首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quality of induction of general anesthesia produced by ketamine and propofol, 2 of the most commonly used anaesthetic agents in cats, was assessed. Eighteen cats admitted for elective procedures were randomly assigned to 3 groups and then premedicated with xylazine 0.75 mg/kg intramuscularly before anaesthesia was induced with ketamine 15 mg/kg intramuscularly (KetIM group), ketamine 10 mg/kg intravenously (KetIV group) or propofol 4 mg/kg intravenously (PropIV group). Quality of induction of general anaesthesia was determined by scoring ease of intubation, degree of struggling, and vocalisation during the induction period. The quality of induction of anaesthesia of intramuscularly administered ketamine was inferior to that of intravenously administered ketamine, while intravenously administered propofol showed little difference in quality of induction from ketamine administered by both the intramuscular and intravenous routes. There were no significant differences between groups in the ease of intubation scores, while vocalisation and struggling were more common in cats that received ketamine intramuscularly than in those that received intravenously administered ketamine or propofol for induction of anaesthesia. Laryngospasms occurred in 2 cats that received propofol. The heart rates and respiratory rates decreased after xylazine premedication and either remained the same or decreased further after induction for all 3 groups, but remained within normal acceptable limits. This study indicates that the 3 regimens are associated with acceptable induction characteristics, but administration of ketamine intravenously is superior to its administration intramuscularly and laryngeal desensitisation is recommended to avoid laryngospasms.  相似文献   

2.
3.
Brown, S.A., Jacobson, J.D., Hartsfield, S.M. Pharmacokinetics of midazolam administered concurrently with ketamine after intravenous bolus or infusion in dogs. J. vet. Pharmacol. Therap. 16 , 419–425. Midazolam, a water-soluble benzodiazepine tranquilizer, has been considered by some veterinary anaesthesiologists to be suitable as a combination anaesthetic agent when administered concurrently with ketamine because of its water solubility and miscibility with ketamine. However, the pharmacokinetics of midazolam have not been extensively described in the dog. Twelve clinically healthy mixed breed dogs (22.2–33.4 kg) were divided into two groups at random and were administered ketamine (10 mg/kg) and midazolam (0.5 mg/kg) either as an intravenous bolus over 30 s (group 1) or as an i.v. infusion in 0.9% NaCl (2 ml/kg) over 15 min. Blood samples were obtained immediately before the drugs were injected and periodically for 6 h afterwards. Serum concentrations were determined using gas chromatography with electron-capture detection. Serum concentrations were best described using a two-compartment open model and indicated a t½α of 1.8 min and t½β.p of 27.8 min after i.v. bolus, and t½α f 1–35 min and t½β of 31.6 min after i.v. infusion. The calculated pharmacokinetic coefficient B was significantly smaller after i.v. infusion (429 ± 244 ng/ml) than after i.v. bolus (888 ± 130 ng/ml, P = 0.004). Furthermore, AUC was significantly smaller after i.v. infusion (29 800 ±6120 ng/h/ml) than after i.v. bolus (42 500 ± 8460 ng/h/ml, P < 0.05), resulting in a larger ClB after i.v. infusion (17.4 ± 4.00 ml/min/kg than after i.v. bolus (12.1 ± 2.24 ml/min/kg, P < 0.05). No other pharmacokinetic value was significantly affected by rate of intravenous administration.  相似文献   

