,180℃下存治期为3天,A260/280=1.12.菜豆受侵叶组织易用光学显微镜观察到内含体包括一种片层叠合体.在电镜下超薄切片中可以看到风轮状体.极易用汁液摩接及用桃蚜(Myzus persic(接种.此病毒的衣壳蛋白亚基的分子量经测定为32,000道尔顿.此病毒与下列病毒即菜豆普通花叶病毒,菜豆黄色花叶病毒,黑眼豇豆花叶病毒,豌豆种传花叶病毒,三叶草黄脉病毒,莴苣花叶病毒及甜菜花叶病毒的抗血清均无反应.由于它在菜豆的"一窝猴"品种的叶片上产生沿脉黄色小点,因此认为这是一种新的独立的病毒,称之为菜豆和性黄色花叶病毒.  相似文献   

7.
ABSTRACT The complete nucleotide sequence of wheat streak mosaic virus (WSMV) has been determined based on complementary DNA clones derived from the 9,384-nucleotide (nt) RNA of the virus. The genome of WSMV has a 130-nt 5' leader and 149-nt 3'-untranslated region and is polyadenylated at the 3' end. WSMV RNA encodes a single polyprotein of 3,035 amino acid residues and has a deduced genome organization typical for a member of the family Potyviridae (5'-P1/HC-Pro/P3/6K1/CI/6K2/VPg-NIa/NIb/CP-3'). Because WSMV shares with ryegrass mosaic virus (RGMV) the biological property of transmission by eriophyid mites, WSMV has been assigned to the genus Rymovirus, of which RGMV is the type species. Phylogenetic analyses were conducted with complete polyprotein or NIb protein sequences of 11 members of the family Potyviridae, including viruses of monocots or dicots and viruses transmitted by aphids, whiteflies, and mites. WSMV and the monocot-infecting, mite-transmitted brome streak mosaic virus (BrSMV) are sister taxa and share a most recent common ancestor with the whitefly-transmitted sweet potato mild mottle virus, the type species of the proposed genus "Ipomovirus." In contrast, RGMV shares a most recent common ancestor with aphid-transmitted species of the genus Potyvirus. These results indicate that WSMV and BrSMV should be classified within a new genus of the family Potyviridae and should not be considered species of the genus Rymovirus.  相似文献   

8.
9.
Broad bean mottle virus (BBMV) was transmitted from infected to healthy faba-bean plants by the curculionid weevilsApion radiolus Kirby,Hypera variabilis Herbst,Pachytychius strumarius Gyll,Smicronyx cyaneus Gyll, andSitona lineatus L. The latter appeared to be an efficient vector: acquisition and inoculation occurred at the first bite, the rate of transmission was c. 41%, and virus retention lasted for at least seven days.S. lineatus transmitted the virus from faba bean to lentil and pea, but not to the three genotypes of chickpea tested. This is the first report on the generaHypera, Pachytychius, andSmicronyx as virus vectors, and onA. radiolus, H. variabilis, P. strumarius, andS. cyaneus as vectors of BBMV.Out of 351 samples of food legumes with symptoms suggestive of virus infection, 16, 11, 19, and 17% of the samples of chickpea, lentil, pea, and common bean, respectively, were found infected when tested for BBMV in DAS-ELISA. This is the first report on the natural occurrence of BBMV in chickpea, lentil, pea, and common bean. The virus should be regarded as a food-legume virus rather than a faba-bean virus solely, and is considered an actual threat to food legume improvement programmes.  相似文献   

10.
An undescribed spherical virus ca. 30 nm in diameter was isolated from gladiolus (Gladiolus spp.) plants in Japan. The virus had a moderate host range within eight families. Purified virus preparations contained two large RNA components and one coat protein with mobility similar to Cycas necrotic stunt virus (CNSV) from cycas (Cycas revolute). The virus was serologically closely related to CNSV. Its nucleotide sequence of the coat protein gene had 89% common identity with that of CNSV. These results indicated that the virus isolated from gladiolus is a new strain of CNSV. The nucleotide sequence data reported are available in the DDBJ/EMBL/Gen Bank databases under the accession number AB237656.  相似文献   

11.
Journal of Plant Diseases and Protection - Apple chlorotic leaf spot virus (ACLSV) is a most common pathogen of apples in the world. The occurrence, genetic diversity, recombination patterns and...  相似文献   

12.
Serotypic variation in turnip mosaic virus   总被引:7,自引:0,他引:7  
Jenner  Keane  Jones  & Walsh 《Plant pathology》1999,48(1):101-108
A panel of 30 monoclonal antibodies (MAbs) was produced against four isolates of turnip mosaic virus (TuMV). The panel was tested in plate-trapped antigen ELISA tests against 41 TuMV isolates (with different host and geographical origins and of differing pathotypes). The antibodies were also tested against four other potyviruses (bean common mosaic virus, bean common mosaic necrosis virus, lettuce mosaic virus and zucchini yellow mosaic virus). The reactions were assessed quantitatively (using multivariate analysis) and qualitatively (using the standard deviation obtained against healthy leaf material). The MAbs recognized 16–17 TuMV epitopes that were not present in the other potyviruses and a further two potyvirus epitopes. The isolates were grouped into three serotypes. Only one isolate did not fit this grouping. The classification of seven isolates in coat protein amino acid sequence homology groups correlated with serotypes. There was no correlation between serotype and pathotype, or between reactions to individual MAbs and single lines. There was therefore no evidence that the epitopes recognized by the MAbs are elicitors for the resistance genes present in the Brassica napus lines. However, the sensitivity and specificity of the MAbs will be useful for both routine detection of TuMV and fundamental studies on plant–virus interactions.  相似文献   

