首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodiophora brassicae causes clubroot of crucifers. A quantitative PCR (qPCR)‐based protocol was developed to measure P. brassicae DNA in the roots of susceptible, intermediately susceptible, intermediately resistant and resistant Brassica hosts, and the non‐host wheat, at 5, 10, 15, 20 and 42 days post‐inoculation (dpi). The final reaction of each plant genotype was recorded as an index of disease at 42 dpi. Plasmodiophora brassicae DNA showed an increase in susceptible and moderately resistant hosts from 5 to 42 dpi, in contrast to a decrease in a highly resistant host and the non‐host wheat over the same period. Index of disease was significantly positively correlated with the amount of P. brassicae DNA in the roots at 5, 15, 20 and 42 dpi in one experiment, and at 10, 15, 20 and 42 dpi in a repeated experiment. Significant positive correlations also existed between the amounts of P. brassicae DNA in the roots at 42 dpi and those at 5, 10, 15 and 20 dpi in one experiment, and those at 10, 15 and 20 dpi in a repeated experiment. The results generated by the qPCR assay were validated by microscopic examination of roots inoculated with P. brassicae. The qPCR‐based protocol developed in this study allows for the accurate quantification of P. brassicae DNA in host root tissues as early as 5 dpi, and may serve as a useful tool to evaluate pathogen proliferation and development in the roots.  相似文献   

2.
Clubroot disease, caused by Plasmodiophora brassicae, has become a major problem in the production of cruciferous crops worldwide. In this study, a population of 121 doubled haploid (DH) lines derived from a crossing between a resistant and a susceptible canola (Brassica napus) genotype was subjected to phenotypic and genotypic studies to determine the inheritance and location of the resistance gene(s). After inoculation with pathotype 3 of P. brassicae, the lines showed a 1:1 segregation ratio for resistance, indicating that resistance in this population is controlled by a single gene. Fifteen PCR‐based markers that were known to be linked to clubroot resistance (CR) genes were screened against genomic DNA from parents and resistant and susceptible bulks. Marker GC1680, linked to the CR gene CRa, exhibited polymorphism between the parents and between the resistant and susceptible bulks. CRa target primers were used to amplify fragments from the two parents and the resultant sequences were compared. A high degree of sequence similarity was found between the parents in the nucleotide binding site domain of CRa. In contrast, sequence polymorphisms were detected in the leucine‐rich repeat (LRR) domain. One pair of primers that amplify a band from the LRR region of the resistant parent but not the susceptible parent was used to screen the DH population. Amplicons were obtained from 60 of the 61 resistant lines and two of the 60 susceptible lines; thus, three recombinants were found. Based on these results, a resistance locus linked to CRa was found.  相似文献   

3.
Pyrenopeziza brassicae (anamorph Cylindrosporium concentricum) is an ascomycete fungus that causes light leaf spot (LLS) disease of brassicas. It has recently become the most important pathogen of winter oilseed rape (Brassica napus) crops in the UK. The pathogen is spread by both asexual splash‐dispersed conidia and sexual wind‐dispersed ascospores. Such inoculum can be detected with existing qualitative and quantitative PCR diagnostics, but these require time‐consuming laboratory‐based processing. This study describes two loop‐mediated isothermal amplification (LAMP) assays, targeting internal transcribed spacer (ITS) or β‐tubulin DNA sequences, for fast and specific detection of P. brassicae isolates from a broad geographical range (throughout Europe and Oceania) and multiple brassica host species (B. napus, B. oleracea and B. rapa). Neither assay detected closely related Oculimacula or Rhynchosporium isolates, or other commonly occurring oilseed rape fungal pathogens. Both LAMP assays could consistently detect DNA amounts equivalent to 100 P. brassicae conidia per sample within 30 minutes, although the β‐tubulin assay was more rapid. Reproducible standard curves were obtained using a P. brassicae DNA dilution series (100 ng–10 pg), enabling quantitative estimation of amounts of pathogen DNA in environmental samples. In planta application of the β‐tubulin sequence‐based LAMP assay to individual oilseed rape leaves collected from the field found no statistically significant difference in the amount of pathogen DNA present in parts of leaves either with or without visible LLS symptoms. The P. brassicae LAMP assays described here could have multiple applications, including detection of symptomless host infection and automated real‐time monitoring of pathogen inoculum.  相似文献   