4.
OBJECTIVE: To compare cardiovascular effects of equipotent infusion doses of propofol alone and in combination with ketamine administered with and without noxious stimulation in cats. ANIMALS: 6 cats. PROCEDURE: Cats were anesthetized with propofol (loading dose, 6.6 mg/kg; constant rate infusion [CRI], 0.22 mg/kg/min) and instrumented for blood collection and measurement of blood pressures and cardiac output. Cats were maintained at this CRI for a further 60 minutes, and blood samples and measurements were taken. A noxious stimulus was applied for 5 minutes, and blood samples and measurements were obtained. Propofol concentration was decreased to 0.14 mg/kg/min, and ketamine (loading dose, 2 mg/kg; CRI, 23 microg/kg/min) was administered. After a further 60 minutes, blood samples and measurements were taken. A second 5-minute noxious stimulus was applied, and blood samples and measurements were obtained. RESULTS: Mean arterial pressure, central venous pressure, pulmonary arterial occlusion pressure, stroke index, cardiac index, systemic vascular resistance index, pulmonary vascular resistance index, oxygen delivery index, oxygen consumption index, oxygen utilization ratio, partial pressure of oxygen in mixed venous blood, pH of arterial blood, PaCO2, arterial bicarbonate concentration, and base deficit values collected during propofol were not changed by the addition of ketamine and reduction of propofol. Compared with propofol, ketamine and reduction of propofol significantly increased mean pulmonary arterial pressure and venous admixture and significantly decreased PaO2. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of propofol by CRI for maintenance of anesthesia induced stable hemodynamics and could prove to be clinically useful in cats.  相似文献   

5.
OBJECTIVE: To determine the pharmacokinetics and clinical effects of a subanesthetic, continuous rate infusion of ketamine administered to healthy awake horses. ANIMALS: 8 adult horses. PROCEDURES: Ketamine hydrochloride was administered to 2 horses, in a pilot study, at rates ranging from 0.4 to 1.6 mg/kg/h for 6 hours to determine an appropriate dose that did not cause adverse effects. Ketamine was then administered to 6 horses for a total of 12 hours (3 horses at 0.4 mg/kg/h for 6 hours followed by 0.8 mg/kg/h for 6 hours and 3 horses at 0.8 mg/kg/h for 6 hours followed by 0.4 mg/kg/h for 6 hours). Concentration of ketamine in plasma, heart rate, respiratory rate, blood pressure, physical activity, and analgesia were measured prior to, during, and following infusion. Analgesic testing was performed with a modified hoof tester applied at a measured force to the withers and radius. RESULTS: No signs of excitement and no significant changes in the measured physiologic variables during infusion rates of 0.4 and 0.8 mg of ketamine/kg/h were found. At 6 hours following infusions, heart rate and mean arterial pressure were decreased, compared with preinfusion measurements. An analgesic effect could not be demonstrated during or after infusion. Pharmacokinetic variables for 0.4 and 0.8 mg/kg/h infusions were not significantly different. CONCLUSIONS AND CLINICAL RELEVANCE: Ketamine can be administered to awake horses at 0.4 or 0.8 mg/kg/h without adverse behavioral effects. The observed pharmacokinetic values are different than those reported for single-dose IV bolus administration of this drug.  相似文献   

6.
This study was designed to compare the cardiovascular effects of equipotent maintenance of anesthetic doses (determined in a previous study) of propofol and propofol/ketamine, administered with and without noxious stimulation. Six healthy adult cats were anesthetized with propofol (loading dose 6.6 mg kg?1, infusion 0.22 mg kg?1 minute?1), and instrumented to allow determination of blood gas and acid–base balance and measurement of blood pressures and cardiac output. The propofol infusion was continued for a further 60 minutes after which measurements were taken prior to and during application of a noxious stimulus. The propofol infusion was decreased to 0.14 mg kg?1 minute?1, and ketamine (loading dose 2 mg kg?1, infusion 23 µg kg minute?1) was administered. After a further 60 minutes, measurements were again taken prior to and during application of a noxious stimulus. The data were analyzed, using several Repeated Measures anova (first, ketamine/propofol and noxious stimulation were each treated as within‐subject factors; secondly, the levels of these two factors were combined into a single within‐subject factor). Mean arterial pressure, CVP, PAOP, SI, CI, SVRI, PVRI, oxygen delivery index, oxygen consumption index, oxygen utilization ratio, PvO2, pHa, PaCO2, bicarbonate concentration, and BD values collected during propofol administration were not changed by addition of ketamine and reduction of propofol concentration or by application of a noxious stimulus under propofol alone. Application of a noxious stimulus under propofol alone did, however, significantly increase HR and PaO2, and these responses were not blunted by the addition of ketamine. Compared with propofol, administration of ketamine and reduction of propofol concentration significantly increased PAP and venous admixture, and significantly decreased PaO2. Although application of a noxious stimulus to cats under propofol alone did not significantly change CVP, SI, CI, PVRI, oxygen delivery index, and oxygen consumption index, significant differences were found in these variables between propofol and propofol/ketamine. In conclusion, propofol alone provided cardiopulmonary stability; addition of ketamine did not improve hemodynamics but did decrease oxygenation.  相似文献   

