首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
本研究着重分析矩形V型曲面网板开缝口导流板曲率与网板水动力性能的关系.结果证明当网板的展弦比为0.68,缝口中心线距网板前缘的距离与网板翼弦长度之比为0.316,导流板曲率为9%时,网板具有较高的水动力性能.当冲角为35°时,其升力系数为1.31,阻力系数为0.75,升阻比为1.746.同时证明了导流板曲率对力矩系数和压力中心系数的影响均很小,在常用冲角范围内该网板具有较高的稳定性.  相似文献   

2.
为满足渔业现代化的发展需求,渔具的改良是其不可或缺的一部分,而网板是提供拖网网衣水平张力主要属具。采用矩形曲面网板有利于提高网板的升力系数和升阻比,而网板开缝有利于减小网板的背面涡流,增加网板的水动力性能,提高网板操作稳定性。为研究小型拖网渔船网板的水动力性能,通过数值模拟的方法,在其他参数一定的情况下,采用控制变量法控制双开缝矩形曲面网板的速度、开缝尺寸以及展弦比等参数的单一变化,研究其对拖网网板水动力性能的影响规律。数值计算结果表明:该网板升力系数和升阻比随冲角的增大呈先增后减的趋势,最佳升阻比出现在冲角为10°左右的时候;速度对网板水动力性能无显著影响;升力系数随开缝尺寸的增加总体呈上升趋势,当开缝尺寸大于50 mm时,升力系数无显著变化,升阻比随开缝尺寸增大总体呈先增后减的趋势;不同展弦比的网板在升力系数达到最大时对应的最佳冲角随展弦比的增加而逐渐减小;同时,升力系数峰值随展弦比的增加呈先增后减的趋势,当展弦比为0.6左右时,升力系数的峰值达到最大。研究结果可为同类型的小型拖网渔船拖网网板的结构优化设计提供更加可靠的参考。  相似文献   

3.
刘健  黄洪亮  陈帅  李灵智  吴越  徐国栋  饶欣 《水产学报》2013,37(11):1742-1749
为研究不同倾角和迎流冲角下小展弦比立式曲面网板的水动力性能,通过水槽模型实验计算网板的升力系数(CL)、阻力系数(CD)、浮力系数(CZ)和升阻比(K)。结果显示:(1)CLK随冲角(α)的增加呈先升后降趋势,CD随冲角的增加呈上升趋势;(2)无倾角情况下,冲角为30°时,升力系数最大值CLmax=1.699,此时CD=1.140,K=1.490。冲角为15°时,升阻比最大值Kmax=2.421,此时CL=1.120,CD=0.463;(3)横倾角(β)在-10°~10°变化时,CLmax=1.816(α=25°,β=-10°),Kmax=3.405(α=10°,β=-10°)。横倾角为-5°和-10°时,网板具有一定浮力。冲角为10°~30°时,CZ平均值分别为0.16和0.25;(4)纵倾角(γ)在-10°~10°变化时,CLmax=1.823(α=25°或α=30°,γ=-10°),Kmax=2.729(α=5°,γ=-5°)。纵倾角为-5°、-10°和5°时,网板具有一定浮力。冲角为10°~30°时,CZ平均值分别为0.16、0.18和0.16。结果表明,该网板的最佳工作冲角范围为15°~30°,该冲角范围内网板CL>1.1且K>1.45。  相似文献   

4.
立式V型曲面网板的水动力性能   总被引:1,自引:1,他引:1  
王明彦 《水产学报》2004,28(3):311-315
采用正交优选法来考察网板板面折角、展弦比以及后退角对立式V型曲面网板水动力性能的影响。试验结果证明影响网板水动力性能的最重要的因素是网板板面折角,其次是展弦比和后退角。当网板的板面曲率为14%、板面折角为12°、展弦比为1.60、后退角为10°时,网板具有较高的水动力性能。当冲角为25°和28°时,网板的升力系数均为1.68。另外,通过对优选网板添加模拟海底的试验证明,网板在底层作业时,其临界冲角从28°减小为25°;在常用工作冲角范围内,网板在底层时的扩张性能要高于中层,同时,网板的升阻比也略有上升,并能在较宽的冲角范围内持续保持较高的扩张性能。  相似文献   