4.
Light leaf spot (Pyrenopeziza brassicae) is an important disease on winter oilseed rape crops (Brassica napus) in northern Europe. In regions where economically damaging epidemics occur, resistance to P. brassicae in commercial cultivars is generally insufficient to control the disease without the use of fungicides. Two major genes for resistance have been identified in seedling experiments, which may operate by decreasing colonisation of B. napus leaf tissues and P. brassicae sporulation. Much of the resistance present in current commercial cultivars is thought to be minor gene-mediated and, in crops, disease escape and tolerance also operate. The subtle strategy of the pathogen means that early colonisation of host tissues is asymptomatic, so a range of techniques and molecular tools is required to investigate mechanisms of resistance. Whilst resistance of new cultivars needs to be assessed in field experiments where they are exposed to populations of P. brassicae under natural conditions, such experiments provide little insight into components of resistance. Genetic components are best assessed in controlled environment experiments with single spore (genetically fixed) P. brassicae isolates. Data for cultivars used in the UK Recommended List trials over several seasons demonstrate how the efficacy of cultivar resistance can be reduced when they are deployed on a widespread scale. There is a need to improve understanding of the components of resistance to P. brassicae to guide the development of breeding and deployment strategies for sustainable management of resistance to P. brassicae in Europe.  相似文献   

5.
Clubroot resistance derived from the oilseed rape/canola Brassica napus ‘Mendel’ has been overcome in some fields in Alberta, Canada, by the emergence of ‘new’ strains of the protist Plasmodiophora brassicae. Resistance to the pathogen was assessed in 112 doubled haploid (DH) lines, derived from B. rapa subsp. rapifera (European clubroot differential (ECD) 04). The lines were evaluated against five single‐spore isolates representing the ‘old’ pathotypes 2, 3, 5, 6 and 8, and 15 field populations representing new strains of P. brassicae. The disease severity index (ID%) data revealed that none of the DH lines were resistant or moderately resistant to the new pathotype 5X (field populations L‐G1, L‐G2, L‐G3) and D‐G3, while 3–42% were resistant or moderately resistant to the other 11 new strains. Using the mean ID induced by the old pathotype 3 (approx. 13.5%) as the baseline, clubroot severity increased by 300–600% when inoculated with the new pathotypes. A significant finding of this study was the fact that ECD 04 showed absolute resistance to all of the old and new P. brassicae strains while the B. napus ‘Mendel’, although resistant to all of the old pathotypes, was resistant to only about 50% of the new strains. Similarly, all of the selected clubroot‐resistant commercial canola cultivars evaluated in this study were susceptible to 87% of the new P. brassicae strains. The molecular data revealed that the breakdown of clubroot resistance in Mendel and the canola cultivars was in part due to the non‐inheritance of the Crr1 gene on the A08 chromosome from ECD 04.  相似文献   

6.
To mitigate the impact and dissemination of clubroot in western Canada, canola (Brassica napus) producers have relied on clubroot resistance traits. However, in 2013 and 2014, new strains of the clubroot pathogen, Plasmodiophora brassicae, emerged that are virulent on most clubroot‐resistant (CR) canola genotypes. Novel strains of the pathogen were inoculated onto two susceptible canola cultivars, one resistant line and six CR cultivars. Although all cultivars/lines showed a susceptible response to inoculation with the new strains of P. brassicae, the severity of disease reaction, root hair infection rates and the amount of P. brassicae DNA present in each canola genotype varied depending on the strain. In addition, the effect of inoculum density on disease severity and gall formation was recorded for one of these new strains on a universally susceptible Chinese cabbage cultivar and one susceptible and 10 resistant canola genotypes. Although root galls were observed at an inoculum density of 103 spores per mL of soil, clear differentiation of susceptible and resistant reactions among canola cultivars/lines was not observed until the inoculum density reached 105 spores mL?1. At a spore density of 106 spores mL?1 and above, all cultivars/lines developed susceptible reactions, although there was some differentiation in the degree of reaction. This study shows the potential to develop a unique disease profile for emergent clubroot pathotypes and shows a useful range of spore densities at which to study new P. brassicae strains.  相似文献   