7.
8.
OBJECTIVE: To determine the minimum infusion rate (MIR50) for propofol alone and in combination with ketamine required to attenuate reflexes commonly used in the assessment of anesthetic depth in cats. ANIMALS: 6 cats. PROCEDURE: Propofol infusion started at 0.05 to 0.1 mg/kg/min for propofol alone or 0.025 mg/kg/min for propofol and ketamine (low-dose ILD] constant rate infusion [CRI] of 23 microg/kg/min or high-dose [HD] CRI of 46 microg/kg/min), and after 15 minutes, responses of different reflexes were tested. Following a response, the propofol dose was increased by 0.05 mg/kg/min for propofol alone or 0.025 mg/kg/min for propofol and ketamine, and after 15 minutes, reflexes were retested. RESULTS: The MIR50 for propofol alone required to attenuate blinking in response to touching the medial canthus or eyelashes; swallowing in response to placement of a finger or laryngoscope in the pharynx; and to toe pinch, tetanus, and tail-clamp stimuli were determined. Addition of LD ketamine to propofol significantly decreased MIR50, compared with propofol alone, for medial canthus, eyelash, finger, toe pinch, and tetanus stimuli but did not change those for laryngoscope or tail-clamp stimuli. Addition of HD ketamine to propofol significantly decreased MIR50, compared with propofol alone, for medial canthus, eyelash, toe pinch, tetanus, and tail-clamp stimuli but did not change finger or laryngoscope responses. CONCLUSIONS AND CLINICAL RELEVANCE: Propofol alone or combined with ketamine may be used for total IV anesthesia in healthy cats at the infusion rates determined in this study for attenuation of specific reflex activity.  相似文献   

9.
OBJECTIVE: To determine an infusion rate of butorphanol tartrate in horses that would maintain therapeutic plasma drug concentrations while minimizing development of adverse behavioral and gastrointestinal tract effects. ANIMALS: 10 healthy adult horses. PROCEDURE: Plasma butorphanol concentrations were determined by use of high-performance liquid chromatography following administration of butorphanol by single IV injection (0.1 to 0.13 mg/kg of body weight) or continuous IV infusion (loading dose, 17.8 microg/kg; infusion dosage, 23.7 microg/kg/h for 24 hours). Pharmacokinetic variables were calculated, and changes in physical examination data, gastrointestinal tract transit time, and behavior were determined over time. RESULTS: A single IV injection of butorphanol was associated with adverse behavioral and gastrointestinal tract effects including ataxia, decreased borborygmi, and decreased defecation. Elimination half-life of butorphanol was brief (44.37 minutes). Adverse gastrointestinal tract effects were less apparent during continuous 24-hour infusion of butorphanol at a dosage that resulted in a mean plasma concentration of 29 ng/ml, compared with effects after a single IV injection. No adverse behavioral effects were observed during or after continuous infusion. CONCLUSIONS AND CLINICAL RELEVANCE: Continuous IV infusion of butorphanol for 24 hours maintained plasma butorphanol concentrations within a range associated with analgesia. Adverse behavioral and gastrointestinal tract effects were minimized during infusion, compared with a single injection of butorphanol. Continuous infusion of butorphanol may be a useful treatment to induce analgesia in horses.  相似文献   