5.
根据对随船引进的大型远洋单船拖网网板的调查、测绘和分析,选择了5种结构上具有代表性的网板,进行网板模型风洞试验。通过对风洞试验结果的分析,筛选出缝翼式大展弦比网板作为选型设计的基础,设计制作了3付实物网板,经生产使用证明,该型网板具有扩张效果好,冲角范围大,曳行稳定和抗弯曲性强的特点。  相似文献   

6.
立式双曲面网板水动力性能及流场可视化研究   总被引:1,自引:0,他引:1  
网板是拖网作业系统中重要的属具之一,其水动力性能的优劣直接关系到拖网网口的扩张,并影响其生产效果和经济效益。采用单因素试验法,利用水槽模型试验和数值模拟(computational fluid dynamics, CFD)研究立式双曲面模型网板在不同展弦比λ(2.5、3.0、3.5、4.0)、弯曲度f/C(10%、15%、20%)、后退角Λ(0°、10°、15°)下的水动力性能,分析不同结构参数的网板水动力性能,对比两种方法的结果,并实现网板周围流场可视化。结果显示:①2号网板(λ=3.0、f/C=15%、Λ=10°)升力系数最大,冲角25°时,模型试验值为1.70,数值模拟值为1.88,阻力系数随冲角增大一直增大,且后部流速的模拟值和测定值平均偏差为4.40%,两种方法获得的结果吻合度高。②2号网板在流场分布中边界层分离点随冲角增大逐渐向翼端前沿移动,中心面后部涡旋随冲角增大一直增大,左翼板侧低压区随冲角增大呈先增大后减小趋势,网板尾部随冲角增大形成明显的翼端涡,产生涡升力对网板提供附加升力,使得立式双曲面网板比其他类型网板有较高升力。  相似文献   

7.
本研究采用正交优选法着重分析矩形V型曲面网板的展弦比、缝口位置、缝口宽度3个因数对网板水动力性能的影响.研究表明,当矩形V型曲面网板导流板曲率为9%时,展弦比为0.8,缝口位置距网板前缘的距离为0.28 L,缝口宽度为80 mm配合的网板具有较高的水动力性能.当冲角30°时,升力系数为1.30,阻力系数为0.67,升阻比可达1.94.试验表明优选网板添加模拟海底后,网板的临界冲角由35°减小为30°.在工作冲角范围内,网板在底层作业时扩张性能要优于中层,并且具有良好的稳定性.  相似文献   

8.
网板作为拖网渔具的重要属具,其水动力性能对拖网渔具的可操作性和渔获效率均有十分重要的影响。以我国近海拖网渔船配置的加筋V型网板为研究对象,通过与传统无筋V型网板的水动力性能对比分析,研究加强筋对V型网板水动力性能的影响机理,并通过开展动水槽实验对数值计算结果的有效性进行验证。在此基础上,通过改变展弦比、板面折角、加强筋尺寸等设计参数,研究其对加筋V型网板水动力性能的影响规律。结果表明,在大冲角(40°以上)时,加筋V型网板的升、阻力系数与传统V型网板相比呈显著下降趋势;加强筋的存在较为明显地降低了V型网板在最佳工作冲角(10°左右)下的升阻比;增设加强筋后,V型网板的最大升阻比依然会随展弦比的增加而呈逐渐增大的趋势,但不同的展弦比下V型网板的最大升阻比有较为明显的降低;加筋V型网板的板面折角变化引起最佳冲角的改变,但最大升阻比会随板面折角的增加呈现显著增大的趋势;加强筋间距较大时会引起V型网板最大升阻比的明显降低,其尺寸的增加也会在一定程度上降低网板的升阻比。  相似文献   

