首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This study examined productivity, nitrogen (N) flows and N balances in grassland‐based systems of dairy production in Ireland. There were four stocking densities of dairy cows on grass/white clover pastures and four inputs of N as fertilizers, concentrates and biological fixation over 2 years; 2001 and 2002. Annual stocking densities were 1·75, 2·10, 2·50 and 2·50 cows ha?1. Associated N inputs were 205, 230, 300 and 400 kg ha?1 respectively. There were eighteen cows per system. Cows calved within a 12‐week interval in spring with a mean calving date of 28 February and lactation extended until mid‐December in each year. There were no differences in annual milk yield (6337 kg cow?1; s.e.m. 106·1), live weight or body condition score. Pre‐grazing N concentrations in herbage increased (P < 0·001) with increasing N input, whereas there were no differences in N concentrations in silage reflecting optimum N inputs for silage production. Grazed herbage accounted for 0·64, silage 0·26 and concentrates 0·10 of annual dry matter consumed by the cows. Annual intakes of N ranged from 144 to 158 kg cow?1 and were mostly influenced by N concentration in grazed herbage. Annual output of N in milk and liveweight change was 38 kg cow?1 and was not different between systems. Annual N surpluses increased with increasing N inputs from 137 to 307 kg ha?1, whereas the proportion of N inputs recovered in products declined from 0·34 to 0·24. More efficient N use was associated with lower N inputs and in particular lower N concentrations in grazed herbage.  相似文献   

2.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

3.
Effluent lagoons on dairy farms can overflow and potentially pollute adjacent land and associated water bodies. An alternative solution to effluent disposal is needed by dairy operators in island environments. An attractive win‐win alternative is to recycle nutrients from this resource through effluent irrigation for forage grass production that minimizes environmental pollution. This study assessed biomass production and nutrient removal by, and high application rates to, tropical grasses that were subsurface drip‐irrigated with dairy effluent. Four grass species – Banagrass (Pennisetum purpureum K. Schumach.), California grass (Brachiaria mutica (Forssk.) Stapf.), Stargrass (Cynodon nlemfuensis Vanderyst) and Suerte grass (Paspalum atratum Swallen) – were subsurface (20–25 cm) drip‐irrigated with effluent at two rates based on potential evapotranspiration (ETp) at the site (Waianae, Hawaii) ?2·0 ETp (16 mm d?1 in winter; 23 mm d?1 in summer) and 0·5 ETp (5 mm d?1 in winter; 6 mm d?1 in summer). Treatments were arranged in an augmented completely randomized design. Brachiaria mutica and P. purpureum had the highest dry‐matter yield (43–57 t ha?1 year?1) and nutrient uptake especially with the 2·0 ETp irrigation rate (1083–1405 kg ha?1 year?1 N, 154–164 kg ha?1 year?1 P, 1992–2141 kg ha?1 year?1 K). Average removal of nutrients by the grasses was 25–94% of the applied nitrogen, 11–82% of phosphorus and 2–13% of the potassium. Average values of crude protein (90–160 g kg?1), neutral detergent fibre (570–620 g kg?1) and acid detergent fibre (320–360 g kg?1) were at levels acceptable for feeding to lactating cattle. Results suggest that P. purpureum and B. mutica irrigated with effluent effectively recycled nutrients in the milk production system.  相似文献   