10.
This crossover study compared the pharmacokinetics of cytarabine in six healthy dogs following intravenous constant rate infusion (CRI) and subcutaneous (SC) administrations, as these are two routes of administration commonly employed in the treatment of meningoencephalitis of unknown etiology. Each dog received a SC cytarabine injection of 50 mg/m2 or an 8 h CRI of 25 mg/m2 per hour, with a 7‐day washout before receiving the alternative treatment. Blood samples were collected for 16 h after CRI initiation and for 8 h after SC injection. Plasma concentrations were measured by high‐pressure liquid chromatography (HPLC). Pharmacokinetic parameters were estimated using the best‐fit compartmental analysis for both CRI and SC routes. Terminal half‐life (T½) of cytarabine was 1.35 ± 0.3 and 1.15 ± 0.13 h after SC administration and CRI, respectively. Mean peak concentration (Cmax) was 2.88 and 2.80 μg/mL for SC and CRI administration, respectively. Volume of distribution was 0.66 ± 0.07 l/kg. The 8‐h CRI produced steady‐state plasma concentrations as determined by consecutive measurement that did not decline until the end of the infusion. The SC administration did not achieve steady‐state concentrations because cytarabine administered by this route was rapidly absorbed and eliminated quickly. The steady state achieved with the cytarabine CRI may produce a more prolonged exposure of cytarabine at cytotoxic levels in plasma compared to the concentrations after SC administration.  相似文献   

11.
We examined the influence of propofol infusion on cardiovascular system at the rate of 0.14, 0.20 and 0.30 mg/kg/min in six adult Thoroughbred horses. The cardiovascular parameters were heart rate (HR), mean arterial pressure (MAP), mean right atrial pressure (MRAP), stroke volume (SV), cardiac output (CO), systemic vascular resistance (SVR), pre-ejection period (PEP) and ejection time (ET). In order to keep the ventilation conditions constantly, intermittent positive pressure ventilation was performed, and the partial arterial CO(2) pressure was maintained at 45 to 55 mmHg during maintenance anesthesia. SV showed a significant dose-dependent decrease however, CO did not show significant change. SVR decreased significantly at higher dose. PEP was prolonged and PEP/ET increased significantly at the highest dose. From these results, it became clear that SV decreases dose-dependently due to decrease of cardiac contractility during anesthesia with continuous propofol infusion in horses. On the other hand, since MAP and CO did not show significant changes, total intravenous anesthesia with propofol was suggested to be suitable for long-term anesthesia in horses.  相似文献   

12.
ObjectiveTo compare the pharmacokinetics and pharmacodynamics of propofol with or without 2% benzyl alcohol administered intravenously (IV) as a single induction dose in cats.Study designProspective experimental study.AnimalsSix healthy adult cats, three female intact, three male castrated, weighing 4.8 ± 1.8 kg.MethodsCats received 8 mg kg−1 IV of propofol (P) or propofol with 2% benzyl alcohol (P28) using a randomized crossover design. Venous blood samples were collected at predetermined time points to 24 hours after drug administration to determine drug plasma concentrations. Physiologic and behavioral variables were also recorded. Propofol and benzyl alcohol concentrations were determined using high pressure liquid chromatography with fluorescence detection. Pharmacokinetic parameters were described using a 2-compartment model. Pharmacokinetic and pharmacodynamic parameters were analyzed using repeated measures anova (p < 0.05).ResultsPlasma concentrations of benzyl alcohol were below the lower limits of quantification (LLOQ) at all time points for two of the six cats (33%), and by 30 minutes for the remaining four cats. Propofol pharmacokinetics, with or without 2% benzyl alcohol, were characterized by rapid distribution, a long elimination phase, and a large volume of distribution. No differences were noted between treatments with the exception of clearance from the second compartment (CLD2), which was 23.6 and 38.8 mL kg−1 minute−1 in the P and P28 treatments, respectively. Physiologic and behavioral variables were not different between treatments with the exception of heart rate at 4 hours post administration.Conclusions and clinical relevanceThe addition of 2% benzyl alcohol as a preservative minimally altered the pharmacokinetics and pharmacodynamics of propofol 1% emulsion when administered as a single IV bolus in this group of cats. These data support the cautious use of propofol with 2% benzyl alcohol for induction of anesthesia in healthy cats.  相似文献   