9.
拖网网板型式、结构与性能的研究与应用进展   总被引:1,自引:0,他引:1  
在分析目前世界使用的网板的型式、结构与水动力性能的基础上,着重分析研究立式V型网板和矩形V型网板的水动力性能,并对我国远洋渔业目前使用的底拖网板的性能进行分析比较研究,为今后设计及合理选用网板提供科学依据.  相似文献   

10.
拖网网板是应用于拖网渔具以扩张网口的重要渔具构件,一直以来在海洋捕捞拖网作业中备受关注。基于文献计量分析方法,从时间序列、国家(地区)文献分布、研究热点等方面对拖网网板的研究状况进行文献计量及可视化分析,以了解国内外拖网网板研究应用方面的发展动态与研究焦点。此外,还针对影响网板性能的设计因素进行了分析论述,并根据网板性能的研究与试验方法,分析对比各种方法的特点及发展趋势。基于拖网渔业与装备技术的发展,结合网板性能的研究成果,提出网板应用研究的两个重要方向,即网板结构智能化调控技术与网板新材料应用技术,为拖网网板的性能与应用研究提供参考。  相似文献   

11.
2种立式曲面缝翼式网板水动力学性能的试验研究   总被引:1,自引:0,他引:1  
  相似文献   

12.
立式曲面V型网板在拖网系统中的力学配合计算研究   总被引:1,自引:1,他引:0  
为获知网板对拖网系统力学配合计算的影响,本文运用网板平衡方程结合钢索张力方程,建立拖网系统力学配合计算模型,并选取一款广泛使用的立式曲面V型网板及其相应的中层拖网,将网板水动力性能水槽实验数据,结合“龙腾”号的拖网及拖船实测数据带入力学模型,从翼端处的张力起始,逐步计算及分析手纲、网板、曳纲的受力情况,得到网板工作冲角、曳纲长度及张力、拖网翼端深度等拖网系统参数值。对网板各参数对拖网系统的影响进行了分析讨论,分析证明:冲角、曳纲长度和翼端深度随拖曳速度增加而减小;翼端深度及曳纲张力随曳纲连接点Z坐标的增加呈指数增长,随手纲连接点Z坐标增加呈线性减小;通过调节曳纲连接点Z坐标在0.1m-0.6m范围内,可控制工作冲角在17.77°-18.55°之间,翼端深度在124.3m-192.3m之间,曳纲张力在40210N-42219N之间变化;通过调节手纲连接点Z坐标在-0.4m--0.05m范围内,可控制工作冲角在16.54°-19.85°之间,翼端深度在75.9m-679.5m之间,曳纲张力在39533.5N-57933N之间变化;减少网板在水中质量,可减小拖船功率负荷,更适合在浅层作业;减小网板面积,可降低网板工作冲角,同时减小拖船功率负荷,更适合在稍深的水层作业。本文总结了网板参数的配合计算规律并建立了估算公式,为网板的合理使用和进一步开发提供参考依据。  相似文献   

13.
发展深水网箱养殖是保障我国粮食及食品安全的长远战略,也是缓解近海网箱养殖环境胁迫力、拓展食物生产空间的必然选择。发展深水网箱养殖首先需要面对的突出挑战是养殖设施在外海恶劣海况下的安全性问题。网衣是深水网箱的主体结构,由于其自身具有高柔性、小尺度的特点,在波浪和水流作用下易出现大位移和大变形的极端响应。当前,网衣结构分析技术已成为我国深水网箱养殖工程技术的薄弱环节,一定程度上制约当前海上养殖网箱向大型化和深水化发展。因此,网衣水动力特性研究对于深远海网箱养殖的发展具有重要意义。本研究系统介绍了计算网衣水动力荷载的主要方法及其适用范围。同时,对网衣动态响应数值计算中的主流建模技术进行了总结和分析。最后,根据目前网衣水动力特性研究中存在的热点问题,提出了网衣流固耦合分析、生物污损分析、数字孪生技术等前沿发展方向,为网衣水动力学分析向数字化、精准化发展提供参考。  相似文献   