7.
The soilborne pathogen Plasmodiophora brassicae, causal agent of clubroot of canola (Brassica napus), is difficult to manage due to the longevity of its resting spores, ability to produce large amounts of inoculum, and the lack of effective fungicides. The cropping of clubroot resistant (CR) canola cultivars is one of the few effective strategies for clubroot management. This study evaluated the impact of the cultivation of CR canola on P. brassicae resting spore concentrations in commercial cropping systems in Alberta, Canada. Soil was sampled pre-seeding and post-harvest at multiple georeferenced locations within 17 P. brassicae-infested fields over periods of up to 4 years in length. Resting spore concentrations were measured by quantitative PCR analysis, with a subset of samples also evaluated in greenhouse bioassays with a susceptible host. The cultivation of CR canola in soil with quantifiable levels of P. brassicae DNA resulted in increased inoculum loads. There was a notable lag in the release of inoculum after harvest, and quantifiable P. brassicae inoculum peaked in the year following cultivation of CR canola. Rotations that included a ≥2-year break from P. brassicae hosts resulted in significant declines in soil resting spore concentrations. A strong positive relationship was found between the bioassays and qPCR-based estimates of soil infestation. Results suggest that CR canola should not be used to reduce soil inoculum loads, and crop rotations in P. brassicae infested fields should include breaks of at least 2 years away from B. napus, otherwise the risk of selecting for virulent pathotypes may increase.  相似文献   

8.
Clubroot (Plasmodiophora brassicae) is an important disease of canola (Brassica napus) and other brassica crops. Accurate estimation of inoculum load in soil is important for evaluating producer risk in planting a susceptible crop, but also for evaluation of management practices such as crop rotation. This study compared five molecular techniques for estimating P. brassicae resting spores in soil: quantitative polymerase chain reaction (qPCR), competitive positive internal control PCR (CPIC-PCR), propidium monoazide PCR (PMA-PCR), droplet digital PCR (ddPCR) and loop-mediated isothermal DNA amplification (LAMP). For ddPCR and LAMP, calibrations were developed using spiked soil samples. The comparison was carried out using soil samples collected from a long-term rotation study at Normandin, Québec, with replicated plots representing 0-, 1-, 2-, 3-, 5- and 6-year breaks following susceptible canola infested with clubroot. CPIC-PCR and ddPCR provided repeatable estimates of resting spore numbers in soil compared with estimates from qPCR or LAMP alone. CPIC-PCR provided the most robust measurement of spore concentration, especially in the 2 years following a crop of susceptible canola, because it corrected for effects of PCR inhibitors. PMA-PCR demonstrated that a large proportion of the DNA of P. brassicae detected in soil after the susceptible canola crop was derived from spores that were immature or otherwise not viable. Each assay provided a similar pattern of spore concentration in soil, which supported the conclusion of a previous study at this site that resting spore numbers declined rapidly in the first 2 years after a susceptible crop, but much more slowly subsequently.  相似文献   