4.
Complementary forage rotation (CFR) systems based on non‐limiting inputs of fertilizer nitrogen (N) (~600 kg N ha?1) are perceived as uneconomic. An experiment was carried out in Australia to investigate the effects of rates and timing of N fertilizer and sowing date on yield, nutrient‐use efficiency and nutritive value of a triple‐crop (maize, forage rape, field peas) CFR system. Treatments were early‐ and late‐sown maize grown with 0 or 135 kg fertilizer N ha?1 pre‐sowing (N1) and 0, 79 or 158 kg N ha?1 post‐sowing (N2). Forage rape was sown with 0 or 230 kg N ha?1 (N3) and field peas without N. Application of fertilizer N at N1, N2 and N3 increased CFR yield from 28·5 to 48·8 t dry matter (DM) ha?1 and irrigation water‐use efficiency (IWUE) from 3·4 to 6·1 t DM per megalitre. Increase in yield and IWUE of CFR occurs at the expense of nitrogen‐use efficiency (NUE) as applications of N at N1, N2 and N3 decreased NUE of CFR from 524 to 91 kg DM kg?1 N. Nutritive value, particularly metabolizable energy content of all forages, was similar among N treatments, and interactions between treatments were minimal. Results indicate that increase in NUE of CFR may occur at the expense of reduced yield, but increased IWUE need not compromise the yield of this CFR system.  相似文献   

5.
A field experiment was conducted in 2006 and 2007 to determine the agronomic performance and nutritive value of Sorghum almum for introduction in the derived savannah area of Nigeria. The experiment was arranged in a 2 × 4 factorial design with 2 plant spacings (0·5 × 0·5 m and 1·0 × 1·0 m) and 4 nitrogen (N) fertilizer levels (0, 60, 120 and 180 kg N ha?1). Plant height, tiller number, leaf proportion, biomass yield and nutritive value of the herbage were evaluated as part of the search for alternatives (especially drought tolerant) to local forages for dry season feeding of ruminants. Herbage yield data were tested for linear, quadratic and cubic trends to identify the optimal fertilizer levels for both spacings. Spacing × N interactions (P < 0·05) were observed for plant height and tiller number in both years. Agronomic performance was marginally better in 2007 compared with 2006. The maximum dry‐matter (DM) yield of 3500 and 3740 kg ha?1 for the more dense row spacing (0·5 × 0·5 m) was achieved at N fertilizer levels of 144 and 149 kg N ha?1 for 2006 and 2007 respectively. For the less dense (1·0 × 1·0 m) row spacing, the maximum DM yield of 3020 and 3240 kg ha?1 was achieved at 51 and 97 kg N ha?1 for 2006 and 2007 respectively. The crude protein content of the grass ranged from 61 to 89 g kg?1 DM, while the neutral detergent fibre (NDF) content ranged from 700 to 734 g kg?1 DM. The ability of S. almum to persist into the second year in this region is seen as a promising index as persistence is one of the characteristics of a good forage plant. Considering the exorbitant price of N fertilizer, less dense row spacing with N fertilizer rate in the range of 50–100 kg N ha?1 is hereby recommended for this region.  相似文献   

6.
This study examined the quantity of mineral N in soil and nitrate‐N losses to groundwater from grassland‐based dairy production in 2001 and 2002. There were four treatments with different inputs of N, through fertilizers, concentrates and biological fixation, and four associated stocking densities. Nitrogen inputs were 205, 230, 300 and 400 kg ha?1, respectively, and annual stocking densities were 1·75, 2·10, 2·50 and 2·50 cows ha?1. There were 18 cows per treatment. Grazed herbage accounted for 0·64, grass‐silage for 0·26 and concentrates 0·10 of annual DM consumed by the cows. Quantities of mineral N (nitrate‐N and ammonium‐N) in soil were measured, following extraction in 2 M KCl (1:2 w/v) shaken continuously for 2 h, on three occasions between late September and early February each winter. Concentrations of nitrate‐N in groundwater from wells inserted vertically to a depth of 1 m were determined throughout both winters. Quantities of mineral N in the soil increased (P < 0·001) with higher N inputs and declined (P < 0·001) with later sampling date. There were no relationships between nitrate‐N concentrations in groundwater and N inputs, N surpluses, deposition of excreta‐N at the soil surface and soil mineral N during both winters. Low losses of nitrate‐N to groundwater were primarily attributed to high rates of denitrification associated with a heavy soil texture, wet anaerobic soil conditions, relatively high organic carbon contents throughout the soil profile and mild soil temperatures throughout the year. Uptake of N by herbage made an important contribution to low N losses over the winter.  相似文献   