13.
OBJECTIVE: A clinical trial to determine whether continuous infusion administration technique was suitable for maintaining neuromuscular blockade with rocuronium bromide in dogs. ANIMALS: Twenty-two dogs, 10 males and 12 females, median age 2 years 4 months, median weight 32 kg undergoing elective surgical procedures under general anaesthesia: ASA classification I or II. MATERIALS AND METHODS: After induction of anaesthesia, neuromuscular function was evaluated using train-of-four (TOF) stimulation of the dorsal buccal branch of the facial nerve. A bolus dose of 0.5 mg kg(-1) rocuronium was administered intravenously and an infusion of 0.2 mg kg(-1) hour(-1) was started immediately. Neuromuscular blockade was assessed visually by counting the number of twitches observed during TOF stimulation repeated at 10-second intervals. RESULTS: The bolus dose of rocuronium abolished the response to TOF stimulation in 21 of the 22 dogs. The median onset time of neuromuscular blockade (complete loss of all four twitches) was 82 seconds (range 38-184 seconds). Median infusion duration was 76 minutes (range 20.3-146 minutes). CONCLUSIONS AND CLINICAL RELEVANCE: This protocol of rocuronium administration was considered to be effective in dogs. Constant infusion of rocuronium is easily applicable to clinical practice and further work is required on infusion titration.  相似文献   

14.
ObjectiveTo compare anaesthetic induction in healthy dogs using propofol or ketofol (a propofol-ketamine mixture).Study designProspective, randomized, controlled, ‘blinded’ study.AnimalsSeventy healthy dogs (33 males and 37 females), aged 6–157 months and weighing 4–48 kg.MethodsFollowing premedication, either propofol (10 mg mL?1) or ketofol (9 mg propofol and 9 mg ketamine mL?1) was titrated intravenously until laryngoscopy and tracheal intubation were possible. Pulse rate (PR), respiratory rate (fR) and arterial blood pressure (ABP) were compared to post-premedication values and time to first breath (TTFB) recorded. Sedation quality, tracheal intubation and anaesthetic induction were scored by an observer who was unaware of treatment group. Mann–Whitney or t-tests were performed and significance set at p = 0.05.ResultsInduction mixture volume (mean ± SD) was lower for ketofol (0.2 ± 0.1 mL kg?1) than propofol (0.4 ± 0.1 mL kg?1) (p < 0.001). PR increased following ketofol (by 35 ± 20 beats minute?1) but not consistently following propofol (4 ± 16 beats minute?1) (p < 0.001). Ketofol administration was associated with a higher mean arterial blood pressure (MAP) (82 ± 10 mmHg) than propofol (77 ± 11) (p = 0.05). TTFB was similar, but ketofol use resulted in a greater decrease in fR (median (range): ketofol -32 (-158 to 0) propofol -24 (-187 to 2) breaths minute?1) (p < 0.001). Sedation was similar between groups. Tracheal intubation and induction qualities were better with ketofol than propofol (p = 0.04 and 0.02 respectively).Conclusion and clinical relevanceInduction of anaesthesia with ketofol resulted in higher PR and MAP than when propofol was used, but lower fR. Quality of induction and tracheal intubation were consistently good with ketofol, but more variable when using propofol.  相似文献   