9.
Clubroot of crucifers, caused by Plasmodiophora brassicae, is managed in canola (Brassica napus) by the deployment of resistant cultivars. Recently, however, new strains of P. brassicae have been detected in Alberta, Canada, that can overcome this resistance. Some of these strains are classified as pathotype 5 on the differential system of Williams, but are distinguished by their ability to overcome host resistance. In order to expedite the identification of these new pathotype 5‐like strains, three primer sets were developed based on the 18S‐ITS region of the pathogen. With primers P5XF3 and P5XR3, a 127 bp product was amplified from all new pathotype 5‐like strains following optimized PCR analysis. A TaqMan probe‐based quantitative assay was also developed. These protocols could be used to detect as little as 0.5 pg P. brassicae DNA, and as few as 104 mL?1 pathogen resting spores; infection of host tissues could be detected as soon as 4 days after inoculation. The PCR and qPCR assays described in this study represent useful tools for the rapid and reliable diagnosis and quantification of new pathotype 5‐like strains of P. brassicae.  相似文献   

10.
Genetic resistance is the main tool used to manage clubroot of canola (Brassica napus) in Canada. However, the emergence of new virulent strains of the clubroot pathogen, Plasmodiophora brassicae, has complicated canola breeding efforts. In this study, 386 Brassica accessions were screened against five single-spore isolates (represented by pathotypes 2F, 3H, 5I, 6M and 8N on the Canadian Clubroot Differential Set) and 17 field isolates (represented by 12 unique pathotypes: 2B, 3A, 3D, 3O, 5C, 5G, 5K, 5L, 5X, 8E, 8J and 8P) of P. brassicae to identify resistance sources effective against these strains. The results showed that one B. rapa accession (CDCNFG-046, mean index of disease (ID) = 3.3%) and two B. nigra accessions (CDCNFG-263, mean ID = 3.1%; and CDCNFG-262, mean ID = 4.7%) possessed excellent resistance to all 22 of the isolates evaluated. Fifty other accessions showed differential clubroot reactions (resistant, moderately resistant or susceptible), including 27 (one B. napus, two B. rapa, four B. oleracea and 20 B. nigra) accessions that were each resistant to 8–21 P. brassicae isolates, but developed mean IDs in the range of 5.3–29.6%. The remaining 23 accessions (two B. napus, one Brapa, five Boleracea and 15 B. nigra) were each resistant to 3–13 isolates, but developed mean IDs in the range of 30.3–47.0%. The three accessions that showed absolute resistance and the 50 accessions that showed differential clubroot reactions could be used to breed for resistance to the new P. brassicae strains.  相似文献   

11.
An existing PCR-based method for diagnosis of the winter oilseed rape (Brassica napus ssp oleifera) fungal pathogen Pyrenopeziza brassicae (cause of light leaf spot) was improved by the development of a pair of primers (PbN1 and PbN2) for use in nested-PCR reactions. The nested-PCR technique improved the detection of P. brassicae DNA in vitro by three orders of magnitude over that achieved using the first-round PCR primers (Pb1 and Pb2). In controlled environment experiments, the nested-PCR assay detected P. brassicae within infected B. napus leaves before visible light leaf spot symptoms developed and earlier than was possible by incubating infected leaves in polyethylene bags to promote sporulation of P. brassicae. A three-primer PCR technique using the primers PbM-1-3, PbM-2 and Mt3 was developed to distinguish between the two mating types (MAT-1 and MAT-2) of P. brassicae. This technique was able to determine the mating types present within DNA extracted from infected plant tissue, including tissue infected with both mating types together.  相似文献   