7.
This study investigated the effect of using a trailing‐shoe system to apply cattle slurry, under different conditions of grass height (low [LG]: freshly cut sward [4–5 cm height] vs. high [HG]: application delayed by 7–19 d and applied to taller grass sward [4–11 cm] height) and month of application (June vs. April), on the nitrogen fertilizer replacement value (NFRV) and apparent N recovery (ANRS) of cattle slurry applied to grassland. NFRV was calculated using two methods: (i) NFRVN based on the apparent recovery of slurry‐N relative to that of mineral‐N fertilizer; and (ii) NFRVDM based on DM yield. The effect of applying slurry into HG swards, relative to LG swards, decreased the DM yield by 0·47 t ha?1 ( 0·001), N uptake by 5 kg ha?1 (P = 0·05), ANRS by 0·05 kg kg?1 (P = 0·036), NFRVN by 0·05 kg kg?1 (P = 0·090) and NFRVDM by 0·11 kg kg?1 (< 0·001). It was concluded that the main factor causing these decreases with HG, compared with LG applications, was wheel damage affecting subsequent N uptake and growth of the taller grass sward.  相似文献   

8.
Field experiments were conducted at three different sites in Saskatchewan, Canada (Colonsay, Vanscoy and Rosthern) over two years (2005 and 2006) to determine the effects of dribble‐banded and coulter‐injected liquid fertilizer applied in the spring of 2005 at 56, 112 and 224 kg N ha?1 with and without P at 28 kg P2O5 ha?1. The three sites were unfertilized, 7‐ to 8‐year old stands of mainly meadow bromegrass (Bromus riparius)‐dominated haylands. All fertilization treatments produced significantly (P ≤ 0·05) higher dry matter yield than the control in the year of application at the three Saskatchewan sites. There was no significant difference between the two application methods (surface dribble band vs. coulter injected) for any fertilizer treatments. The addition of 28 kg P2O5 ha?1 P fertilizer along with the N fertilizer did not have a significant effect on yield in most cases. In the year of application, increasing N rates above 56 kg N ha?1 did not significantly increase yield over the 56 kg N ha?1 rate in most cases, but did increase N concentration, N uptake and protein concentration. A significant residual effect was found in the high N‐rate treatments in 2006, with significantly higher yield and N uptake. In 2005, the forage N and P uptake in the fertilized treatments were significantly higher than the control in all cases. The N uptake at the three Saskatchewan sites increased with increasing N rate up to the high rate of 224 kg N ha?1, although the percent recovery of applied N decreased with increasing rate. The P fertilization with 28 kg P2O5 ha?1 also increased P uptake. Overall, rates of fertilizer of approximately 56 kg N ha?1 appear to be sufficient to produce nearly maximum forage yield and protein concentration of the grass in the year of application.  相似文献   

9.
Abstract The response of a long‐term, mixed‐species hayfield in Maine, USA, to commercial fertilizers and liquid dairy manure was evaluated over a 6‐year period, including the effects on yield, nutrient concentration and cycling, forage species composition and soil nutrient levels. Nutrient treatments included an unamended control, N fertilizer, NPK fertilizer and liquid dairy manure (LDM). The application rates of plant‐available N, P, and K were constant across treatments. Application of nutrients in any form increased forage yield, generally by 2–4 t dry matter (DM) ha?1 year?1. Yield from NPK fertilizer was 0·05–0·25 higher than from LDM, due to differences in N availability. Yield responses to P and K were minimal and there appeared to be no difference between P and K in fertilizer and manure. The forage sward became increasingly dominated by grass species as the experiment progressed; application of P and K in fertilizer or LDM allowed Agropyron repens to increase at the expense of Poa pratensis. Forage nutrient removal accounted for all applied N and K, and nearly all applied P, throughout the study period, demonstrating the important role these forages can play in whole‐farm nutrient management.  相似文献   