15.
OBJECTIVE: To compare efficacy of 3 regimens of orally administered sedatives and determine physiologic effects of 1 of these regimens in healthy cats. DESIGN: Prospective randomized study. ANIMALS: 34 cats. PROCEDURE: Cats were assigned to 1 of 3 groups that were treated by oral administration of detomidine and ketamine, xylazine and ketamine, or medetomidine and ketamine. Cats were monitored for degree of sedation at 5-minute intervals for 60 minutes. Physiologic effects in cats treated with detomidine and ketamine were measured at 5-minute intervals for 30 minutes and compared with effects in cats treated i.m. with detomidine and ketamine or xylazine and ketamine. RESULTS: All cats treated orally with detomidine and ketamine became laterally recumbent; sedation was more variable in the other 2 groups treated orally. Vomiting and excessive salivation were the only adverse effects. Bradycardia (heart rate < 145 beats/min) was detected at each evaluation time in cats treated orally with detomidine and ketamine and in all cats treated i.m. Minimal differences among groups were detected for heart and respiratory rates, rectal temperature, and hemoglobin oxygen saturation. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of detomidine and ketamine is an effective method of sedating healthy cats and induces minimal physiologic effects that are similar to those resulting from i.m. administration of sedatives.  相似文献   

16.
17.
ObjectiveTo evaluate the perioperative opioid-sparing effect of a medetomidine (MED) infusion compared to a saline (SAL) infusion in otherwise healthy dogs undergoing thoraco-lumbar hemilaminectomy surgery.Study designRandomized, partially blinded, clinical study.AnimalsA total of 44 client-owned adult dogs.MethodsAll dogs were administered a 1 μg kg–1 MED loading dose, followed by a 1.7 μg kg–1 hour–1 constant rate infusion (CRI) intravenously or equivalent volumes of SAL. Infusions were started 10–15 minutes before surgical incision and continued throughout the surgical procedure. All dogs were administered a standardized anaesthetic and analgesic protocol (including a ketamine CRI). Multiparametric monitoring, including invasive arterial blood pressure, was performed. A trained investigator, unaware of the treatment, performed pain scores for 4 hours postoperatively. Rescue analgesia consisted of fentanyl administered intraoperatively and methadone postoperatively. Data were tested for normality and analysed with Fisher’s exact test, Mann–Whitney U-test, analysis of variance and Kaplan–Meier survival analysis. Data are shown as median (interquartile range) and p-value was set at < 0.05.ResultsThe total dose of fentanyl was significantly lower with MED 0 (0–0.8) μg kg–1 hour–1 compared to SAL 3 (1.8–5.3) μg kg–1 hour–1 (p = 0.004). In the MED group, one dog compared to 12 dogs in the SAL group required a fentanyl CRI (p = 0.001). There were no statistically significant differences between groups regarding the total dose of methadone administered.Conclusions and clinical relevanceThe addition of a low-dose medetomidine CRI to the anaesthetic protocol decreased the need for a fentanyl CRI in otherwise healthy dogs undergoing thoraco-lumbar hemilaminectomy surgery during administration of a ketamine CRI.  相似文献   

18.
The cardiopulmonary effects of a ketamine/ acepromazine combination was studied in ten cats subjected to a 25% whole blood volume loss. Test parameters included cardiac output, measured via thermodilution, heart rate, respiratory rate, arterial blood pressure (systolic, diastolic and mean) and blood gas analysis. Values for cardiac index, stroke volume and systemic vascular resistance were calculated from these data. Posthemorrhage, cardiac output, cardiac index, stroke volume, heart rate and measurements of arterial blood pressure were significantly decreased (p less than 0.05). Following the induction of ketamine/ acepromazine anesthesia, cardiac output, cardiac index, stroke volume and heart rate showed mild but statistically insignificant declines and were above their respective posthemorrhage values 120 min into ketamine/ acepromazine anesthesia. Measurements of arterial blood pressure showed further declines from their respective posthemorrhage values that were statistically significant (p less than 0.05). Following hemorrhage, respiratory rate increased significantly (p less than 0.05), associated with a fall in arterial CO2 tension. During ketamine/ acepromazine anesthesia, respiratory rate showed a dramatic and significant decline (p less than 0.05) with arterial CO2 tension rising to prehemorrhage values. Systemic vascular resistance, arterial O2 tension and pH remained essentially unchanged throughout the experimental period.  相似文献   