12.
Clubroot of oilseed rape (OSR), caused by Plasmodiophora brassicae, is a disease of increasing economic importance worldwide. Previous studies indicated that OSR volunteers, Brassica crops and weeds play a critical role in the predisposition of the disease. To determine the effect of timing of foliar application of the herbicide glyphosate or mechanical destruction of OSR volunteers in reduction of clubroot severity and resting spore production, a series of studies was conducted under controlled conditions with a susceptible OSR cultivar and an isolate of P. brassicae. Plants were inoculated by injecting a spore suspension beside the root hairs at growth stage 11–12 (BBCH scale) and were terminated at 7 (early) or 21 (late) days post‐inoculation (dpi). Under controlled conditions, the first symptoms on roots were observed as early as 7 dpi. The early application of glyphosate as well as early mechanical destruction resulted in significant ( 0.05) reduction in the development of clubroot symptoms, root fresh weight and the number of resting spores?g root. Furthermore, the effect of volunteer management on clubroot severity in the succeeding OSR was studied by inoculating plants with the resting spores obtained from treated clubbed roots. Inoculated OSR exhibited root clubs similar to the initial symptoms after 35 dpi. Plants that were inoculated with spore suspension from early treated roots resulted in significant reductions in clubroot incidence and severity. Conversely, plants inoculated with the spore suspension from the late treated roots displayed levels of clubroot similar to the plants inoculated with the spore solutions of positive controls.  相似文献   

13.
Clubroot, caused by Plasmodiophora brassicae, has become a serious threat to canola (Brassica napus) production in western Canada. Experiments were conducted to assess the effect of growing resistant and susceptible canola genotypes on P. brassicae soil resting spore populations under greenhouse, mini‐plot and field conditions. One crop of susceptible canola contributed 1·4 × 108 spores mL?1 soil in mini‐plot experiments, and 1 × 1010 spores g?1 gall under field conditions. Repeated cropping of susceptible canola resulted in greater gall mass compared to resistant canola lines. It also resulted in reduced plant height, increased clubroot severity in susceptible canola, and increased numbers of resting spores in the soil mix.  相似文献   

14.
Studies were undertaken to determine Alternaria spp. associated with leaf spot symptoms on canola (Brassica napus) in two cropping seasons (2015, 2016) across southern Australia. Major allergen Alt a1 and plasma membrane ATPase genes were used to identify Alternaria spp. In 2015, 112 isolates of seven Alternaria spp. were obtained, with A. metachromatica predominating. In 2016, 251 isolates of 12 Alternaria spp. were obtained, with A. infectoria predominating. Alternaria spp. isolates were morphologically and phylogenetically identified and studies to determine their pathogenicity on both B. napus (cv. Thunder TT) and B. juncea (cv. Dune) confirmed 10 species (A. alternata, A. arborescens, A. brassicae, A. ethzedia, A. hordeicola, A. infectoria, A. japonica, A. malvae, A. metachromatica and A. tenuissima) as pathogenic on both Brassica species. Alternaria ethzedia, A. hordeicola and A. malvae were recorded for the first time in Australia on any host and the record of A. arborescens was the first for New South Wales (NSW) and South Australia (SA). Other first records included A. infectoria on B. napus in NSW; A. japonica on B. napus in NSW and Western Australia (WA); A. metachromatica on any host in NSW, Victoria (VIC), WA and SA; and A. tenuissima on B. napus in NSW, SA and WA. It is evident that alternaria leaf spot on canola across southern Australia is not solely caused by A. brassicae, but that a range of other Alternaria spp. are also involved to varying degrees, depending upon the year and the geographic locality.  相似文献   

15.
Clubroot, caused by Plasmodiophora brassicae, is a worldwide disease affecting Brassica. Until now, the detection of genetic factors (QTLs) implicated in clubroot resistance has been based on estimates of disease index. However, as the amount of resting spores released in soil after club disintegration influences clubroot epidemics and resistance‐breaking dynamics, its genetic control may deserve specific attention. In a previous report, it was shown that nitrogen fertilization modulated quantitative partial resistance toward clubroot symptom development in rapeseed. The present work aimed to identify genetic factors involved in the control of resting spore production and to assess their regulation by nitrogen supply. A flow cytometer method was adapted for rapidly estimating resting spore content in a large series of samples. Linkage analysis was conducted to detect QTLs implicated in resting spore production in a Brassica napus doubled haploid progeny from the cross Darmor‐bzh × Yudal. DH lines inoculated with the P. brassicae isolate eH were grown under low‐ and high‐nitrogen supply. Under low‐nitrogen conditions, resting spore production was reduced compared to high‐nitrogen conditions, regardless of genotypes. Genetic architecture controlling resting spore production and clubroot symptom development was similar. Under high‐nitrogen conditions, resting spore production was controlled by one major QTL (C09a) and a few small‐effect QTLs. By contrast, two major QTLs (C02 and C09a) controlled resting spore production under low‐nitrogen conditions. This work highlighted a large see‐saw effect between the relative contribution of the C09a QTL (high effect under high‐nitrogen conditions) and the C02 QTL (high effect under low‐nitrogen conditions), with possible implications in resistance breeding.  相似文献   