13.
Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) is globally the most common pathogen of sweetpotato. An East African strain of SPFMV incites the severe 'sweetpotato virus disease' in plants co-infected with Sweet potato chlorotic stunt virus and threatens subsistence sweetpotato production in East Africa; however, little is known about its natural hosts and ecology. In all, 2,864 wild plants growing in sweetpotato fields or in their close proximity in Uganda were observed for virus-like symptoms and tested for SPFMV in two surveys (2004 and 2007). SPFMV was detected at different incidence in 22 Ipomoea spp., Hewittia sublobata, and Lepistemon owariensis, of which 19 species are new hosts for SPFMV. Among the SPFMV-positive plants, approximately 60% displayed virus-like symptoms. Although SPFMV incidence was similar in annual and perennial species, virus-like diseases were more common in annuals than perennials. Virus-like diseases and SPFMV were more common in the eastern agroecological zone than the western, central, and northern zones, which contrasted with known incidence of SPFMV in sweetpotato crops. The data on a large number of new natural hosts of SPFMV detected in this study provide novel insights into the ecology of SPFMV in East Africa.  相似文献   

14.
ABSTRACT A quantitative method to screen common bean (Phaseolus vulgaris) plants for resistance to Bean common mosaic necrosis virus (BCMNV) is described. Four parameters were assessed in developing the quantitative method: symptoms associated with systemic virus movement, plant vigor, virus titer, and plant dry weight. Based on these parameters, two rating systems (V and VV rating) were established. Plants from 21 recombinant inbred lines (RILs) from a Sierra (susceptible) x Olathe (partially resistant) cross inoculated with the BCMNV-NL-3 K strain were used to evaluate this quantitative approach. In all, 11 RILs exhibited very susceptible reactions and 10 RILs expressed partially resistant reactions, thus fitting a 1:1 susceptible/partially resistant ratio (chi(2) = 0.048, P = 0.827) and suggesting that the response is mediated by a single gene. Using the classical qualitative approach based only on symptom expression, the RILs were difficult to separate into phenotypic groups because of a continuum of responses. By plotting mean percent reduction in either V (based on visual symptoms) or VV (based on visual symptoms and vigor) rating versus enzyme-linked immunosorbent assay (ELISA) absorbance values, RILs could be separated clearly into different phenotypic groups. The utility of this quantitative approach also was evaluated on plants from 12 cultivars or pure lines inoculated with one of three strains of BCMNV. Using the mean VV rating and ELISA absorbance values, significant differences were established not only in cultivar and pure line comparisons but also in virus strain comparisons. This quantitative system should be particularly useful for the evaluation of the independent action of bc genes, the discovery of new genes associated with partial resistance, and assessing virulence of virus strains.  相似文献   

15.
ABSTRACT A progressive displacement of tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is was observed in tomato epidemics in southern Spain based on incidence data of both virus species obtained during surveys conducted between 1996 and 1998. Ecological factors that might be involved in such a displacement, such as competition of TYLCV-Sr and TYLCV-Is in tomato, transmission by local biotypes (B and Q) of Bemisia tabaci, and presence in weeds and alternate crops, have been analyzed. No selective advantage is observed for TYLCV-Sr or TYLCV-Is in tomato plants either infected via Agrobacterium tumefaciens or via B. tabaci. However, TYLCV-Is is more efficiently vectored by local biotypes of B. tabaci; and common bean, a bridge crop between tomato crops, is a host for TYLCV-Is but not TYLCV-Sr. Therefore, common bean acts as a reservoir for TYLCV-Is. These two factors are probably responsible for the displacement of TYLCV-Sr by TYLCV-Is as the causative agent of epidemics in tomato in southern Spain.  相似文献   

16.
ABSTRACT Bean golden mosaic geminivirus (BGMV) is the single most devastating virus of common beans in the tropical and subtropical Americas and the Caribbean Basin. The BGMV from Brazil, named BGMV-BZ, is considered distinct from BGMV-PR isolates from Puerto Rico, Guatemala, and the Dominican Republic because of DNA sequence data, the ability to form pseudorecombinants, and mechanical transmissibility properties. In bean-growing areas of Brazil, samples were collected from beans, lima beans, and the weed Leonurus sibiricus displaying typical symptoms of infection by geminiviruses. Viral DNA fragments comprising part of the rep gene, the common region, and part of the cp gene were amplified by polymerase chain reaction, cloned, and sequenced. The bean samples had geminivirus with sequences nearly identical to that of BGMV-BZ collected in Goiania, state of Goiás, in 1986. The sample from lima bean contained a new species of geminivirus that induces symptoms similar to those induced by BGMV-BZ and was named lima bean golden mosaic virus (LBGMV-BR). While all sequences from bean samples clustered with BGMV-BZ, the sequence from the lima bean isolate stood alone. A mixed infection with abutilon mosaic geminivirus was also found in a single sample from the state of S?o Paulo. DNA sequence comparisons indicate that the virus isolate from L. sibiricus represents a new geminivirus species, designated here as leonurus mosaic virus.  相似文献   

