首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
本研究选用蓖麻YC2×YF1高、矮秆组合的2组6世代群体(P1、P2、F1、B1、B2和F2),对株高性状进行了主基因+多基因混合遗传模型分析。结果表明,蓖麻株高受1对主基因和多基因共同控制。2组群体在B1、B2和F2三个分离世代中主基因遗传率分别为37.05%/49.57%、30.51%/34.48%和43.98%/43.64%;主穗位高和主茎节数均受2对主基因和多基因共同控制,且主基因的互作效应显性效应加性效应。3个分离世代中,2组群体主穗位高主基因遗传率分别为67.91%/92.72%、86.89%/92.13%和60.18%/66.87%,主茎节数主基因遗传率分别为91.83%/91.50%、35.22%/63.37%和85.76%/94.58%。主茎节长由多基因控制,遗传率分别为47.64%/47.64%、38.87%/38.87%和25.25%/52.71%。以上遗传模式决定了蓖麻杂种后代株高、主穗位高和主茎节长的正向超亲遗传,而主茎节数则倾向于低值亲本。因此,主穗位高和主茎节数可以作为株高的早期间接选择指标。  相似文献   

2.
S. H. Jalikop 《Euphytica》2007,158(1-2):201-207
Summary Inheritance of fruit acidity in pomegranate (Punica granatum L.) was studied in 3 sweet or low acid (‘Ganesh’, ‘Ruby’ and ‘Kabul Yellow’) and 3 sour or high acid (‘Nana’, ‘Daru’ and ‘Double Flower’) varieties and their progenies. The F1 and F2 data of ‘Ganesh’ × ‘Nana’ showed that fruit acidity is monogenically controlled and the sour nature is dominant over sweet. Further, whether a genotype produces sweet or sour fruit is determined by a major gene (SS) while a few modifiers with small effects cause fluctuations in the acidity levels within sour and sweet types. All the trees of 3 crosses involving ‘Daru’ produced acidic fruits but those of (‘Ganesh’ × ‘Nana’) × ‘Daru’ reached acidity as high as 71.2 g/l which could be because of cumulative influence of modifying genes derived from the two acidic varieties ‘Nana’ and ‘Daru’. Pollination of functionally sterile ‘Double Flower’ variety with single (normal) flower types revealed that ‘Double Flower’ is a dominant mutant from an acidic fruited genotype (Ss). The segregation pattern in F1 indicated the possible linkage between genes governing total acidity and flower type. All the F1 hybrids between ‘Kabul Yellow’ and ‘Ganesh’ (sweet × sweet) were sour fruited with almost 8-fold jump in fruit acidity over the mid-parental value. The steep increase in acidity cannot be convincingly attributed to overdominance which is certainly rare at major gene level. Alternatively, linked dominant alleles or epistatic effect of neighboring loci which readily simulate overdominance (pseudo-overdominance) could have caused a major shift in F1 fruit acidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号