16.
Clubroot, caused by Plasmodiophora brassicae, has become a serious threat to canola (Brassica napus) production in western Canada. Experiments were conducted under greenhouse and field conditions to assess the effect of Vapam fumigant (dithiocarbamate; sodium N‐methyldithiocarbamate) on primary and secondary infection by P. brassicae, clubroot severity, and growth parameters in canola. Preliminary trials showed a 12–16‐fold reduction in primary and secondary infection and clubroot severity at all of the Vapam application rates (0·4–1·6 mL L?1 soil) assessed. Vapam was also found to be effective in reducing clubroot severity and improving seed yield of canola under field conditions. Application of Vapam at soil moisture levels in the range of 10–30% (v:v) had a large effect on both disease severity and infection rates and plant growth parameters. The results suggest that Vapam can effectively reduce clubroot severity and may be useful for the treatment of transplant propagation beds in brassica vegetable production, and for the containment of small, localized clubroot infestations in commercial canola crops.  相似文献   

17.
Studies were undertaken to compare susceptible and resistant host responses to Pseudocercosporella capsellae in cotyledons of Brassica carinata, B. juncea and B. napus in order to define the mechanisms of resistance in these three species. On both resistant and susceptible hosts, hyphal penetration was always through stomatal openings and without infection pegs or appressoria. On resistant B. carinata ATC94129P, up to 72% of spores disintegrated and, generally, germination (<22%) and germ tube lengths (<25 μm) were comparatively low. Resistant B. napus Hyola 42 had the lowest germination (8%) and susceptible B. carinata UWA#012 had the highest (51%). On resistant B. carinata ATC94129P, germ tube extension was impeded across 24–60 h post‐inoculation (hpi) and percentage stomatal penetration lower (4%) at 60 hpi compared with susceptible B. carinata UWA#012 (26%). Stomatal densities (stomata/14 757 μm2) on resistant B. juncea Dune (2·12) and B. napus Hyola 42 (1·62) were lower than for susceptible B. juncea Vardan (2·40) and B. napus Trilogy (2·03). Resistant B. carinata ATC94129P had greater stomatal density (1·89) than susceptible B. carinata UWA#012 (1·58). Overall, B. juncea had greater stomatal density (2·26) compared with B. napus (1·83) and B. carinata (1·74). In resistant B. carinata ATC94129P, P. capsellae induced 28% stomata to close, while in susceptible B. carinata UWA#012 no such closure was induced. Epicuticular wax crystalloids were present only on resistant B. carinata ATC94129P and probably also contribute towards resistance.  相似文献   