14.
《Aquaculture Research》2017,48(11):5463-5471
Hatchery production of great scallop, Pecten maximus, remains unpredictable, notably due to poor larval survival. Large‐scale flow‐through systems up to 3500 L have been developed to avoid the use of antibiotics in static systems. Alternatively, small‐scale flow‐through systems have been successfully applied for oysters but they proved to be unsuitable to rear scallop larvae. By focusing on physical factors presumed to limit P. maximus larval development, this study aimed to optimize great scallop larvae rearing parameters under controlled conditions. First, the influence of aeration on larval performances, energetic metabolism and antioxidant defences were studied both in static and flow‐through systems. Aeration depressed larval food intake, regardless of the intensities of flow tested (100 ml/min, 155 ml/min and 270 ml/min). On the other hand, antioxidant enzyme activities remained constant or decreased, suggesting that antioxidant defences were inactivated. The increase in citrate synthase activity suggested an increase in metabolic rate possibly due to a turbulent stressful environment. All larvae exposed to such turbulence died before reaching metamorphosis, whereas those reared without aeration survived well (≈ 95%). The effects of water renewal were thereafter studied in 50‐L flow‐through flat‐bottomed tanks. No differences in survival (20.4 ± 0.5%), growth (3.8 ± 0.2 μm/d), competence (5.6 ± 0.2%), energetic metabolism level and antioxidant enzyme activities were observed when comparing 12.5 and 25 L/hr water renewal. Whereas air bubbling leads to detrimental effects, flow‐through in small flat‐bottomed tanks appears to be a suitable technique for scallop larvae rearing.  相似文献   

15.
高分子渔用材料在设施养殖和海洋渔业中的应用越来越广泛,对其水动力特性进行研究十分必要。试验采用不同网目系数和网线粗度的高分子编结试验网片进行水槽试验,倾角从0°变化到90°,设置水流速度从0.3 m/s开始,以0.1 m/s为梯度,逐渐增大至1.3 m/s。为减小尾流和湍流对试验结果的影响,使用流线型框架固定装配。经试验得到以下结果:(1)在网片与水流垂直时,阻力系数有随网目系数增大而增大的趋势,而在网片与水流平行时,阻力系数随网目系数增大而减小。(2)阻力系数有随雷诺数增大而逐渐减少的趋势,网片平面与流体运动方向速度垂直时,阻力系数在13001500后阻力系数变化不大。(3)阻力系数随着冲角的增大而增大并最终趋于稳定值。(4)升阻力系数比(K)在总体上有随倾角变大而先变大再变小的趋势,K的极值均出现在20°到30°内,最大K值约为0.41。(5)网片与水流垂直时,在1000相似文献   

16.
Johnny  BUDIMAN  Shigeru  FUWA  Keigo  EBATA 《Fisheries Science》2004,70(6):952-959
ABSTRACT:   The hydrodynamic resistance of small pot traps has been conducted in order to establish some basic information. The specific objectives of the study was to measure the hydrodynamic force and estimate the critical setting condition for traps. Five types of traps with different materials were used in the experiment: a netted semi-cylinder shape, a wire semi-cylinder shape, a heart shape, a box shape, and a cylinder shape. The hydrodynamic force of each trap was measured in a flume tank. Flow speeds in the flume tank were 0.1, 0.2, 0.3, 0.4, and 0.5 m/s. Attack angles for this study were 0, 15, 30, 45, 60, 75, and 90 degrees. At an attack angle of 0 degrees the main axis of the trap was parallel to the water flow and at 90 degrees it was vertical. The values of the hydrodynamic drag coefficient varied with traps: netted semi-cylinder shape, 2.75–5.96; wire semi-cylinder shape, 2.81–4.49; heart shape, 2.77–3.66; box shape, 2.39–2.97; and for cylinder shape, 3.57–3.67. The flow speed (0.5 m/s) was effective to set the netted semi-cylinder, wire semi-cylinder, box, and cylinder shaped traps. The same flow speed applied to the heart-shaped trap was only effective to a maximum of 30 degrees attack angles and below.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号