19.
This study compared acid-base and biochemical changes and quality of recovery in male cats with experimentally induced urethral obstruction and anesthetized with either propofol or a combination of ketamine and diazepam for urethral catheterization. Ten male cats with urethral obstruction were enrolled for urethral catheterization and anesthetized with either ketamine-diazepam (KD) or propofol (P). Lactated Ringer’s solution was administered by intravenous (IV) beginning 15 min before and continuing for 48 h after relief of urethral obstruction. Quality of recovery and time to standing were evaluated. The urethral catheter was maintained to measure urinary output. Hematocrit (Hct), total plasma protein (TPP), albumin, total protein (TP), blood urea nitrogen (BUN), creatinine, pH, bicarbonate (HCO3), chloride, base excess, anion gap, sodium, potassium, and partial pressure of carbon dioxide in mixed venous blood (pvCO2) were measured before urethral obstruction, at start of fluid therapy (0 h), and at subsequent intervals. The quality of recovery and time to standing were respectively 4 and 75 min in the KD group and 5 and 16 min in the P group. The blood urea nitrogen values were increased at 0, 2, and 8 h in both groups. Serum creatinine increased at 0 and 2 h in cats administered KD and at 0, 2, and 8 h in cats receiving P, although the values were above the reference range in both groups until 8 h. Acidosis occurred for up to 2 h in both groups. Acid-base and biochemical stabilization were similar in cats anesthetized with propofol or with ketamine-diazepam. Cats that received propofol recovered much faster, but the ketamine-diazepam combination was shown to be more advantageous when treating uncooperative cats as it can be administered by intramuscular (IM) injection.  相似文献   

20.
Background: Ketamine as continuous rate infusion (CRI) provides analgesia in hospitalized horses. Objective: Determine effects of prolonged CRI of ketamine on gastrointestinal transit time, fecal weight, vital parameters, gastrointestinal borborygmi, and behavior scores in healthy adult horses. Animals: Seven adult Thoroughbred or Thoroughbred cross horses, with permanently implanted gastric cannulae. Methods: Nonblinded trial. Random assignment to 1 of 2 crossover designed treatments. Ketamine (0.55 mg/kg IV over 15 minutes followed by 1.2 mg/kg/h) or lactated Ringer's solution (50 mL IV over 15 minutes followed by 0.15 mL/kg/h) treatments. Two hundred 3 × 5 mm plastic beads administered by nasogastric tube before drug administration. Every 2 hours vital parameters, behavior scores recorded, feces collected and weighed, and beads retrieved. Every 6 hours gastrointestinal borborygmi scores recorded. Study terminated upon retrieval of 180 beads (minimum 34 hours) or maximum 96 hours. Nontransit time data analyzed between hours 0 and 34. Results: No significant (P < .05) differences detected between treatments in vital signs or gastrointestinal borborygmi. Significant (P = .002) increase in behavior score during ketamine infusion (0.381) from hours 24–34 compared with placebo (0). Ketamine caused significant delay in passage of 25, 50, and 75% of beads (ketamine = 30.6 ± 5.3, 41.4 ± 8.4, 65.3 ± 13.5 hours versus placebo = 26.8 ± 7.9, 34.3 ± 11.1, 45.8 ± 19.4 hours), and significant (P < .05) decrease in fecal weight from hours 22 (12.6 ± 3.2 versus 14.5 ± 3.8 kg) through 34 (18.5 ± 3.9 versus 12.8 ± 6.4 kg) of infusion. Conclusions and Clinical Importance: Ketamine CRI delayed gastrointestinal transit time in healthy horses without effect on vital parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号