10.
The impact of various starter phosphorus (P) fertilizers on the growth, nutrient uptake and dry‐matter (DM) yield of forage maize (Zea mais) continuously cropped on the same area and receiving annual, pre‐sowing, broadcast dressings of liquid and semi‐solid dairy manures was investigated in two replicated plot experiments and in whole‐field comparisons in the UK. In Experiment 1 on a shallow calcareous soil (27 mg l?1 Olsen‐extractable P) in 1996, placement of starter P fertilizer (17 or 32 kg ha?1) did not benefit crop growth or significantly (P > 0·05) increase DM yield at harvest. However, in Experiment 2 on a deeper non‐calcareous soil (41 mg l?1 Olsen‐extractable P) in 1997, placement of starter P fertilizer (19 or 41 kg P ha?1), either applied alone or in combination with starter N fertilizer (10 or 25 kg N ha?1), significantly increased early crop growth (P < 0·01) and DM yield at harvest by 1·3 t ha?1 (P < 0·05) compared with a control without starter N or P fertilizer. Placement of starter N fertilizer alone did not benefit early crop growth, but gave similar yields as P, or N and P, fertilizer treatments at harvest. Large treatment differences in N and P uptake by mid‐August had disappeared by harvest. In field comparisons over the 4‐year period 1994–97, the addition of starter P fertilizer increased field cumulative surplus P by over 70%, but without significantly (P > 0·05) increasing DM yield, or nutrient (N and P) uptake, compared with fields that did not receive starter P fertilizer. The results emphasized the extremely low efficiency with which starter P fertilizers are utilized by forage maize and the need to budget manure and fertilizer P inputs more precisely in order to avoid excessive soil P accumulation and the consequent increased risk of P transfer to water causing eutrophication.  相似文献   

11.
Performance of white clover/perennial ryegrass mixtures under cutting   总被引:4,自引:0,他引:4  
Clover persistence in mixtures of two varieties of perennial ryegrass (Lolium perenne) with contrasting growth habits and three white clover (Trifolium repens) varieties differing in leaf sizes was evaluated at two cutting frequencies. An experiment was sown in 1991 on a clay soil. The plots received no nitrogen fertilizer. In 1992, 1993 and 1994, mixtures containing the large-leaved clover cv. Alice yielded significantly more herbage dry matter (DM) and had a higher clover content than mixtures containing cvs Gwenda and Retor. Companion grass variety did not consistently affect yield or botanical composition. Cutting at 2 t DM ha?1 resulted in slightly higher total annual yields than cutting at 1.2 t DM ha?1, but did not affect clover content. In 1992 the mixtures yielded, depending on cutting frequency and variety, 10·6–14·6 t DM ha?1 and 446–599 kg ha?1 N, whereas grass monocultures yielded only 1·2–2·0 t DM ha?1 and 25–46 kg ha?1 N. From 1992 to 1994 the annual mean total herbage yield of DM in the mixtures declined from 12·2 to 10·5 to 8·7 t ha?1, the white clover yield declined from 8·7 to 6·5 to 4·1 t ha?1 and the average clover content during the growing season declined from 71% to 61% to 46%, whereas the grass yield increased from 3·4 to 4·0 to 4·5 t ha?1. The N yield decreased from 507 to 406 to 265 kg N ha?1 and the apparent N fixation from 470 to 380 to 238 kg N ha?1. Nitrate leaching losses during the winters of 1992–93 and 1994–95 were highest under mixtures with cv. Alice, but did not exceed 10 kg N ha?1. The in vitro digestible organic matter (IVDOM) was generally higher in clover than in grass, particularly in the summer months. No differences in IVDOM were found among clover or grass varieties. The experiment will be continued to study clover persistence and the mechanisms that affect the grass/clover balance.  相似文献   