18.
Plasmodiophora brassicae, causal agent of clubroot of crucifers, poses a serious threat to Canadian canola production. The effects of fallow (F) periods and bait crops (clubroot‐susceptible canola (B) and perennial ryegrass (R)) on clubroot severity and P. brassicae resting spore populations were evaluated in five sequences: R–B, B–R, R–F, B–F and F–F. Both host and non‐host bait crops reduced clubroot severity in a subsequent crop of a susceptible canola cultivar compared with fallow. Resting spore and P. brassicae DNA concentrations decreased in all treatments, but were lowest for the R–B and B–R bait crop sequences. In addition, two studies were conducted in mini‐plots under field conditions to assess the effect of rotation of susceptible or resistant canola cultivars on clubroot severity and P. brassicae resting spore populations. One study included three crops of susceptible canola compared with a 2‐year break of oat–pea, barley–pea, wheat–wheat or fallow–fallow. The other study assessed three crops of resistant canola, two crops of resistant canola with a 1‐year break, one crop of resistant canola and a 2‐year break, and a 3‐year break with barley followed by a susceptible canola. The rotations that included non‐host crops of barley, pea or oat reduced clubroot severity and resting spore concentrations, and increased yield, compared with continuous cropping of either resistant or susceptible canola. Growing of a susceptible canola cultivar contributed 23–250‐fold greater gall mass compared with resistant cultivars.  相似文献   

19.
A protocol using real‐time polymerase chain reaction (PCR) for the direct detection and quantification of Plasmodiophora brassicae in soil samples was developed and used on naturally and artificially infested soil samples containing different concentrations of P. brassicae. Species‐specific primers and a TaqMan fluorogenic probe were designed to amplify a small region of P. brassicae ribosomal DNA. Total genomic DNA was extracted and purified from soil samples using commercial kits. The amount of pathogen DNA was quantified using a standard curve generated by including reactions containing different amounts of a plasmid carrying the P. brassicae target sequence. The PCR assay was optimized to give high amplification efficiency and three to four copies of the target DNA sequence were detected. Regression analysis showed that the standard curve was linear over at least six orders of magnitude (R2 > 0·99) and that the amplification efficiency was >92%. The detection limit in soil samples corresponded to 500 resting spores g?1 soil. The intersample reproducibility was similar to, or higher than, that of assays for other pathogens quantified in soil samples. Bait plants were used to validate the real‐time PCR assay. The protocol developed was used to investigate the spatial distribution of P. brassicae DNA in different fields and a significant difference was found between in‐field sampling points. The reproducibility of soil sampling was evaluated and showed no significant differences for samples with low levels of inoculum, whereas at higher levels differences occurred. Indicator kriging was used for mapping the probability of detecting P. brassicae within a 2‐ha area of a field. A threshold level of 5 fg plasmid DNA g?1 soil, corresponding to approximately 3 × 103P. brassicae resting spores g?1 soil, is suggested for growing resistant cultivars. The results provide a robust and reliable technique for predicting the risk of disease development and for assessing the distribution of disease within fields.  相似文献   

20.
Isolates of Hyaloperonospora brassicae inoculated onto cotyledons of 28 diverse Brassicaceae genotypes, 13 from Brassica napus, two from B. juncea, five from B. oleracea, two from Eruca vesicaria, and one each from B. nigra, B. carinata, B. rapa, Crambe abyssinica, Raphanus sativus and R. raphanistrum, showed significant effects (P ≤ 0.001) of isolate, host and their interaction. Host responses ranged from no visible symptom or a hypersensitive response, to systemic spread and abundant pathogen sporulation. Isolates were generally most virulent on their host of origin. Using an octal classification, six host genotypes were identified as suitable host differentials to characterize pathotypes of H. brassicae and distinguished eight distinct pathotypes. There were fewer, but more virulent, pathotypes in 2015–2016 isolates than 2006–2008 pathogen populations, probably explaining the increase in severity of canola downy mildew over the past decade. Phylogenetic relationships determined across 20 H. brassicae isolates collected in 2006–2008 and 88 isolates collected in 2015–2016 showed seven distinct clades, with 70% of 2006–2008 isolates distributed within clade I (bootstrap value (BVs) of 100%) and the remaining 30% in clade V (BVs 83.3%). This is the first study to define phylogenetic relationships of H. brassicae isolates in Australia, setting a benchmark for understanding current and future genetic shifts within pathogen populations; it is also the first to use octal classification to characterize pathotypes of H. brassicae, providing a novel basis for standardizing phenotypic characterization and monitoring of pathotypes on B. napus and some crucifer species in Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号