17.
ABSTRACT Interactions between viruses in plants are common, and some viruses depend on such interactions for their survival. Frequently, a virus lacks some essential molecular function that another provides. In "helper-dependent" virus complexes, the helper virus is transmitted independently by a vector, whereas the dependent virus depends on molecular agents associated with the helper virus for transmission by a vector. A general mathematical model was developed of the dynamics of host plant infection by a helper-dependent virus complex. Four categories of host plants were considered: healthy, infected with helper virus alone, infected with dependent virus alone, and infected with both viruses. New planting of the host crop was constrained by a maximum abundance due to limitation of the cropping area. The ratio of infection rate to host loss rate due to infection is proposed as an important epidemiological quantity, A, that can be used as a measure of the mutual adaptation of the virus and host. A number of alternative equilibria of host infection could occur and were determined exclusively by parameter values; it was informative to display their distribution in the parameter plane: (1/A)(helper) versus (1/A)(dependent). A simple analysis of the distribution of the final equilibria illustrated that the dependent virus could affect the survival of the helper virus, so facilitation between the two can be reciprocal. The distribution of the final equilibria also indicated that a well-adapted helper virus increases the opportunity for a dependent virus to evolve and survive, and the model, therefore, explains why infection with a helper virus usually causes no or little damage to plants, whereas infection with a dependent virus or mixed infection with both often causes very severe damage.  相似文献   

18.
A virus disease of cowpea widespread in North Italy has been found to be caused by a virus which has the following properties: a. rod-shaped particles about 750 mµ in length; b. serological affinity with bean common mosaic virus; c. aphid-transmission; d. seed-transmission in cowpea at a percentage of 0.3–1.59; e. fairly wide host range covering 19 species representing 13 genera and 6 families; f. dilution end-point 1:4000; g. thermal inactivation point 60–62°C; h. longevity in vitro 5 days. The virus is tentatively called “cowpea aphid-borne mosaic virus”.  相似文献   

19.
豌豆病毒病病原研究   总被引:2,自引:0,他引:2  
 1986年至1990年,从豌豆田中采集了150余份病毒病样本,鉴定出蚕豆萎蔫病毒(BB-WV)、芜菁花叶病毒(TuMV)、马铃薯Y病毒组分离物、黄瓜花叶病毒(CMV)、莴苣花叶病毒(LMV)、大豆花叶病毒(SMV)、豌豆花叶病毒(PMV)、菜豆黄花叶病毒(BYMV)和苜蓿花叶病毒(AMV)等9种病毒。样本中,BBWV所占的比例最高,达59.2%,其次为CMV,占15.5%。BBWV常与CMV复合侵染豌豆,LMV发生也较普遍。田间调查表明,豌豆病毒病发病率因种植地区及品种不同而有差异,平均发病率为12.4%。  相似文献   

20.
Surveys were conducted during the cool-dry months of June–August 1997 and June–July 1998 for the presence of viruses in irrigated wheat in Central, Copperbelt, Lusaka and Southern Provinces of Zambia in 14 commercial farms and four wheat cultivar plots. Virus symptoms were observed on nine wheat cultivars ( Triticum aestivum 'Deka', 'Gamtoos', 'Lorie II', 'MM2', 'Nata', 'Nkwazi', 'P7', 'Scan' and 'Sceptre') of South African, Zambian and Zimbabwean origin. Several viruses were identified on the basis of field symptomatology, symptoms developing on mechanically inoculated indicator plant species or cultivars and serology (DAS-ELISA). The study revealed the occurrence of Brome mosaic virus (BMV), Barley stripe mosaic virus (BSMV), Barley yellow dwarf virus and its strains (BYDV-PAV and RPV), Soil-borne wheat mosaic virus (SBWMV), Wheat dwarf virus (WDV), Wheat streak mosaic virus (WSMV) and Wheat spindle streak mosaic virus (WSSMV). DSA-ELISA tests confirmed these identifications. The prevalence of viruses varied annually and from field to field. BSMV, BYDV-PAV, SBWMV, WDV, WSMV and WSSMV were found to be the most prevalent viruses. Viruses generally occurred in mixed infections of 3–6 viruses and the most common virus complex consisted of 4 viruses (50%), viz. BYDV, SBWMV, WDV and WSSMV. Five- and six-virus complexes were relatively less common (20% each) whereas 3-virus complex was noticed in only 10% cases. SBWMV and WSSMV have been found to be new to Africa and Zambia and are reportedly vectored by a fungal protist – Polymyxa graminis . BYDV strains MAV and SGV were also tested but gave negative results against their antisera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号