12.
An experiment was conducted in inland northern New South Wales (NSW) to assess the response of tropical perennial grasses Chloris gayana (Rhodes grass) cv. Katambora and Digitaria eriantha (digit grass) cv. Premier and annual forage sorghum (Sorghum bicolor ssp. bicolor × S. bicolor ssp. drummondii hybrid) cv. Sweet Jumbo fertilized with five rates of nitrogen (N; 0, 50, 100, 150 and 300 kg N ha?1) and defoliated every 2 or 6 weeks over two growing seasons. Tropical perennial grasses were highly responsive to N fertilizer, while there was no significant response by forage sorghum. Herbage production of Rhodes grass increased linearly whereas digit grass had a high response at 50–100 kg N ha?1. Nitrogen‐use efficiency was highest during the growing season when rainfall was higher. During this season, digit grass had the highest N efficiency (148 kg DM kg?1 N applied) at 50 kg N ha?1, and Rhodes grass (66 kg DM kg?1 N applied) at 100 kg N ha?1. Plant frequency of both perennial species increased and then stabilized at high levels (>84%, cell size 0·1 by 0·1 m) during the two growing seasons. Plant frequency of Rhodes grass declined over the winter period, but recovered within 6 weeks of commencement of the growing season. Soil nitrate levels indicated that unused nitrate moved down the soil profile during wet winters. Implications of leaching below the rooting zone are discussed.  相似文献   

13.
A 2‐year whole‐farm system study compared the accumulation, utilization and nutritive value of grass in spring‐calving grass‐based systems differing in stocking rate (SR) and calving date (CD). Six treatments (systems) were compared over two complete grazing seasons. Stocking rates used in the study were low (2·5 cows ha?1), medium (2·9 cows ha?1) and high (3·3 cows ha?1), respectively, and mean CDs were 12 February (early) and 25 February (late). Each system had its own farmlet of eighteen paddocks and one herd that remained on the same farmlet area for the duration of the study. Stocking rate had a small effect on total herbage accumulation (11 860 kg DM ha?1 year?1), but had no effect on total herbage utilization (11 700 kg DM ha?1 year?1). Milk and milk solids (MS; fat + protein) production per ha increased by 2580 and 196 kg ha?1 as SR increased from 2·5 to 3·3 cows ha?1. Milk production per ha and net herbage accumulation and utilization were unaffected by CD. Winter feed production was reduced as SR increased. Increased SR, associated with increased grazing severity, resulted in swards of increased leaf content and nutritive value. The results indicate that, although associated with increased milk production per ha, grazed grass utilization and improved sward nutritive value, the potential benefits of increased SR on Irish dairy farms can only be realized if the average level of herbage production and utilization is increased.  相似文献   

14.
In change‐over trials, mid‐lactation dairy cows were fed concentrate‐supplemented, isonitrogenous and isofibrous perennial ryegrass–legume silage diets that satisfied energy requirements but were suboptimal with respect to metabolizable protein supply. Legumes were either birdsfoot trefoil with low levels of condensed tannins (typical for hemiboreal conditions), or white clover. Averaged over two experimental years, birdsfoot trefoil–based silage resulted in lower digestibility (P < 0·001) of dry matter (50 g kg?1), organic matter (52 g kg?1), neutral detergent fibre (120 g kg?1) and nitrogen (24 g kg?1) and lower rumen total volatile fatty acid concentration (7 mm ; P = 0·009). Milk protein yield was 36 g d?1 higher with birdsfoot trefoil silage (P = 0·002), while raw milk yield tended to be 0·8 kg d?1 higher (P = 0·06). Rumen ammonia concentration was similar between diets, but milk urea concentration (< 0·001), urinary urea excretion (P = 0·002) and faecal‐N proportion (P = 0·001) were higher with birdsfoot trefoil silage. The results suggest that grass–birdsfoot trefoil silage produced in hemiboreal areas exhibits a protein‐sparing effect in dairy rations, despite a low condensed tannin content that is further diluted by companion grasses and ration concentrate proportion.  相似文献   

15.
Responses of perennial ryegrass (Lolium perenne L.) to nitrogen (N) fertilizer application rates and timings vary widely, because water is often limiting. Yield response to N fertilizer application during autumn, late‐winter and spring, and the associated efficiency of use of these inputs, was assessed under conditions of non‐limiting soil moisture during two, one‐year lysimeter studies in Canterbury, New Zealand. There were significant (P < 0·05) increases in seed and herbage yields with increasing N fertilizer application. Seed yields differed with year; greatest yields were 300 g m?2 in 1996 and 450 g m?2 in 1997. Seed head numbers (r2=0·77), seeds head?1 (r2=0·92) and herbage yield (r2=0·92) were the major determinants of seed yield in both years. Irrigation required to maintain the soil between 70% and 90% of field capacity was directly related (r2=0·94 and 0·99 in 1996 and 1997 respectively) to increases in herbage yield. Seed yield, seed quality (thousand seed weight and percentage of seed > 1·85 mg), efficiency of water use, efficiency of N fertilizer use and apparent N fertilizer recovery were greatest when N fertilizer was applied at a rate of 50 kg N ha?1, 50 or 100 kg N ha?1 and 150 kg N ha?1 in autumn, late‐winter and spring respectively; further increases in spring N fertilizer stimulated vegetative growth, but not seed yield. As a management strategy, applying N fertilizer to match the N requirements of the crop during the reproductive stage of growth will result in high yields of high quality seed while minimizing environmental impact.  相似文献   

16.
In 1988 and 1989, swards of grass (G0), while clover (C0) and grass/white clover (GC0) receiving no N fertilizer, and a grass sward supplied with 420 kg N ha?1 (G420), were grazed by non-lactating sheep to maintain a sward surface height of 6 cm. Herbage organic matter (OM) intakes averaged between 1200 and 1700 g OM ewe?1 d?1. For treatments G0, C0, GC0 and G420 respectively, the ewes' live weight gain was 102, 112, 100 and 110 g d?1 and changes in body condition scores were +0·28, +0·52, +0·36 and +0·44 units season?1. However, the effect of treatment was not significant for either variable. There were similar levels of output of faecal N ewe?1 but significantly more urinary N ewe?1 was excreted on treatments C0 and G420, where the concentrations of N in herbage laminae were also higher. For example, in 1989, total daily N excreted was 39·7, 64·4, 44·0 and 63·3 g N ewe?1 for G0, C0, GC0 and G420 respectively. Taking into account the mean daily stocking rates, which were 19·4, 26·6, 27·2 and 36·5 ewe ha?1, the total faeces and urine returns over the season were 161, 358, 249 and 484 kg N ha?1 for each treatment respectively. The herbage OM intakes ewes?1 d?1 measured in September and October were similar for C0 and G420, and so the intake of herbage OM ha?1 d?1 was related to stocking rate, i. e. the estimated herbage intake ha?1 over the growing season for the white clover monoculture was 73% of that for N-fertilized grass. Excretal nitrogen returns to the pasture from grazed mono-cultures of clover were high, and similar to those from a grass sward receiving 420 kg fertilizer N ha?1. Consequently potential losses of N to the environment are high under these management systems.  相似文献   

17.
Nitrogen (N) budgets were determined for six typical, moderately intensive dairy farms in south‐west England. Proportionately, only 0·12–0·17 of the N input to the farms was recovered in agricultural products, leaving annual N surpluses equivalent to 249–376 kg N ha?1. A sequence of models (MANNER, NCYCLE and SUNDIAL) was used, together with the estimated N balance of the dairy cows and standard ammonia emission factors, to estimate N losses for each farm. Total estimated losses were equivalent to 137–220 kg N ha?1 year?1. Leaching accounted for 0·26–0·45 of the total loss, ammonia volatilization for 0·27–0·39 and denitrification for 0·17–0·36. When residual N from manure applications was included, there appeared to be an annual accumulation of soil N, equivalent to 66–158 kg N ha?1 when averaged over the whole farm area. The amounts of N lost by leaching, volatilization and denitrification, and accumulated as soil‐N, were determined by a combination of farm properties, including N input, soil type, drainage, characteristics of the manure produced and type of fertilizer. The sum of estimated losses and change in N retained on the farm was between 0·85 and 1·11 of the N surplus (input minus output) determined from the farm budget. This suggests that losses and the change in soil‐N were underestimated on some farms and overestimated on others (by up to ?50 and +23 kg N ha?1 respectively). Much of the discrepancy between estimates and the surplus was attributed to difficulties of fully integrating inputs and outputs between the different models and stages of the modelling procedure.  相似文献   

18.
Indigenous perennial grasses are widely distributed in the Arabian Peninsula. Their survival under limited rainfall and grazing suggests a potential role as grassland species and for rehabilitation of degraded rangelands. Forage productivity, seed production and water‐use efficiency (WUE) was determined over 2 years for four indigenous grasses: buffel grass (Cenchrus ciliaris L.), dakhna (Coelachyrum piercei Benth.), da’ay (Lasiurus scindicus Henr.) and tuman (Panicum turgidum Forssk.) together with one exotic species, rhodes grass (Chloris gayana Kunth) in the central region of the United Arab Emirates. Three irrigation treatments were used: R1 (1858–6758 m3 ha?1 year?1), R2 (929–3379 m3 ha?1 year?1) and R3 (464–1689 m3 ha?1 year?1). Buffel grass had the highest dry‐matter (DM) yield under all irrigation treatments. The average DM yield of buffel grass was 14·6 and 15·1 t ha?1 in the 2 years which was significantly higher than that for the other grasses with dakhna having the lowest DM yields. The WUE of 0·7 and 0·8 kg DM m?3 in the 2 years for buffel grass was significantly greater than for the other grasses. Buffel grass showed the highest increase in WUE in both years when the irrigation was reduced from treatment R1 to R3. The results suggest that the desert grasses of the Arabian Peninsula, such as buffel grass, could be useful grass species in reducing the use of scarce irrigation water provided that seed production can be increased.  相似文献   

19.
The benefits of white clover (Trifolium repens L.) in pastures are widely recognized. However, white clover is perceived as being unreliable due to its typically low content and spatial and temporal variability in mixed (grass‐legume) pastures. One solution to increase the clover proportion and quality of herbage available to grazing animals may be to spatially separate clover from grass within the same field. In a field experiment, perennial ryegrass (Lolium perenne L.) and white clover were sown as a mixture and compared with alternating strips of ryegrass and clover (at 1·5 and 3 m widths), or in adjacent monocultures (strips of 18 m width within a 36‐m‐wide field). Pastures were stocked by ewes and lambs for three 10‐month grazing periods. Over the 3 years of the experiment, spatial separation of grass and clover, compared with a grass–clover mixture, increased clover herbage production, although its proportion in the sward declined through time (0·49–0·54 vs 0·34 in the mixture in the first year, 0·28–0·33 vs 0·15 in the second year and 0·03–0·18 vs 0·01 in the third year). Total herbage production in the growing season in the spatially separated treatments decreased from 11384 kg DM ha?1 in the first year to 8150 kg DM ha?1 in the third year. Crude protein concentration of clover and grass components in the 18‐m adjacent monoculture treatment was greater than the mixture treatment for both clover (310 vs 280 g kg?1 DM) and grass (200 vs 180 g kg?1 DM). There was no clear benefit in liveweight gain beyond the first year in response to spatially separating grass and clover into monocultures within the same field.  相似文献   

20.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号